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Despite successful results of using complex networks to model and

characterize the spread of dengue cases, works to date have mainly used

data from primarily reported cases, without further consideration whether they

were later confirmed or not. On the other hand, a study of the interdependence

of confirmed and discarded cases of arboviruses have emphasized that the co-

circulation of three arboviruses—dengue, Zika and chikungunya—may have led

to false diagnoses due to several similarities in the early symptoms of the three

diseases on acute phase. This implies that case notifications of one disease

could be confirmed cases of others, and that discarded casesmust be taken into

account to avoid misinterpretations of the phenomenon. In this work we

investigated the consequences of including information from discarded and

confirmed cases in the analysis of arbovirus networks. This is done by firstly

evaluating the possible changes in the networks after removing the discarded

cases from the database of each arbovirus, and secondly by verifying the cross-

relationship of the indices of the networks of confirmed and discarded cases of

arboviruses. As will be detailed later on, our results reveal changes in the

network indices when compared to when only confirmed cases are

considered. The magnitudes of the changes are directly proportional to the

amount of discarded cases. The results also reveal a strong correlation between

the average degree of the networks of discarded cases of dengue and

confirmed cases of Zika, but only a moderate correlation between that for

networks of discarded cases of dengue and confirmed cases of chikungunya.
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This finding is compatible with the fact that dengue and Zika diseases are caused

by closely related flaviviruses, what is not the case of the chikungunya caused by

a togavirus.
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1 Introduction

Urban arboviruses are a public health problem affecting

millions of people worldwide [1]. Brazil, for example, has

experienced successive dengue epidemics over the years [2]

and, more recently, outbreaks of Zika and chikungunya

became new problems leading to an increase in cases of

congenital microcephaly and Guillain-Barré syndrome in the

case of Zika [3–6], and intense arthralgia that can last for months

or even years and lead to chronic and disabling forms, in the case

of chikungunya [6–8]. These three arboviruses are transmitted by

vectors Aedes genus mosquitos. Several factors favor the increase

of that mosquito population, as generation of deforested regions,

the accelerated and disorderly increase of the human population

in urban areas, lack of adequate sanitation and infrastructure in

these cities [9, 10], concomitantly with enhanced predisposition

to water accumulation in such places. The understanding of how

the spread of these arboviruses happens is extremely important to

find better control strategies. Complex networks have been used

in different studies focused on identifying and characterizing

aspects of the dengue dissemination dynamics [11–19]. As for

analyzes of recent large scale Zika outbreaks, a number of similar

works are already available [20, 21].

The simultaneous co-circulation of these three arboviruses in

the same places causes a complex problem for public health.

Indeed, several similarities of their clinical symptoms difficult

their precise diagnosis on acute phase as well as monitoring their

spread between different municipalities, impairing the design of

more efficient strategies for their control [6, 22–25].

Recent studies have focused on aspects related to the co-

circulation of dengue, Zika and chikungunya and consequent

misdiagnosis. An estimation of the interdependence in the time

series of notified, confirmed and discarded cases of the three

arbovirus has been presented in [23]. Similarly, the consequences

of misdiagnosis in underestimating the Zika epidemics in the

Americas was discussed in [25]. On the other hand, in previous

studies on dengue spread using network approaches [11–16], as

well as on an on-going work analysing the simultaneous co-

circulation of three arboviruses [26], databases of primarily

identified cases have been used. Such early classification does

not account to whether each case has been later subject of a

subsequent and a more precise analysis, being reclassified as

confirmed, discarded, or inconclusive. Consequently, the use of

primarily reported cases to carry fundamental studies in

conditions where similar viruses co-circulate can cause

misinterpretations about the phenomenon, due to the possible

differences between the networks obtained with data from

reported cases and confirmed cases.

The objective of this work is to extract insights about the

spread of arbovirus based on a detailed analysis of networks built

from time series of notified, confirmed, and discarded cases in the

state of Bahia, Brazil. The collected data indicate that dengue, the

arbovirus that is circulating for a largest time in Brazil, is

responsible for the largest number of primarily notified cases.

