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Abstract: Acute gastroenteritis (AGE) is a disease of global public health importance. Recent studies
show that children with AGE have an altered gut microbiota relative to non-AGE controls. Yet, how
the gut microbiota differs in Ghanaian children with and without AGE remains unclear. Here, we
explore the 16S rRNA gene-based faecal microbiota profiles of Ghanaian children five years of age
and younger, comprising 57 AGE cases and 50 healthy controls. We found that AGE cases were
associated with lower microbial diversity and altered microbial sequence profiles relative to the
controls. The faecal microbiota of AGE cases was enriched for disease-associated bacterial genera,
including Enterococcus, Streptococcus, and Staphylococcus. In contrast, the faecal microbiota of controls
was enriched for potentially beneficial genera, including Faecalibacterium, Prevotella, Ruminococcus, and
Bacteroides. Lastly, distinct microbial correlation network characteristics were observed between AGE
cases and controls, thereby supporting broad differences in faecal microbiota structure. Altogether,
we show that the faecal microbiota of Ghanaian children with AGE differ from controls and are
enriched for bacterial genera increasingly associated with diseases.

Keywords: acute gastroenteritis; children; faecal microbiota; bacteria; disease; pathogen; correlation
network

1. Introduction

Despite significant reductions in childhood morbidity and mortality over the past
decades, acute gastroenteritis (AGE) remains a major burden [1]. Almost 525,000 children
die annually from over 1.7 billion cases of AGE [2]. The incidence, morbidity, and mortality
associated with AGE are highest in developing countries [3]. AGE is characterised by the
passage of at least three loose/watery stools per day, with abdominal pain, fever, and
vomiting [2]. Severe dehydration used to be the main cause of AGE-associated deaths glob-
ally [4]. However, deaths are increasingly linked with infectious microbial agents, including
viruses (rotavirus, norovirus, sapovirus, enteric adenovirus) [5], bacteria (Campylobacter,
Escherichia, Shigella, Vibrio cholerae) [5], and eukaryotic parasites (Cryptosporidium, Giardia,
Entamoeba) [5]. These pathogens are transmitted through the faecal–oral route, where they
colonise and cause AGE. Infection occurs through the consumption of contaminated food
and water and sometimes contact with an infected individual [2].

Lining the human gut are trillions of microbes, including bacteria, fungi, archaea,
viruses, and eukaryotes, collectively known as the gut microbiota [6]. The gut microbiota is
present at birth and increases in number and community complexity over the first few years
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of life [7,8]. Members of the gut microbiota interact at the physical and chemical levels in
defence of their niche and compete for nutrient supply [9,10]. The benefits derived from
gut microbiota include food digestion; protection against pathogen adhesion and colonisa-
tion; and contribution to immune, metabolic, and neurobiological development [6,11,12].
Consequently, alteration of the homeostatic balance of the gut microbiota in childhood
increases the risk of developing diseases, including allergies, autoimmunity, inflammatory
bowel diseases, diabetes, and obesity [6,13].

AGE is associated with gut microbiota alterations, irrespective of aetiological agents,
albeit to different extents, with variable microbial features identified [14–18]. Faecal samples
from AGE cases are associated with the presence of pathogens and/or microbes with
increased pathogenic potential in higher abundance [16]. The incidence of AGE in children
and its association with gut microbiota alterations result in gut barrier damage and reduced
nutrient absorptive capacity [19]. This highlights the importance of studying gut microbiota
profiles in AGE.

A recent study showed differences in the faecal microbiota profiles of Ghanaian
patients (children, adolescents, and adults) with viral gastroenteritis relative to healthy
adult controls [20]. While the findings of this study support the association of AGE cases
with microbiota alterations, how these observations apply specifically in children, who
suffer the highest burden of AGE, remains unclear. This study explores the faecal microbiota
of Ghanaian children ≤ 5 years with and without AGE.

