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Abstract

Bacteriophage (phage) are bacterial predators that can also spread antimicrobial resistance

(AMR) genes between bacteria by generalised transduction. Phage are often present along-

side antibiotics in the environment, yet evidence of their joint killing effect on bacteria is con-

flicted, and the dynamics of transduction in such systems are unknown. Here, we combine

in vitro data and mathematical modelling to identify conditions where phage and antibiotics

act in synergy to remove bacteria or drive AMR evolution. We adapt a published model of

phage-bacteria dynamics, including transduction, to add the pharmacodynamics of erythro-

mycin and tetracycline, parameterised from new in vitro data. We simulate a system where

two strains of Staphylococcus aureus are present at stationary phase, each carrying either

an erythromycin or tetracycline resistance gene, and where multidrug-resistant bacteria can

be generated by transduction only. We determine rates of bacterial clearance and multi-

drug-resistant bacteria appearance, when either or both antibiotics and phage are present

at varying timings and concentrations. Although phage and antibiotics act in synergy to kill

bacteria, by reducing bacterial growth antibiotics reduce phage production. A low concentra-

tion of phage introduced shortly after antibiotics fails to replicate and exert a strong killing

pressure on bacteria, instead generating multidrug-resistant bacteria by transduction which

are then selected for by the antibiotics. Multidrug-resistant bacteria numbers were highest

when antibiotics and phage were introduced simultaneously. The interaction between

phage and antibiotics leads to a trade-off between a slower clearing rate of bacteria (if antibi-

otics are added before phage), and a higher risk of multidrug-resistance evolution (if phage

are added before antibiotics), exacerbated by low concentrations of phage or antibiotics.

Our results form hypotheses to guide future experimental and clinical work on the impact of

phage on AMR evolution, notably for studies of phage therapy which should investigate

varying timings and concentrations of phage and antibiotics.
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Author summary

Bacteriophage (“phage”) are viruses that can infect and kill bacteria, but also natural driv-

ers of antimicrobial resistance (AMR) evolution by transduction, when they carry non-

phage DNA between bacteria, including AMR genes. Phage are often present alongside

antibiotics in the environment and in humans, yet the joint dynamics of phage, antibiot-

ics, and bacteria are unclear. Using laboratory work and mathematical modelling, we

show for the first time that depending on timing and concentration, phage and antibiotics

can either work together to kill bacteria faster, or phage can generate multidrug-resistant

bacteria by transduction which are then selected for by antibiotics. This may be particu-

larly important in the context of phage therapy, where phage are used to treat bacterial

infections, often alongside antibiotics. Our conclusions highlight the urgent need for clini-

cal and laboratory work to quantify the currently unknown contribution of phage to

AMR evolution in humans. Otherwise, we may be missing opportunities to reduce the

global public health burden of AMR.

Introduction

Bacteriophage (phage) are major bacterial predators and the most common organisms on the

planet [1]. Phage are often present alongside antibiotics, naturally or in the context of antibac-

terial treatment [2–4], yet reports on their combined effect on bacteria are conflicting. Some

previous studies showed that phage and antibiotics work synergistically to clear bacteria [5–8],

while others have demonstrated that antibiotics reduce phage production [9,10]. This interac-

tion has been extensively studied in biofilms to show that adding phage to disrupt the biofilm

before adding antibiotics leads to the greatest synergistic killing [11–13]. However, whilst

there is some work suggesting a similar timing-dependent synergistic killing effect on plank-

tonic bacteria [6–8], this evidence is limited as only a few timings and concentrations of phage

and antibiotics have been explored experimentally. This is further complicated by the fact that

phage are also major drivers of bacterial evolution via horizontal gene transfer by transduction

[14,15], which can notably contribute to antimicrobial resistance (AMR) spread [16,17]. If

multidrug-resistant bacteria are generated by transduction, antibiotics present in the same

environment may act as a synergistic selective pressure to increase their prevalence, yet to our

knowledge the dynamics of transduction have not yet been investigated in such systems [18].