Besides that, since dengue has similar symptoms to those

following Zika and chikungunya infections, both the number

of notified and discarded cases has substantially increased in the

years 2015 and 2016, suggesting the possibility of misdiagnosis

when the two other arbovirus were not yet present in large

parcels of the territory. Therefore, it is expected that, after

comparing pairs of networks of notified and confirmed cases,

those built from dengue data will present the largest differences

as compared to their counterparts from Zika and chikungunya.

Finally, by comparing networks of discarded cases of one disease

with those of notified and/or confirmed cases of another disease,

we may collect evidence that the misdiagnosis of arbovirus can be

related to the phenomenon of multiple co-circulation. Such an

output will support the claim that building networks based on

data of confirmed cases is crucial to developing efficient the

strategies of combat and control of these arboviruses.

2 Methods

2.1 Data

The data obtained on dengue, Zika and chikungunya in this

study were from the Notifiable Diseases Information System

(Sistema de Informação de Agravos de Notificação—SINAN)

from Brazilian Ministry of Health (MoH), available for public

access online [27]. Each arbovirus database contains information

on the reported cases of each patient for the 417 municipalities of

the state of Bahia in the period 2014—2019 and the final

classification (confirmed, discarded and inconclusive), based

on laboratory or clinical and epidemiological diagnosis. The

area of Bahia is 564,760 km2, and the largest part of person

and load transportation is made through land roads [28]. As

such, Bahia is larger than countries like Spain (504,030 km2), but

with a much smaller population (15,000,000). Bahia has very

different climatic conditions, including areas with very different
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rainfall patterns, but with smaller temperature variations. This

climatic heterogeneity can locally affect the vector’s life cycle and

the number of arbovirus infections [29]. From these databases we

extract time series of weekly number of cases (notified, confirmed

or discarded for each arboviruses) in each municipality.

2.2 Motif-synchronization

The Motif-synchronization (MS) between time series starts

by mapping a time series into a series of motifs as illustrated in

Figure 1. Motifs are patterns defined only by the relative positions

of the subsequent set of points of the original series and resulting

slopes represented by straight lines between them (see

Figure 1A). Here we consider only a set of six motifs, labeled

as Mz, z � 1, ... , 6 (Figure 1B) (see [30]) defined by three

consecutive points in a time series. The original time series

generates a motif time series, consisting of a sequence of

integer numbers Mi ∈[1,6], where Mi is defined by the

number of the motif that was generated by three consecutive

points in the original series. This concept turns it possible to

estimate the synchronization between two time series by quickly

evaluating a correlation proxy based on the values ofMz′s in the

corresponding motifs time series. (Figures 1C,D). Here one just

has to count the numberQij of coinciding motifs (i.e. occurrences

where Mi � Mj) for two series i and j within a chosen time

window. This method also works quite efficiently in looking for

the best synchronization time delay by allowing for a time lag

between the two motif series. This delay time �τ is defined as the

time at which one observed the highest synchronization value Qij

between the same series, when we allow one of them to be

deferred in time in relation to the other. In this case Qij is

assumed to be the synchronization between the two series

(Figure 1D).

2.3 Network construction

Here we consider the usual point of view that, while general

graph theory studies relationships between objects of any

arbitrary set, networks mostly refer to a graph G(V,E) based

on a set of elements of a given system. Its elements are often

called nodes (or vertices) represented by vi ∈ V, and the

relationships between pairs of nodes are called edges (or links)

represented by eij ∈ E [31, 32]. When the underlying topology of

a system-related network has non-trivial features, it is usually

referred to as a complex network [33], as is the case of

representing dengue propagation using complex networks [12].