2. Results
2.1. Demographic and Clinical Characteristics of Study Participants

A total of 107 faecal samples from 57 AGE cases and 50 non-AGE “healthy controls”
were used for this study (Table 1). The mean age of AGE cases was lower than healthy
controls. No differences were found in the proportions of sex and rotavirus vaccination
status between AGE cases and healthy controls. A higher proportion of AGE cases re-
ported vomiting and fever as symptoms. Whereas a higher proportion of AGE cases were
fed artificial milk, a higher proportion of healthy controls were fed family meals (meals
prepared and shared by the whole family). A comparable proportion of AGE cases and
healthy controls were breastfed or formula-fed.

Table 1. Characteristics of study participants.

Number, n
AGE Cases Healthy Controls

p-Value
57 50

Age (Months)
<0.0001Mean ± SD 15.6 ± 14.2 29.6 ± 16.0

(Range) (1.5–60.0) (5.0–59.0)

Sex (%)
0.9884Female 25 (43.9) 22 (44.0)

Male 32 (56.1) 28 (56.0)

Vomiting (%)

<0.0001
Yes 30 (52.6) 0 (0)
No 23 (40.4) 50 (100)

Missing * 4 (7.0) -

Fever (%)
<0.0001Yes 44 (77.2) 0 (0)

No 13 (22.8) 50 (100)

Mode of Feeding, Yes (%)
Breastfeeding 19 (33.3) 16 (32.0) 0.8834
Artificial Milk 12 (21.1) 2 (4.0) 0.0091

Formula 0 (0) 2 (4.0) 0.1274
Family Meal 32 (56.1) 43 (86.0) 0.0008

Rotavirus Vaccination (%)

0.3244
Yes 51 (89.5) 50 (100)
No 1 (1.7) 0 (0)

Missing * 5 (8.8) -

AGE, acute gastroenteritis; SD, standard deviation; %, percentage; p-values represent χ2 test of proportions
(categorical variables) and Wilcoxon rank sum test (numerical variables); -, no count data; *, missing data were
excluded from statistical analysis.
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2.2. AGE Cases Have Lower Alpha Diversity and Distinct Beta Diversity Profiles

Quality filtering and removal of suspected contaminants and uncharacterised taxa
resulted in 2897 unique amplicon sequence variants (ASVs), covering 18 phyla, 37 classes,
65 orders, 107 families, and 216 genera. Three metrics were used to estimate the within-
sample (alpha) diversity after rarefying to an ASV sequence count of 10,000 (Figure 1A).
AGE cases had significantly lower faecal microbiota richness (observed ASVs), Shannon
diversity, and phylogenetic diversity estimates compared with healthy controls. Significant
differences in alpha diversity estimates persisted with age, breastfeeding, family meal,
formula, and artificial milk intake, as covariates in simple linear models (Supplementary
Table S1). High dimensional faecal microbial 16S rRNA gene sequence profiles were consis-
tent with previous findings, with observed significant differences based on Bray–Curtis
dissimilarity (Figure 1B) and weighted (Figure 1C) and unweighted UniFrac (Figure 1D)
metrics. Participant age and breastfeeding status were small but significant explanatory
covariates, whereas family meal, formula, and artificial milk intake were nonsignificant
(Supplementary Table S2). These suggest that the faecal microbiota structure of AGE cases
was distinct from healthy controls.
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Figure 1. AGE cases are associated with lower alpha diversity and distinct beta diversity relative to 

healthy controls. (A) Violin plot of alpha diversity metrics. Left to right: Observed ASVs (p < 0.0001, 

Wilcoxon rank sum test), Shannon (p < 0.0001, Wilcoxon rank sum test), and phylogenetic diversity 

(PD) (p < 0.0001, Wilcoxon rank sum test). Violin plots show the kernel probability density plots of 