There are two types of transduction: specialised and generalised [19,20]. Specialised trans-

duction occurs when a prophage sometimes picks up adjacent bacterial DNA upon excision

from the bacterial chromosome, at the end of the lysogenic cycle. We also note lateral trans-

duction as an important variation of specialised transduction, where phage packaging occurs

before the prophage is excised from the bacterial chromosome, leading to transfer of DNA

located further downstream of the prophage [21]. On the other hand, generalised transduction

occurs during phage replication, when random non-phage DNA is packaged instead of phage

DNA in a new phage particle. The resulting transducing phage is released upon bacterial lysis,

and injects this DNA in another bacterium. Generalised transduction is likely the most impor-

tant type of transduction in the context of AMR, as it can lead to the horizontal transfer of any

genetic material contained in a bacterium (including plasmids, major vectors of AMR genes)

[14].

A major bacterial pathogen often exposed to phage is Staphylococcus aureus, which at any

given time is colonising approximately 20% of humans [22]. Previous work suggests that all S.
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aureus carry integrated prophage [23], and at least 50% of individuals colonised by S. aureus
also carry free phage capable of generalised transduction [24], the main mechanism of hori-

zontal gene transfer for S. aureus [23]. This is particularly relevant for methicillin-resistant S.

aureus (MRSA), a group of S. aureus present in both the ESKAPE list and the World Health

Organization priority list of antibiotic-resistant bacteria due to its large clinical burden [25–

27]. In vitro, the generation rate of generalised transducing MRSA phage carrying an AMR

gene has been estimated to be approximately one per 108 new phage produced, sufficient to

consistently generate bacteria resistant to multiple antibiotics in less than 24h [28], and in vivo
transduction rates are likely to be even higher [29].

Understanding the dynamics of bacteria, antibiotics, phage and transduction is especially

important in the context of phage therapy, which aims to use phage as antibacterial agents,

generally in combination with antibiotics [4]. Phage therapy is currently investigated as a solu-

tion to counter the threat of AMR, with ongoing clinical trials against MRSA infection [6,30–

34]. Phage therapy guidelines recommend that only phage with a limited ability to perform

transduction should be used [19,35,36], yet to our knowledge there is currently no technique

to prevent phage from accomplishing generalised transduction, which is fundamentally a mis-

packaging and thus a biological error similar to a mutation. Hence, as previous reviews have

highlighted, it is essential to explore the importance of this mechanism, and identify condi-

tions under which it could affect the outcome of therapy and lead to multidrug-resistance evo-

lution [18,35–37].

In this study, we aim to investigate the potential combined effect of antibiotics and phage

capable of generalised transduction on bacteria. Making conclusions about this multidimen-

sional chequerboard space of potential combinations and timings is difficult when using data

from time-consuming, single-scenario, in vitro experiments. Instead, we generate hypotheses

to guide future experimental work by simulating these conditions. We extend a previously

published mathematical model of only phage-bacteria dynamics, including generalised trans-

duction, to newly incorporate the effect of antibiotics on bacteria [28]. This model is parame-

terised using in vitro data from the same environment and set of conditions as when it was

originally developed [28], making it a reliable tool to infer the dynamics governing this system.

We hypothesise that, depending on the timing and concentration at which they are added,

phage and antibiotics can either act synergistically to eradicate bacteria, or to create and select

for multidrug-resistant bacteria. We explore this in our model and generate guidelines to min-

imise the risk of generating double-antibiotic-resistant S. aureus when two single-resistant

strains are exposed to antibiotics and phage, whilst maximising bacterial eradication.

Materials and methods

Laboratory methods

Bacterial strains and phage. Two Staphylococcus aureus strains were obtained from the

Nebraska transposon library in the MRSA USA300 background [38]. These were NE327, with

the ermB gene conferring resistance to erythromycin, and NE201KT7, a modified NE201

strain with a kanamycin resistance cassette replacing the ermB gene and a plasmid carrying the

tetK gene conferring resistance to tetracycline. Horizontal gene transfer can only happen

between these two strains via generalised transduction. When co-cultured with 80α phage,

these give rise to double-resistant progeny (DRP) bacteria resistant to both erythromycin and

tetracycline [28]. In the experiments conducted here, we used the double-resistant strain

DRPET1, a DRP strain with a NE327 background generated during previous NE327,

NE201KT7 and 80α co-cultures, containing both ermB and tetK genes [28]. Note that although

80α is a temperate phage, we have previously shown that lysogeny does not occur at a

PLOS COMPUTATIONAL BIOLOGY Phage and antibiotics: Killers and drivers of resistance evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010746 November 30, 2022 3 / 26

https://doi.org/10.1371/journal.pcbi.1010746


detectable level in our experiments, with a lysogenic frequency detection limit of 3.3 x 10−8 per

non-lysogenic bacteria after 24h of co-culture, and that specialised transduction is unlikely to

be responsible for horizontal gene transfer, due to the location of tetK on a plasmid and a

~1Mbp distance between ermB and the 80α integration site on the bacterial chromosome [28].