In this study, the network nodes represent the municipalities

present the databases, while the edges between nodes are

included whenever the correlation between the corresponding

time series of weekly cases exceeds an adopted threshold. The

construction of the disease networks was based on the

information of the patient residence municipality and date of

FIGURE 1
(A) Time series being converted into motifs series by mapping a set of three consecutive points of the time series into one of the 6 motifs. (B)
Patterns of the 6 different adoptedmotifs, which depend only on the relative positions of the points in the time series. (C) A set of 5motifs serieswhich
will undergo the pairwise synchronization procedure. (D) extention of themotif series synchronizationwith no time lag by allowing for different delay
times. The synchronization score is chosen at the delay time at which synchronization was maximum. Fonte: Adapted from [26].
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onset of symptoms. For the purpose of avoiding strong

fluctuations, we summed the daily number of cases over

1 week and worked with number of cases per epidemiological

week (EW). In addition, the final classification available in all

databases was used to cast the cases into confirmed, discarded or

inconclusive. In the data set used in this study, the inconclusive

cases were assumed to be confirmed and added to the

corresponding database. With such assumption, for each of

the three diseases, three different networks were built based

on the number of notified, confirmed and discarded cases,

according to the following characteristics:

Notification network—constructed from the time series of

reported cases of arboviruses. All patients who arrive at a

healthcare unit and found suspicious to have one of the three

diseases are registered in the respective database.

Confirmed network—constructed from the time series of

confirmed cases. Confirmed cases identify patients who were

suspicious of arbovirus that did not become discarded cases. The

criteria for this classification may be clinical/epidemiological or

clinical/laboratory [23].

Discarded network—constructed from the time series of

discarded cases, i.e., patients who had the suspicion of that

specific arbovirus discarded by specific laboratory or clinical

criteria, e.g., compatibility with another disease [23].

To model the disease spreading based on the indicated

database, networks were constructed based on two

independent procedures: the MS between time series discussed

in the previous subsection and the Time-Varying Graphs (TVG)

framework. A TVG is defined [34, 35] as a set of M graphs

G1, G2, . . . , GM{ }, all of which with a number N of nodes, in

which each graph Gm represents the TVG state, or equivalently,

the state of the studied system, at the instant tm, with m �
1, . . . ,M. Thus, for each value of tm, we have the same set of

node but possibly different set of edges.

The methodology resulting from the combination of these

two concepts has successfully been employed to build large

networks based on time series related to any actual system as

diverse as the brain [30, 36], economic activity [37] and

disease spreading [15, 20, 38]. In this last case, as was done

in the dengue networks first studied by Araújo et al [15], it

may allow to the evaluation and characterization of the time

necessary for the disease to disseminate in a geographical

region taking into account the distance between the

municipalities. In the TVG networks we work with,

municipalities represent the networks nodes, while the

edges between two nodes, say i and j, are introduced

according to whether a previously chosen threshold value is

smaller than the largest correlation value Qij, or

synchronization degree, found by the delay synchronization

search between the involved case time series (notified,

confirmed or discarded) of each arboviruses.

For the sake of definitiveness, the construction of the

networks proceeds along the following steps:

(i) Based on the date of first symptoms and municipality of

residence, build the time series of number of cases (reported,

confirmed or discarded) for each municipality i, in which

each point of the time series corresponds to the number of

cases of certain arbovirus on each epidemiologic week t �
1, . . .T.

(ii) Map each case time series into a corresponding case-motif

time series, each of them with T-2 entries since motifs are

defined by three successive data points and calculate within

a sliding window of size LM.

(iii) For each time t, evaluate the synchronization between two

case-motif series i and j over a time window of length LM =5,

corresponding to five epidemiological weeks, resulting in a

maximum of M = T-6 values.

(iv) Calculates the synchronization degree Qij using the Motif-

Synchronization (MS) procedure, on which the time delay

from the series j with respect to i runs from 0 to a previously

chosen value τmax (see [30] for the mathematical details of

FIGURE 2
Percentage of cases discarded in the databases of each of the arboviruses for each analysed year. (A) Chikungunya. (B) Dengue. (C) Zika.
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MS). This leads to the association matrix St, in which each

element sij(t) of the matrix represents the synchronization

degree Qij at time t, which may differ from Qji.