Figure 1. AGE cases are associated with lower alpha diversity and distinct beta diversity relative to
healthy controls. (A) Violin plot of alpha diversity metrics. Left to right: Observed ASVs (p < 0.0001,
Wilcoxon rank sum test), Shannon (p < 0.0001, Wilcoxon rank sum test), and phylogenetic diversity
(PD) (p < 0.0001, Wilcoxon rank sum test). Violin plots show the kernel probability density plots
of individual alpha diversity estimates. Boxplots show the median (middle line: 50th percentile),
first (bottom: 25th percentile), and third quartiles (top: 75th percentile), and whiskers as 1.5 times
the interquartile range. Principal coordinates analysis (PCoA) plots of (B) Bray–Curtis dissimilarity
(p < 0.001, PERMANOVA R2 = 0.09) and (C) Weighted (p < 0.001, PERMANOVA R2 = 0.19) and
(D) Unweighted UniFrac metrics (p < 0.001, PERMANOVA R2 = 0.12). Percentage variation explained
on axes 1 and 2 are shown. Ellipses show the 95% confidence interval for the variation within each
group. Each dot represents a faecal microbiota sample from a different individual.
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2.3. Taxonomic Profiles Differ between AGE Cases and Healthy Controls

The dominant phyla present in the faecal microbial sequence profiles were Bacillota,
Actinomycetota, Pseudomonadota, Bacteroidota, and Verrucomicrobiota (Figure 2A). AGE cases
had lower relative abundances of Bacteroidota, Bacillota, Mycoplasmatota, and Verrucomi-
crobiota (Figure 2A). The dominant family included Bifidobacteriaceae, Enterobacteriaceae,
Lachnospiraceae, Streptococcaceae, and Enterococcaceae (Figure 2B). Family features with high
relative abundance in AGE cases included Corynebacteriaceae, Enterococcaceae, Micrococcaceae,
and Streptococcaceae. Further, there were differences in the relative abundance of genera
between AGE cases and healthy controls. Atopobium, Enterococcus, Rothia, and Streptococcus
genera were higher in AGE cases, while Akkermansia, Bacteroides, Dialister, Faecalibacterium,
and Prevotella were higher in healthy controls (Figure 2C). These observations suggest there
are differences between the taxonomic composition of AGE cases and healthy controls.
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Figure 2. Faecal microbial sequence profiles of AGE cases and healthy controls. Relative abundance
of (A) Phylum-, (B) Family-, and (C) Genus-level features. Samples are grouped according to status
(AGE cases or healthy controls). Each bar represents an individual faecal microbial sequence profile.
Top 10 most dominant taxa are shown, with the remaining collapsed under “Other”.
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2.4. Shared and Unique Core Genera between AGE Cases and Healthy Controls

Twenty-one core genera were identified (at a minimum detection threshold of 0.01%
and 50% prevalence) (Figure 3A). These included Streptococcus, Faecalibacterium, Bacteroides,
Bifidobacterium, Blautia, Enterococcus, and Veillonella. Streptococcus, Bifidobacterium, Veillonella,
Blautia, and Actinomyces had the highest overall prevalence. Group-specific core genera
revealed 2 unique genera to AGE cases, 22 to healthy controls, and 8 overlapped between
both groups (Figure 3B; Supplementary Table S3). Atopobium and Rothia were unique to
AGE cases, and Faecalibacterium, Bacteroides, Prevotella, Coprococcus, Clostridium, and Dialister
were part of the 22 genera unique to healthy controls. The overlapping genera were
Bifidobacterium, Blautia, Enterococcus, Veillonella, Granulicatella, Actinomyces, Streptococcus,
and Ligilactobacillus.
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Figure 3. Core genera of AGE cases and healthy controls. (A) Heatmap of core genera across samples
of the two groups. Genus names are shown. (B) Venn diagram of the number of core genera identified
within AGE cases and healthy controls. Core genera were identified using a 50% prevalence cut-off
and an abundance cut-off of 0.01% (0.0001).