Hence the only interactions we consider between phage and bacteria in our environment are

lysis and generalised transduction.

Time-kill curves

The growth conditions are identical to the ones previously used to generate data on lysis and

transduction with these bacteria and phage [28]. Pre-cultures of each S. aureus bacterial strain

(NE327, NE201KT7 and DRPET1) were separately generated overnight in 50mL conical tubes

containing 10mL of brain-heart infusion broth (BHIB, Sigma, UK). Unless otherwise stated,

liquid cultures were incubated in a warm shaking water bath (37˚C, 90 rpm). Each pre-culture

was then diluted in phosphate-buffered saline (PBS) and mixed with 10mL of fresh BHIB in a

50mL conical tube to reach a starting concentration of 104 colony-forming units (cfu)/mL.

The new culture was incubated for 2h to allow the bacteria to reach log-growth phase, follow-

ing standard protocol for time-kill experiments [39]. Erythromycin or tetracycline was then

added to the culture, at a concentration of either 0 (control), 0.25, 0.5, 1, 2, 4, 8, 16, or 32 mg/L.

At 0, 1, 2, 3, 4, 6 and 24h after antibiotic addition, 30μl were sampled from the incubated cul-

ture, diluted in PBS, and plated on plain brain-heart infusion agar. The plates were incubated

overnight at 37˚C. Colonies on the plates were then counted to derive the concentration of

bacteria in cfu/mL at the corresponding time point.

The experiment was repeated 3 times for each strain (NE327, NE201KT7 and DRPET1)

and each antibiotic (erythromycin and tetracycline).

Minimum inhibitory concentration

We measured the minimum inhibitory concentrations (MIC) of erythromycin and tetracy-

cline for NE327, NE201KT7 and DRPET1 by microbroth dilution [40]. Briefly, pre-cultures of

each strain were generated overnight in Mueller-Hinton broth (MHB-II, Sigma, UK). Antibi-

otic stocks were generated in 50% ethanol at concentrations doubling from 0.25 to 256 mg/L,

and 10μL of each dilution were added to separate wells on a 96-well plate. The overnight pre-

cultures were diluted to a concentration of 105 cfu/mL, and 90μL were mixed with each antibi-

otic dilution in the 96-well plate. The plate was incubated overnight at 37˚C, and the MIC

were then determined by eye, identifying the lowest concentration of antibiotic which did not

allow bacterial growth (i.e. the contents of the well were not turbid).

Modelling methods

All analyses were conducted in the R statistical analysis software [41]. The underlying code

and data are available in a GitHub repository: https://github.com/qleclerc/phage_antibiotic_

dynamics.

Mathematical model description

We extended a previously published mathematical model of phage-bacteria dynamics, includ-

ing generalised transduction [28]. This original model focused on identifying the best method

to capture the interaction between bacteria and phage in vitro, in the absence of antibiotics.

This model was previously parameterised using the same bacterial and phage strains as in this

study. Our three S. aureus strains are represented: BE (erythromycin-resistant, corresponding
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to in vitro strain NE327), BT (tetracycline-resistant, corresponding to NE201KT7), and BET

(resistant to both erythromycin and tetracycline, corresponding to double-resistant bacteria)

(Fig 1). The model also contains 80α lytic phage (PL), which can give rise to transducing phage

carrying either the erythromycin (PE) or tetracycline (PT) resistance gene. The transducing

phage only carry an antibiotic resistance gene, and hence cannot lyse bacteria, but can give rise

to BET bacteria via generalised transduction (Fig 1).