(v) Insert directed edges into the M TVG networks according

to whether, for each vertex pairs i and j and a pre-

established threshold value σth, sij(t)≥ σth. This concludes

the definition of each TVG network in terms of its adjacency

matrices At, in which the elements aij(t) � 1 or 0 according

to whether an edge from node i to node j was introduced

or not.

The threshold σth is usually obtained in a procedure

consisting in shuffling the data from the time series and

constructing new networks with the shuffled data. The value

σth corresponds to a 1% chance of the original network being

randomly selected. In this study we assumed that σth � 0.9 , a

value that was chosen based on previous works [15, 26].

Note that, according to these requirements, M � T − 6 is

consistent with the fact that data of seven consecutive weeks are

required to select in a precise way the edges to be included in each

single network in the TGV. This procedure also ensures that the

data of each epidemiological week with 6≤ t≤T − 6 are used to

select the edges of 7 successive networks in the TVG. Therefore,

our results obtained for each network will be discussed

considering the data averages spanning the 7 weeks required

for its setup.

FIGURE 3
Graphs of the average network node degree vs. average of weekly number of cases of each arbovirus network in the corresponding TVGs. (A)
Confirmed cases networks; (B) Discarded cases networks.

TABLE 1 Pearson correlation coefficient (R-Pearson) values for all panels in Figure 3.

R-Pearson

Confirmed cases network Discarded cases network

Chikungunya 0.94861 0.81824

Dengue 0.94254 0.9236

Zika 0.97403 0.95619

Frontiers in Physics frontiersin.org05

Santos et al. 10.3389/fphy.2022.1047835

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1047835


FIGURE 4
Time evolution of the 7-week average number of notified, confirmed and discarded cases. (A) Chikungunya. (B) Dengue. (C) Zika. The vertical
grid lines highlight the beginning of a new year.

FIGURE 5
Time evolution of the average degree of TVG to networks of notified, confirmed and discarded cases. (A)Chikungunya. (B)Dengue. (C) Zika. The
vertical grid lines highlight the beginning of a new year.

FIGURE 6
Pearson correlation coefficient (R-Pearson) of the temporal evolution of the average degree of the network of notified and confirmed. (A)
Outbreak 1. (B) Outbreak 2.
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For each obtained TVG, a corresponding aggregate static

network (ASN) AR can be evaluated by summing the adjacency

matrices over t, i.e.:

AR � ∑TM

t�1
At, (1)

where its elements (ar)ij count the number of times that a directed

edge from i to j appeared in the TVG network sequence. The code

used to obtain the results within this procedure is available at [39].

2.4 Network dissimilarity

In order to compare typical features of spreading events caused by

different arboviruses in a same time interval, or how the use of notified

or confirmed databases impact the aspects drawn from the applied

formalism, it is important to measure how similar the corresponding

TVGs are. To this purpose we consider the definition of topological

network distance [40] as a measure of the dissimilarity δ between the

networks used to represent the events. Thus, given two networks α

and β with the same number of nodes N, we define

δ2 � 1
N N − 1( ) ∑

N

i,j�1

M̂α( )
i,j

Dα
−

M̂β( )
i,j

Dβ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
2

, (2)

where Dα and Dβ correspond to the diameter of the networks α

and β. M̂α and M̂β denote their neighborhood matrices with,

respectively, elements (dα)ij and (dβ)ij representing the shortest
path from node i to node j [41].

3 Results

In this section we present and discuss the most important

results from our analyses which, for the sake of convenience, are

casted into twomain groups. The first one is related to differences

in the TVG networks obtained by working with notified and

confirmed cases. The second other one is related to findings from

the cross-relationship among TVGs based on confirmed and

discarded cases of the three arboviruses.

3.1 Comparison between networks of
notified and confirmed cases

We start by presenting a descriptive statistic of the yearly

number of confirmed and discarded cases in the databases for the

three arboviruses as one expects that, the larger the number of

discarded cases, the larger will be the dissimilarity between the

confirmed and notified case networks for the same arbovirus.