2.5. Faecal Microbial Sequence Profiles Based on Differential Abundance Testing

Overabundant genera between AGE cases and healthy controls were identified after
prefiltering to include only features observed in at least 10% of samples. By using DESeq2,
56 differentially abundant bacteria were identified (Figure 4), and these were annotated to
53 different genera. Of these, ~42% (22/53) of the genera were enriched in AGE cases, and
these included Enterococcus, Peptostreptococcus, Staphylococcus, Corynebacterium, Dolosigran-
ulum, Atopobium, Granulicatella, Rothia, Mogibacterium, and Streptococcus. In contrast, the
genera enriched in healthy controls included Dialister, Roseburia, Ruminococcus, Clostridium,
Faecalibacterium, Akkermansia, and Prevotella.
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Figure 4. Differential abundance testing identifies genera with high abundance between AGE cases
and healthy controls. DESeq2 (left) and ANCOM-BC (right) were used for differential abundance
testing. Genera that passed multiple test correction (Benjamini and Hochberg’s FDR < 0.05) are
shown. Dots represent the estimated effect size distribution as log2 (fold-change) and W for DESeq2
and ANCOM-BC, respectively. Negative values represent genera enriched in AGE cases and positive
values represent genera enriched in healthy controls.

Additionally, we confirmed the output of DESeq2 with ANCOM-BC, a tool that is
robust to compositionality. ANCOM-BC identified 45 genera as differentially abundant
between the two groups (Figure 4). Notably, the enrichment of Enterococcus, Staphylococcus,
Corynebacterium, Mogibacterium, Rothia, Dolosigranulum, and Peptostreptococcus, in AGE
cases, corresponded with the output from DESeq2, albeit with different effect size estimates.
Similar observations were made for genera enriched in healthy controls, such as Prevotella,
Akkermansia, Faecalibacterium, Roseburia, and Ruminococcus. Thus, the faecal microbial
sequence profiles of AGE cases and controls were enriched for different bacteria based on
differential abundance testing.

2.6. Selbal Identifies Balances Associated with AGE Cases and Healthy Controls

Two groups of balances (as numerator and denominator) discriminating between
AGE cases and healthy controls were determined using Selbal [21], a forward-selection
method. Four genera were identified as optimal after cross-validation, with a mean ac-
curacy (area under the curve [AUC]) of 0.848 (Figure 5; Supplementary Figure S1). The
accuracy value (AUC) of 0.848 provided from cross-validation was lower than the AUC-
ROC (receiver-operator characteristic) curve of 0.932 (top right of Figure 5), as the latter is
an overestimation measured on the same data for model building. The four genera were
Ruminococcus and Parabacteroides (numerator: most associated with healthy controls) and
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Enterococcus and Mogibacterium (denominator: most associated with AGE cases). These
results further support the outcome of the differential abundance testing.
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Figure 5. Global balance for AGE cases and healthy controls. The two groups of genera that form the
global balance are shown at the top of the boxplot, which shows the distribution of balance scores.
Boxplots show the median (middle line: 50th percentile), first (bottom: 25th percentile), and third
quartiles (top: 75th percentile), and whiskers as 1.5 times the interquartile range. The right section of
the figure shows the AUC-ROC curve value of 0.932 and the data density plot for each group.