Antibiotic pharmacodynamics

We added two compartments to the model to track the concentration of antibiotics: CE for

erythromycin, and CT for tetracycline. The concentrations are expressed in mg/L. We can sim-

ulate the addition of a chosen concentration of antibiotic at any given time, and the antibiotics

decay at a constant rate γE and γT for erythromycin and tetracycline, respectively (Fig 1). The

change in concentration of erythromycin over time is therefore expressed as

dCE
dt
¼ � gE � CE ð1Þ

and the change in concentration of tetracycline over time is expressed as

dCT
dt
¼ � gT � CT ð2Þ

The antibiotic concentrations are then used to calculate εi,j, the antibiotic-induced death

rate of each antibiotic i (i 2 {E, T}) on each bacterial strain j (j 2 {E, T, ET}), according to a

Fig 1. Mathematical model diagram. This model is an extension of our original model presented in [28], with the

inclusion of antibiotic effects. Each bacteria strain (BE resistant to erythromycin, BT resistant to tetracycline, or BET

resistant to both) can replicate (purple). The lytic phage (PL) multiply by infecting a bacterium and bursting it to

release new phage (gold). This process can create transducing phage (PE or PT) carrying a resistance gene (ermB or

tetK respectively) taken from the infected bacterium (dashed, green). These transducing phage can then generate new

double-resistant progeny (BET) by infecting the bacteria strain carrying the other resistance gene (solid, green). The

antibiotics, erythromycin (CE) and tetracycline (CT), decrease the growth rate of each bacteria strain to varying extents,

depending on their concentration and the resistance level of the strain (dotted, red and orange). Phage and antibiotics

can decay at a fixed rate (dotted, grey and black).

https://doi.org/10.1371/journal.pcbi.1010746.g001
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pharmacodynamic relationship parameterised through Hill Eqs [39,42], expressed as

εi;j ¼ m
max
j � ε

max
i;j �

Ci
ðHi;jÞ

EC50i;j
ðHi;jÞ þ Ci

ðHi;jÞ
ð3Þ

This commonly used function calculates the antibiotic-induced death rate using four

parameters: the maximum death rate (εmaxi,j), current concentration (Ci), half maximal

effective concentration (EC50i,j), and a Hill coefficient (Hi,j). Note that εmaxi,j is relative to

the maximum growth rate of the corresponding strain j (μmaxj). This was necessary to

ensure that these values would work with our previous estimates for bacterial growth, as

these were slightly lower than the baseline growth rates estimated here (see below–“Para-

meter estimation”).

Bacterial growth and phage predation

The bacterial growth rate μθ (θ 2 {E, T, ET}, N = BE+BT+BET) is modelled using a logistic func-

tion given by

my ¼ m
max
y
� 1 �

N
Nmax

� �

ð4Þ

with a maximum growth rate of μmaxθ and carrying capacity Nmax.
Phage predation is modelled as a saturated process. Previous work has suggested that this

interaction is more biologically realistic than the more commonly used linear interaction, as it

accounts for multiple phage binding to the same bacterium at high phage concentration, lead-

ing to a sublinear increase in predation [28,43]. At any given time, the number of phage F(Pθ)
(θ 2 {L, E, T}), successfully infecting bacteria is calculated according to the Hill function

F Pyð Þ ¼ Py �
b

1þ
Py
P50

ð5Þ

with β representing the maximum rate of successful phage adsorption leading to bacterial lysis,

and P50 corresponding to the phage concentration at half saturation, where the adsorption

rate is equal to half the maximum.

In the model, phage burst size δθ for each bacteria strain θ (θ 2 {E, T, ET}) decreases from

the maximum phage burst size δmax as bacterial growth decreases, according to

dy ¼ d
max
�max 0; 1 �

N
Nmax

�
εE;y
mmaxy

�
εT;y
mmaxy

� �

ð6Þ

This link between phage burst size and bacterial growth was identified as the most biologi-

cally plausible explanation for the dynamics we have previously observed between the bacteria

and phage in our system [28]. This decrease happens as bacteria enter stationary phase, when

the population approaches carrying capacity Nmax (as demonstrated previously [28,44,45]),

but here the additional effect of antibiotics must be included. To capture this, we use the same

effective scaling as the bacterial growth rate (Eq 4) with inclusion of the relative antibiotic-

induced death rates εE,θ and εT,θ in the phage burst size estimation. Since antibiotics can kill

bacteria, leading to a net negative growth rate, we limit the multiplier value to 0 as a minimum,

to prevent a negative burst size.
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Bacteria model equations