Figure 2 shows the percentages of confirmed and discarded cases

with respect to the number of reported cases of each arbovirus

database. They indicate that, from 2014 to 2017, the largest

percentage of discarded cases occurred in the dengue database,

FIGURE 7
Dependence of delay time vs. distance for notified and confirmed networks. (A) Chikungunya. (B) Dengue. (C) Zika.
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while in 2018 and 2019 this occurred in the Zika database. So,

according to the above indicated hypothesis, the largest

differences are to be expected between the networks of

notified and confirmed dengue cases, as we will discuss in the

following subsections.

In accordance with previous works, we first consider the

relationship between the average node degree of the resulting

TVG network, defined as the total number of networks edges

divided by the number of network nodes, and the 7-week averages

of number of cases in the corresponding epidemiological week,

FIGURE 8
Notified and Confirmed Aggregate static networks (ASN’s) corresponding to the period of the Outbreak 1 for chikungunya (A), dengue (B), and
Zika (C).
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which are displayed in Figure 4. This way it is possible to verify

whether the average degree index, also referred to as connectivity,

is able to detect evidences of number of cases between the

municipalities. As illustrated by Figure 3 and Table 1, when

working with confirmed and discarded cases for the three

arboviruses we found strong correlations between the two

variables, similarly to what was observed when one considers

notified number of cases and corresponding average network

degree [26]. This supports that the generated networks provide

a good modeling of arboviruses cases for these specific databases,

which is also valid for notified cases TVG. However, note that the

reduction in the amount of discarded cases relative to the

confirmed cases in the databases leads to a much sparser

network and consequently smaller value of its connectivity,

which is reflected by the slope of the least squares linear

adjustment.

3.1.1 Temporal evolution of the average node
degree

Figure 5 shows the time evolution of the weekly number of

notified, confirmed and discarded cases in the chikungunya,

dengue and Zika databases. It can be directly compared with

Figure 5, which displays the time evolution of the average

network node degree in the corresponding TVG’s. A visual

analysis reveals that the corresponding series have overall

similar patterns, especially in some specific time intervals, as

observed for the first chikungunya outbreak.

This can be confirmed by the Pearson correlation coefficient

(R-Pearson) measured between the time series of the connectivity

of notified and confirmed networks. Figure 5 shows the obtained

values for the two largest outbreaks observed in 2015 and 2016,

henceforth respectively identified as Outbreak 1 and Outbreak 2,

indicating a strong correlation between the average degrees of

these two networks for all three arboviruses.

In the case of chikungunya, it is possible to verify that the

correlation in the first outbreak is larger than the in second, as

suggested by the visual analysis of Figure 5. There we

also note that the connectivity of confirmed case networks

is smaller than that of the notified cases, which stays in

accordance with the smaller number of cases in Figure 4A.

The same feature is observed when we compare the very small

number of discarded chikungunya cases with the

corresponding very sparse network in Figures 4A, 5A. As

of dengue results, the comparison of the connectivity of

notified and confirmed networks in Figure 5B shows that

they also follow a similar pattern in both outbreaks, which is

confirmed by Figure 6. Furthermore, this can be visually

identified by comparing the number of

notified, confirmed and discarded cases in Figure 4B.

Finally, results for Zika indicate that the series of

connectivity of notified and confirmed networks have very

similar patterns at both outbreaks, just as occurred with

dengue networks. This can be confirmed by Figure 6,

which shows that the correlation of networks of notified

and confirmed of Zika is high for both peaks. As observed

with chikungunya, the connectivity of the discarded network

FIGURE 9
Dissimilarity between the networks of notified and confirmed
of Chikungunya, Zika and Dengue.

FIGURE 10
Time series of the average degree of the networks of
discarded cases of dengue and confirmed cases of Zika and
chikungunya. The vertical grid lines highlight the beginning of a
new year.
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is quite small, becoming almost negligible during the entire

period.

3.1.2 Spatial dependency of delay time
As detailed discussed in previous works (see [15, 26])

another important analysis to disclose aspects of how the

spread of arboviruses occurs in a given region amounts to

identifying the relationship of delay time with the distance

between municipalities. Indeed, the time delay obtained by

the MS procedure (see [30]) indicates how fast the process

occurs and whether it follows a diffusion like process or not.