2.7. Network Analysis further Reveals Differences in Faecal Microbiota Structure

High-level insights into the faecal microbiota structure of AGE cases and healthy
controls were determined by inferring a correlation network on genus-level features. The
resulting network across all samples had 65 nodes and 213 edges and was summarised into
19 modules (module-0 to module-18), the most significant of which included nine genera
(Figure 6A; Supplementary Table S4). We inferred the correlation network structure between
AGE cases and healthy controls separately and identified a unique set of modules and mem-
berships. AGE cases had a less tightly connected network, with 61 nodes, 122 edges, and
18 modules (Figure 6B; Supplementary Table S4), while controls had 59 nodes, 205 edges,
and 19 modules (Figure 6C; Supplementary Table S4). By applying ANCOM-BC to the
feature table produced from SCNIC, we identified 15 genera associated with AGE cases
and healthy controls (Figure 6D), the majority of which were also individually signifi-
cant without SCNIC (Figure 4). Enterococcus had the highest effect size and was, together
with Mogibacterium, Abiotrophia, Leuconostoc, and Lactococcus, associated with AGE cases.
Conversely, the 10 genera associated with healthy controls included Alistipes, Clostridium,
Anaerostipes, and Butyricimonas. Thus, the faecal microbiota structure of AGE cases differed
from healthy controls based on correlation network inference.
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Figure 6. Correlation network analysis of faecal microbiota. Correlation networks for (A) All groups,
(B) AGE cases, and (C) Healthy controls. Module memberships identified by SCNIC are shaded with
colours other than black (for instance, shared membership under module-0 is shaded light green on
panel A). Nodes (with rectangular/square shapes) represent genera, and edges represent correlations
with an R-value greater than 0.35. (D) Differential abundance testing with ANCOM-BC. Genera
that passed multiple test correction (Benjamini and Hochberg’s FDR < 0.05) are shown. Dots with
negative W values represent genera enriched in AGE cases, while positive values represent genera
enriched in healthy controls.

3. Discussion

The period of childhood from birth to 5 years is the most important for immune
and metabolic imprinting by gut microbes and their functional products [22]. Children
suffer several bouts of infections, partly due to an immature immune system or increased
exposure to pathogens in the environment. Most of these pathogens are transmitted through
the faecal–oral route, where they colonise and establish infections in the gastrointestinal
tract (GIT). Infection in the GIT is akin to most diarrhoeal diseases and is associated with
the passage of loose/watery stools and gut microbiota alterations. However, it remains
unclear how the gut microbiota differs in Ghanaian children with and without AGE. We
profiled the faecal microbiota of Ghanaian children with and without AGE using 16S rRNA
gene sequencing.

Lower alpha diversity observed in AGE cases is characteristic of many GIT diseases,
including AGE [16,23] and functional gastrointestinal disorders [24], which may result
from diverse factors. These factors include the “gushing” reaction that extrudes microbes
from the gut [23], aberrant inflammatory response against invading agent(s) [6,11], and
transiently aerobic gut conditions, which kill obligate anaerobes and encourages the ex-
pansion of facultative anaerobes [17]. Moreover, the lower mean age of AGE cases than
healthy controls contributed to the observed lower alpha diversity, as age and its associated
changes in dietary choices (cessation of breastfeeding/introduction of solid meals) are
known factors that drive gut microbiota maturation [13,25,26]. Importantly, the lower
mean age for AGE cases compared to controls was driven by the relatively high disease
burden of AGE in Ghanaian children younger than 24 months, increasing the likelihood of
hospitalisation and recruitment into studies with hospital-based sampling design [27,28].
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While lower alpha diversity is linked with AGE cases, the effect of medication(s) likely
administered to treat AGE, which was not reported in this study, could further have re-
duced overall microbial diversity [29,30]. Loss of microbial diversity drove the observed
differences in beta diversity estimates, suggesting that the representation (presence or
absence), abundance of taxa (dominant and rare), and phylogenetic relationships were
different [31,32].

The observed differences in microbial sequence profiles at the phylum, family, and
genus levels suggest that AGE was associated with changes in taxonomic composition [16,33].
The composition of the taxonomic core was similar to previous findings in Ghanaian chil-
dren [34,35]. This relates to microbes that may be inherited from maternal and environmental
sources [7], those unaffected by differing environmental exposures, and those important for
the host’s immune, nutritional, and metabolic development and function [36].