The changes in bacteria numbers over time are given by

dBE
dt
¼ mE � BE � F PLð Þ � BE � F PTð Þ � BE � ðεE;E þ εT;EÞ � BE ð7Þ

{Change in BE = growth of BE − infections by PL − infections by PT − ery killing − tet killing}

dBT
dt
¼ mT � BT � F PLð Þ � BT � F PEð Þ � BT � ðεE;T þ εT;TÞ � BT ð8Þ

{Change in BT = growth of BT − infections by PL − infections by PE − ery killing − tet killing}

dBET
dt
¼ mET � BET � F PLð Þ � BET þ F PEð Þ � BT þ F PTð Þ � BE � ðεE;ET þ εT;ETÞ � BET ð9Þ

{Change in BET = growth of BET − infections by PL + infections of BT by PE + infections of

BE by PT − ery killing − tet killing}

Some combinations of phage infection are not explicitly represented in the equations as

they represent a flow from one compartment towards the same compartment. PL are the lytic

phage, capable of lysing all the bacteria, and are therefore included in all equations. However,

the generalised transducing phage PE and PT only carry a bacterial antibiotic resistance gene

and cannot lyse bacteria. Whilst they can infect any bacteria in our system to transfer the gene,

this process will not affect bacteria already carrying the corresponding gene. For example, if a

bacterium BE is infected by a phage PE, this bacterium remains only resistant to erythromycin,

and therefore still belongs to the BE compartment.

Phage model equations

The change in phage numbers over time are calculated as

dPL
dt
¼ FðPL½ Þ � BE� t � tð Þ � dE � 1 � að Þþ

½FðPLÞ � BT�ðt � tÞ � dT � ð1 � aÞþ

½FðPLÞ � BET�ðt � tÞ � dET � ð1 � 2 � aÞ�

FðPLÞ � N � gP � PL

ð10Þ

{Change in PL = new PL phage from BE + new PL phage from BT + new PL phage from BET −
PL phage infecting bacteria – PL decay}

dPE
dt
¼ FðPL½ Þ � BE� t � tð Þ � dE � aþ

½FðPLÞ � BET�ðt � tÞ � dET � a�

FðPEÞ � N � gP � PE

ð11Þ

{Change in PE = new PE phage from BE + new PE phage from BET −
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PE phage infecting bacteria–PE decay}

dPT
dt
¼ FðPL½ Þ � BT� t � tð Þ � dT � aþ

½FðPLÞ � BET�ðt � tÞ � dET � a�

FðPTÞ � N � gP � PT

ð12Þ

{Change in PT = new PT phage from BT + new PT phage from BET −
PT phage infecting bacteria – PT decay}

with N = BE+BT+BET. In Eqs 10–12, the latent period τ corresponds to the delay between

bacterial infection and burst, and the transduction probability α corresponds to the proportion

of new phage released upon burst which are transducing phage carrying the erythromycin or

tetracycline resistance gene. Note that a constant rate γP is used for phage decay (Eqs 10–12),

similar to the rates used for antibiotic decay (Eqs 1–2).

Parameter estimation

Parameters for bacterial growth and phage predation were originally obtained by fitting our

model to in vitro data for the same bacteria and phage strains as in this study [28]. Briefly, the

parameters were estimated using the Markov chain Monte Carlo Metropolis–Hastings algorithm.

We ran the algorithm with two chains until convergence was achieved (determined using the Gel-

man-Rubin diagnostic, with the multivariate potential scale reduction factor< 1.2 [46]), then for

each parameter we generated 50,000 samples from the posterior distributions [28].

Parameters for antibiotic effect were obtained in two steps using the least squares methods

for model fitting, which aims to minimise the squared difference between data and model out-

put. Firstly, the antibiotic-induced death rate caused by a specific concentration of antibiotic

(έ) was obtained by fitting a deterministic growth model given by

dB
dt
¼ m � 1 �

B
Nmax

� �

� B � �ε � B ð13Þ

to the bacterial concentration B over time, estimated as the mean of three in vitro replicates.

έ was then scaled to growth (ε = έ/μ), to represent the antibiotic-induced death rate relative

to bacterial growth rather than an absolute value. This was necessary to ensure that these anti-

biotic-induced death rates would work with our previous estimates for bacterial growth, as

these were slightly lower than the baseline growth rates estimated here. Since we obtained

growth curve time series data for 8 concentrations for each strain, we generated 8 estimates of

antibiotic-induced death rate for each strain.

Secondly, the three parameters of the Hill equation [39,42] (maximum death rate εmax, Hill

coefficient H, and half maximum effective concentration EC50), which calculates the antibi-

otic-induced death rate as a function of concentration, were estimated by fitting Eq 3 to the 8

antibiotic effects for each strain.