As in the previous analyses, the results strongly depend on

the data accuracy. In Figure 7 we show the graphs of delay

time vs. distance for the notified and confirmed networks of

the three arboviruses for outbreaks 1 and 2. This way it is

possible to verify whether there was a change in the resulting

patterns.

In spite of some large differences among the notified and

confirmed networks verified in the previous subsection, the

corresponding comparison of the dependence between delay

time and distance based on Figure 7 indicates that, despite the

small quantitative changes between the results for confirmed

and notified networks, the main features remain almost

the same.

3.1.3 Aggregate static network
To obtain further insights on disease spread provided by the

adopted framework, we evaluated the notified and confirmed

ASN networks for the three arboviruses, in the periods

corresponding to Outbreak 1 and 2. As discussed in Section

2.3, the ASN defined by Eq. 1. Condenses the information of the

TVG during the selected time period.

A geographical display of the resulting ASN’s is shown in

Figure 8, where the size of the nodes (municipalities) corresponds

to the reported number of cases, and the width of the corrections

is proportional to the matrix elements (??). The visual analysis of

the networks in Figures 8A,C reveal, for chikungunya and Zika,

small changes between the notified and confirmed ASN’s. On the

other hand, the two dengue ASN’s in Figure 8B present more

differences, with a notifiable smaller number of connections in

the confirmed ASN. This stays in accordance with the results in

Figures 4B, 5B.

3.1.4 Dissimilarity between the notified and
confirmed ASN’s

A quantitative measure of the dissimilarity between the

topological structures of the notified and confirmed ASN

networks was evaluated using Eq. 2. In Section 2.3. The

dissimilarity δ(], χ), where ] and χ indicate the notified and

confirmed ASN’s, was independently evaluated for the ASN’s

corresponding to the periods of Outbreak 1 and 2.

In Figure 9 we show a greater dissimilarity between the

dengue ASN’s of notified and confirmed for the period of

Outbreaks 1 and 2. Although both the number of discarded

cases and average network node degree during the Outbreak

2 are larger than those during Outbreak 1, the same is valid for

the corresponding quantities of notified cases. In fact, the

proportion of discarded cases and resulting average node

degree with respect to those of notified cases are larger

during Outbreak 1, leading to a greater dissimilarity during

the first outbreak. The dissimilarities between the notified and

confirmed ASN’s for chikungunya and Zika are considerably

smaller than those for dengue in both periods. However, the

dissimilarities in Outbreak 1 are smaller than those in

Outbreak 2.

3.2 Cross-network analysis

We investigated the association between the discarded cases

of dengue with those confirmed of Zika and chikungunya based

on the correlation between the corresponding series of average

FIGURE 11
Pearson correlation coefficient (R-Pearson) of the temporal evolution of the networks of discarded dengue and confirmed Zika and
chikungunya (A) Outbreak 1. (B) Outbreak 2
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degree of networks. The time periods including Outbreaks 1 and

2 were analyzed separately. Figure 10 highlights the used series

and the considered periods.

The obtained results are illustrated by the graphs Figure 11.

In panel A we see that, for the period corresponding to Outbreak

1, the correlations are very weak, both for the networks of

discarded dengue and confirmed Zika (0.22) as for those of

discarded dengue and confirmed chikungunya (0.12). However,

in Outbreak 2 the correlation between the series increases,

becoming strong for dengue and confirmed Zika (0.79) and

moderate for discarded dengue and confirmed chikungunya

(0.62). The higher correlation values between dengue and Zika

as compared to those between dengue and chikungunya, stay in

accordance with the results found by Oliveira et al [23] based on

different analyzes using the number of cases in the databases. It is

possible to observe that the correlations based on a network

property reproduce results from the case time series.