AGE cases were enriched for genera increasingly linked with infections of public
health importance due to their intrinsic and acquired virulence, biofilm-forming, and
antimicrobial resistance properties. These findings reflect the selective advantage available
to these taxa and the increased chance for gut surface colonisation provided through
reduced microbial diversity [37]. Enterococcus sp. was one notable genus with the highest
effect size of enrichment. Enterococci are linked with bacterial infections in paediatric
patients, immunocompromised individuals, and mouse models [38–40]. Enterococci have
previously been observed to be enriched in the faecal microbiota of Vietnamese paediatric
patients and Bangladeshis with infectious AGE [15,17]. In addition, several genera of the
upper GIT dominated the enriched faecal microbiota fraction of AGE cases, as shown
previously [16,17,41], thereby signifying an increased transmission of microbes from the
mouth to the gut [42]. Some examples of these include Rothia, Actinomyces, Atopobium,
Mogibacterium, Peptostreptococcus, and Fusobacterium. Transmission of these bacteria could
possibly go beyond passive to active acclimatisation to the gut environment, as planktonic
forms or biofilms [42]. We posit that one reason driving the enrichment of oral taxa in AGE
cases, aside from the low microbial diversity, could be due to their adaptation to, and use
of, elevated nitrogen and oxygen species (e.g., nitric oxide) [43–45]. These, coupled with
a loss of intestinal barrier integrity, could increase the risk of bacterial translocation and
infection [46].

As expected, the faecal microbiota of the controls was enriched for potentially benefi-
cial bacteria linked with good health. These included Faecalibacterium, Anaerostipes, Dialister,
Ruminococcus, Bacteroides, Akkermansia, Coprococcus, and Prevotella. As well as producing
beneficial metabolites, these bacteria metabolise complex plant polysaccharides to pro-
duce short-chain fatty acids (SCFAs), which have immunoregulatory and physiological
functions [47–49]. For instance, Faecalibacterium exerts its anti-inflammatory activities by
stimulating the production of interleukin 10 (IL-10) and limiting the production of tumour
necrosis factor (TNF) [12]. Further, the depletion of SCFA-producing bacteria may explain
the loss of water, electrolyte absorption, and reduced metabolism by enterocytes, further
increasing the severity of AGE [17,50].

Microbial interaction mediates communication and allows for a coordinated response
to environmental cues. A sparsely connected network in AGE cases, compared with healthy
controls, is consistent with previous findings [16] and is intricately linked with lower
microbial diversity, supporting theories linking ecosystem diversity to community balance
and stability [16,51,52]. Module memberships between the two groups were unique from
those identified previously [16] and were made up of both potentially beneficial and disease-
associated genera. This could point to potential roles to restore or maintain ecosystem
stability. The dominance of oral taxa in modules suggests that they share the same niche and
may form polymicrobial biofilms that allow them to survive the harsh gut environment and
are likely to interact at the molecular level [17,53]. Network-based differential abundance
tests further confirmed the increased abundance of disease-associated genera in AGE cases
and the depletion of potentially beneficial bacteria in AGE cases.
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The genera identified in this study are suggestive but not necessarily pathogens, as we
did not present strain-level features or prove a causal role for these in AGE. The findings in this
study are limited by the lack of longitudinal samples, which makes it impossible to determine
temporal faecal microbiota dynamics before, during, and after AGE. Faecal samples were used
as a proxy for gut samples because they are the most commonly used non-invasive means of
sampling and may not fully represent the gut microbiota profile. New AGE cases could not
be assessed and recruited; therefore, archived samples were used in this study. Furthermore,
details on the screening of faecal samples for enteropathogens were not reported. The study
lacked extensive information on potential confounders, such as antibiotic use, underlying
medical conditions, ethnicity, birth mode, and nutrition-specific questionnaire data to capture
diet components and their estimated quantities.

In conclusion, the study showed differences in faecal microbiota profiles between
Ghanaian children with and without AGE. The faecal microbiota of AGE cases was domi-
nated by disease-associated bacterial genera, most of which were notable members of the
upper GIT and was depleted in beneficial bacteria linked with good health. Finally, whole
microbial community network characteristics differed between AGE cases and controls.
The findings could have implications for the outcome of AGE.