Model scenarios considered

Antibiotics alone. We start with an environment containing both single-resistant strains

at stationary phase (109 cfu/mL). This mirrors the within-host diversity we could expect to see

during bacterial infections [24], and the fact that bacteria most often live at stationary phase in

the environment [47]. We first investigate the effect of the presence of either or both erythro-

mycin and tetracycline at concentrations of 1 mg/L, similar to antibiotic concentrations mea-

sured in vivo during treatment [48,49].
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Antibiotic and phage

We then consider scenarios where phage are present. We first artificially inactivate transduc-

tion, by setting the corresponding model parameter to 0. We add 109 pfu/mL of phage, similar

to a concentration that could be added during phage therapy, and equivalent to a multiplicity

of infection (ratio of phage to bacteria) of 1, similar to what could be found naturally in the

environment [1]. We consider scenarios where the phage are present alone, alongside only one

antibiotic, or alongside both antibiotics. Phage and antibiotics are assumed to be introduced

concurrently at the start, and the simulations run for 24h.

We then repeat these scenarios, but with transduction enabled to levels that were previously

observed in vitro, with approximately 1 transducing phage carrying an AMR gene generated

for each 108 new lytic phage [28].

We repeat the analyses above with either single-resistant strain present at 109 cfu/mL, and

the other at 106 cfu/mL (0.1%). This could correspond to a scenario where bacterial diversity is

underestimated, with only one type of resistance detected [24].

Antibiotic and phage level and timing variation

To further investigate the scenario where transduction is enabled and both single-resistant

bacterial strains have a starting concentration of 109 cfu/mL, we vary the timing of introduc-

tion for antibiotic and phage, with up to 24h delay between their respective additions, as well

as varying the concentration of antibiotics between 0.2 and 2.2 mg/L, and phage between 105

and 1010 pfu/mL, chosen to reflect realistic ranges [1,48,49]. We run these simulations for 48h

after the introduction of antibiotics or phage (whichever is added first).

Phage and bacteria parameters variation

Finally, we vary the probability for phage to perform generalised transduction to identify

threshold values which dictate whether multidrug-resistant bacteria appear above detectable

levels within 24h. To explore the sensitivity of our results to the parameter values estimated

from this single environment, we also conduct a partial rank correlation to assess the effect of

varying phage predation parameters (adsorption rate, phage concentration at half saturation,

latent period, burst size), bacteria growth rates, and antibiotic and phage decay on total bacte-

ria remaining after 48h, and maximum double-resistant bacteria generated. This allows us to

generalise our conclusions as these parameters likely vary for different combinations of phage,

antibiotics and bacteria. The ranges evaluated are shown in Table 1, and are either derived

from our initial parameterisation of the model [28], or from other studies [50,51].

Results

In vitro pharmacodynamics of erythromycin and tetracycline

Erythromycin at all concentrations caused a decrease in erythromycin-sensitive NE201KT7

numbers over 6h, but only slowed down growth for erythromycin-resistant NE327 and dou-

ble-resistant DRPET1, even at 32 mg/L (Fig 2). Tetracycline caused a decrease in bacterial

numbers over 6h at concentrations greater than 0.5 mg/L for tetracycline-sensitive NE327, 8

mg/L for tetracycline-resistant NE201KT7, and 4 mg/L for DRPET1 (Fig 2). As a comparison,

the minimum inhibitory concentrations (MICs) of erythromycin measured by microbroth

dilution were 0.25, >256 and>256 mg/L for NE201KT7, NE327 and DRPET1 respectively.

For tetracycline, the MICs were 32, 0.25 and 32 mg/L for NE201KT7, NE327 and DRPET1

respectively.
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The Hill equations fitted well to the antibiotic-induced death rates of varying concentra-

tions of antibiotics on the bacteria (Fig 2, S1 Fig). The corresponding parameter values are pre-

sented in Table 1. The antibiotic-induced death rate curves for the DRPET1 are similar to the

one for NE201KT7 for tetracycline and NE327 for erythromycin (S1 Fig), which was expected

since DRPET1 contains both antibiotic-resistance genes from NE201KT7 (tetK) and NE327

(ermB).