4 Discussion and conclusion

This work aimed at using a network formalism to investigate

the implications of false diagnoses in understanding the spread of

the three co-circulating arboviruses in a given region. We used

databases of notified, confirmed and discarded cases in the state

of Bahia, Brazil, to setup networks and establish comparisons

between different networks for one same arbovirus and/or for

distinct arbovirus. We presented quantitative results both for

disease time evolution based on TVG network sets and for ASN

networks obtained from the former. They are expressed in terms

of their network connectivity, connectivity correlations between

two different series, and the dissimilarity between ASN networks.

More detailed analyses highlight two periods in 2015 and

2016 when two large outbreaks occurred. The used databases

indicate that dengue, arbovirus that circulates for a much longer

time in Bahia, usually has the largest number of notified,

confirmed and discarded cases.

Being the arbovirus with largest number of discarded cases,

dengue also has the corresponding network with largest

connectivity. This is easy to identify during both outbreaks,

particularly during Outbreak 1. For the same networks of the

other cases, the connectivity is negligible during Outbreak 1, but

has a substantial increase in Outbreak 2. Consistently, the same

pattern is observed for the difference in the connectivity between

the notified and confirmed networks, namely: large differences

for dengue in both periods and, for Zika and chikungunya, much

smaller and negligible differences in Outbreaks 2 and 1.

We emphasize that the comparison between networks of

different arbovirus found in this work indicates that, for

discarded dengue cases, the main connectivity peak in Outbreak

1 is shifted backwards in relation to those of confirmed cases of

Zika and chikungunya. This time lag explains the weak correlation

between the corresponding series for the mean network node

degree, in opposition to what could be expected. Nevertheless, it

should be reminded that the Zika virus was identified only in May

2015 [42], when the discarded dengue peak was about to end.

There were less wrong dengue diagnoses during Outbreak 2 but

stronger correlations among the connectivity of discarded dengue

networks with those of confirmed Zika and chikungunya.

By taking into account all TVG networks in a properly

chosen interval, the dissimilarity values are quite useful to

provide information for the average behavior. Here the

values found for the dissimilarity between the ASN’s of

notified and confirmed cases are in accordance with the

commented results from correlation analysis. The greater the

number of discarded cases, the greater the dissimilarity between

the corresponding networks. In spite of that, our results for the

dependence between time delay and distance between

municipalities for notified and confirmed cases are very

similar, indicating that the network dissimilarity has a

relatively small influence on the phenomenon arboviruses in

the state as they were made. This important finding provided by

comparison between two network based approaches does not

eliminate the concern with wrong diagnoses, to ensure adequate

therapeutic approach to patients and obtain more accurate

incidence estimates of each arbovirus.

Our correlation results based on network connectivity are

in accordance with previous findings of correlation analyses

between notified, confirmed and discarded cases of

chikungunya, dengue, and Zika in the whole Brazilian

territory [23]. In particular, the higher correlation

between the connectivity of discarded dengue networks

with Zika as compared to that between dengue and

chikungunya. Although our results cannot claim causality,

this correlation shows that discarded cases of dengue can

actually correspond to cases of Zika and, in a smaller

number, to cases of chikungunya. But above all, we show

that the used network approach is consistent with analyses

performed on actual series of cases.

Such association between discarded and confirmed is supported

by similarity and differences in clinical symptoms that may lead to

wrong diagnosis, as discussed by Vu et al [8]. They suggest that, in

the case of chikungunya, the very frequent presence of intense

arthralgia usually causes the first suspicion to prove correct.

However, in the absence of such symptom and the lack of

knowledge of this disease, chikungunya may be wrongly

diagnosed as dengue, as was specially the case just after the

introduction of this virus in 2014 [2, 43]. Thus, this may actually

be the case corresponding to a small part of the discarded cases of

dengue, as indicated in [23]. Since the first laboratory confirmed

cases of Zika in Bahia occurred only by the end of the first half of

2015 [44], its early symptoms were confused with those dengue and

the serodiagnosis may present a result of cross-reaction, since both

are flaviruses [45], these aspects support the previous findings based

on a vector autoregressivemodels (VAR) [23] that discarded cases of

dengue corresponded actually to Zika cases.
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