4. Materials and Methods
4.1. Study Design and Participant Recruitment Criteria

The study was a cross-sectional case–control study in Greater Accra Region, Ghana.
A case was defined as a child who presented with AGE. Archival faecal samples from
children admitted or presented to the hospital with AGE (three or more loose or watery
stools per day) were included in the study as AGE cases. Intake of antibiotics or other
medication was not reported for AGE cases. Children who were otherwise healthy at the
time of sample collection, without AGE (diarrhoea), and had not taken antibiotics at least
30 days before sampling, based on the parental description of child health and clinical
history, were sampled as healthy controls. All children were aged 5 years and below,
with the minimum age considered at 1 month. Children whose parents/guardians did
not consent to the study, were over 5 years old (>60 months), had been on antibiotics for
less than 30 days before sampling (healthy controls only), were sick or with a recent case
of diarrhoea (less than 30 days before sampling), and those who had been on probiotic
supplements were excluded.

4.2. Sample Size, Sample Collection, and Processing

A power calculation to estimate the expected effect size was not predetermined.
Nonetheless, we considered at least 40 faecal samples for each study group to be sufficient,
based on previously published studies [54–56]. Faecal samples were collected into sterile
transparent containers fitted with a spatula, stored temporarily in a refrigerator/freezer
on-site, and transported on ice to the laboratory for storage (−80 ◦C). Five faecal samples
were transported to the laboratory under ambient temperature within 30 min of collection.
Archival AGE faecal samples were retrieved from storage (−20 ◦C or −80 ◦C).

4.3. DNA Extraction and 16S rRNA Gene Amplicon Sequencing

Genomic DNA was extracted from 107 faecal samples (approximately 0.19 ± 0.08 g),
6 extraction blanks as negative controls, and 2 mock communities of microbes (Zymo-
BIOMICS™ Microbial Community Standard and ZymoBIOMICS™ Microbial Community
Standard II (Log Distribution), freely provided by Zymo Research Corporation, California,
USA) using the DNeasy Powerlyzer PowerSoil kit (Qiagen, Hilden, Germany). Except
for preheat treatment at 65 ◦C for 10 min and at 95 ◦C for 5 min, as well as mechanical
disruption for 5 min, all extraction steps followed the manufacturer’s protocol. Genomic
DNA purity and yield were quantified with the NanoDrop Lite spectrophotometer (Thermo
Fisher Scientific, Waltham, Massachusetts, USA). Genomic DNA samples were shipped on
dry ice for sequencing by the Environmental Sample Preparation and Sequencing Facility
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(ESPSF) at the Argonne National Laboratory, USA. Genomic DNA samples were subjected
to high-throughput sequencing of the 16S rRNA gene [57]. Briefly, the V4 region was PCR
amplified using the 515F/806R primer pair [58,59], and pooled amplicons were sequenced
on the Illumina MiSeq (Illumina, Inc., San Diego, CA, USA), using 251 bp × 12 bp × 251 bp
customised sequencing primers and procedures.

4.4. 16S rRNA Gene Sequence Processing

Paired-end FASTQ sequence files [60] were imported into QIIME 2 (version 2021.4) [61]
and demultiplexed using the q2-demux plugin. Reads were quality-filtered, trimmed
(forward reads at 240, reverse reads at 200), merged, and denoised to amplicon sequence
variants (ASVs) using DADA2 through the q2-dada2 plugin [62]. The q2-fragment-insertion
plugin [63] was used to construct a reference-based phylogenetic tree of ASVs using the
Greengenes 13_8 (99%) database [64]. Fragments outside the insertion tree were filtered out
because they either were erroneous or too distantly related to sequences in the reference
tree [65]. Taxonomy was assigned using the q2-feature-classifier plugin’s scikit-learn naïve
Bayes classifier [66] trained against the Greengenes database trimmed to include only the
515F/806R V4 region [67]. New names for the rank of bacterial phylum and the genus
Lactobacillus were included [68]. ASVs misclassified as Alloiococcus instead of Dolosigranulum
by Greengenes, as shown previously [69,70], were manually corrected.

QIIME 2 files were imported into R as a phyloseq object [71] using qiime2R
(https://github.com/jbisanz/qiime2R; accessed on 25 July 2021). Additionally, decon-
tam [72] was used to remove contaminants using the prevalence of ASVs identified in
sequenced negative controls at a stringent classification threshold of 0.5. Uncharacterised
and unassigned phyla were removed. Reads were rarefied to 10,000 to account for varying
sequence counts prior to ecological diversity estimation (one AGE case sample was elimi-
nated because of low read count) [73]. Alpha diversity was estimated on ASV data using
the richness (Observed ASVs), Shannon, and Faith’s Phylogenetic Diversity (PD) metrics.
Differences in alpha diversity measures based on categorical variables were tested using
the Wilcoxon rank sum test. Beta diversity was estimated on ASV data using the Bray–
Curtis dissimilarity index [74] and weighted and unweighted UniFrac distances [75,76].
Beta diversity was visualised using principal coordinates analysis (PCoA) plots. Signif-
icant differences in faecal microbiota structure between AGE cases and healthy controls
were tested using the permutational multivariate analysis of variance (PERMANOVA) test
implemented in the adonis function of the Vegan R package [77] with 999 permutations [78].

The core microbiota (defined as genera with at least 0.01% relative abundance and 50%
prevalence) were determined using the microbiome R package [79]. Core microbiota in AGE
cases only and healthy controls only were determined, as previously stated. DESeq2 [80]
and ANCOM-BC [81] R packages were used for differential abundance testing, based on
recommendations from [82], after filtering out genus-level features present in less than 10%
of samples. The Selbal R package [21] was used to identify the two groups of taxa that
significantly discriminate between AGE cases and controls, with five-fold cross-validation
and 20 iterations. Selbal is different from the two differential abundance testing methods
previously indicated, as it does not rely on FDR and power; however, it determines the
best and most highly associated sparse model between AGE cases and healthy controls.
We built a correlation network and detected and summarised modules from genus-level
features using the Sparse Cooccurrence Network Investigation of Compositional data
(SCNIC) through the q2-SCNIC plugin [83]. Prefiltering and inference of correlations
were completed with the Sparse Correlations for Compositional data (SparCC) correlation
metric [84] at a minimum R-value threshold of 0.35. ANCOM-BC was applied to the feature
table generated by SCNIC across all samples. Network files were exported and visualised
with Cytoscape [85], and Inkscape 1.1 (https://inkscape.org; accessed on 15 September
2021) was used to format correlation network figures.

https://github.com/jbisanz/qiime2R
https://inkscape.org


Int. J. Mol. Sci. 2023, 24, 3607 12 of 16

4.5. Statistical Analysis

Demographic and clinical data were processed in R statistical software [86] through
RStudio (1.4.1717). Categorical data were analysed by Pearson’s chi-squared (χ2) test. The
age of participants was tested using the Wilcoxon rank sum test after the Shapiro–Wilk nor-
mality test for non-normal distribution was performed. Statistical significance was consid-
ered at p < 0.05. Where appropriate, p-values were adjusted for multiple comparisons using
Benjamini and Hochberg’s FDR correction [87] unless otherwise stated. The R packages
used for downstream data manipulation and visualisation included tidyverse suite [88],
ggplot2 [89], viridis [90], RColorBrewer [91], Fantaxtic [92], microbiome [79], microbiomeu-
tilities [93], eulerr [94], ggpubr [95], showtext [96], magrittr [97], broom [98], Hmisc [99],
knitr [100], biomformat (https://github.com/joey711/biomformat), and scales [101].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms24043607/s1: Figure S1: Variable and balance selection using Selbal; Table S1: Simple linear
model summary of alpha diversity estimates; Table S2: ADONIS PERMANOVA test summary for
beta diversity metrics; Table S3: Core genera (Venn diagram); Table S4: Correlation network modules
and membership across all groups, AGE cases, and healthy controls.
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