Model-predicted antibacterial effect of concurrent erythromycin,

tetracycline and bacteriophage presence

When simulating the dynamics of two single-resistant S. aureus strains in our mathematical

model, as expected, the presence of only one antibiotic at 1 mg/L (4 x MIC for susceptible

strains) leads to a decrease in the susceptible strain, while the resistant strain does not decrease

(Fig 3A, top row). On the other hand, the presence of both antibiotics, or of only phage with-

out transduction, causes a decrease in both bacterial strains (Fig 3A, top and middle rows).

Table 1. Model parameter values. Parameters with no units are dimensionless. All estimates were obtained by fitting the model to in vitro data, except those marked with

a � which are assumed.

Name (unit) Symbol Estimate Range for sensitivity analysis Reference

Bacterial growth parameters Carrying capacity (bacteria.mL-1) Nmax 2.76 x 109 - [28]

BE growth rate (h-1) μmax
E 1.61 1.59–1.63

BT growth rate (h-1) μmax
T 1.51 1.49–1.53

BET growth rate (h-1) μmax
ET 1.44 1.42–1.47

Phage parameters Phage adsorption rate (phage-1.h-1) β 2.3 x 10−10 2.1 x 10−10–2.7 x 10−10

Phage concentration at half saturation (phage.mL-1) P50 1.19 x 1010 1.02 x 1010–1.29 x 1010

Phage burst size (phage) δmax 50 43–54

Phage latent period (h) τ 0.61 0.60–0.77

Transduction probability (phage-1) α 1.19 x 10−8 1.11 x 10−8–1.31 x 10−8

Phage decay rate (h-1) γP 0� 0–0.1 [50]

Antibiotic parameters Erythromycin decay rate (h-1) γE 0� 0–0.1 [51]

Tetracycline decay rate (h-1) γT 0� 0–0.1

Erythromycin-induced death rate on BE Max death rate (h-1) εmax
E,E 1.10 - This study

Half maximal effective concentration (mg.L-1) EC50E,E 3.42 -

Hill coefficient HE,E 0.67 -

Erythromycin-induced death rate on BT Max death rate (h-1) εmax
E,T 3.91 -

Half maximal effective concentration (mg.L-1) EC50E,T 9.26 -

Hill coefficient HE,T 0.22 -

Erythromycin-induced death rate on BET Max death rate (h-1) εmax
E,ET 0.95 -

Half maximal effective concentration (mg.L-1) EC50E,ET 2.47 -

Hill coefficient HE,ET 0.79 -

Tetracycline-induced death rate on BE Max death rate (h-1) εmax
T,E 5.40 -

Half maximal effective concentration (mg.L-1) EC50T,E 81.43 -

Hill coefficient HT,E 0.30 -

Tetracycline-induced death rate on BT Max death rate (h-1) εmax
T,T 1.66 -

Half maximal effective concentration (mg.L-1) EC50T,T 7.27 -

Hill coefficient HT,T 2.41 -

Tetracycline-induced death rate on BET Max death rate (h-1) εmax
T,ET 1.58 -

Half maximal effective concentration (mg.L-1) EC50T,ET 4.42 -

Hill coefficient HT,ET 1.70 -

https://doi.org/10.1371/journal.pcbi.1010746.t001
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The presence of phage and one antibiotic leads to a decrease in both bacterial strains, with the

antibiotic-susceptible strain decreasing faster (Fig 3A, middle row). Out of all the conditions

shown here, the presence of phage and both antibiotics leads to the fastest decrease in both

bacterial strains (Fig 3B). For comparison, to replicate the combined effect of 109 pfu/mL of

phage, 1 mg/L of erythromycin, and 1 mg/L of tetracycline, we would need 1.94 mg/L of eryth-

romycin and 1.08 mg/L of tetracycline in the absence of phage (S2 Fig).

Transduction does not appear to affect the antibacterial activity of antibiotics and phage

when phage are either present alone, alongside erythromycin, or alongside tetracycline (Fig

3A, bottom row). Double-resistant progeny bacteria (BET) appear, but only reach a maximum

concentration of 30 cfu/mL, and do not remain higher than 1 cfu/mL for more than 8h (Fig

3A, bottom row). However, when both erythromycin and tetracycline are present alongside

phage capable of transduction, there is a steady increase in the number of BET throughout 24h,

reaching 6 x 104 cfu/mL after 24h (Fig 3B, bottom row and 3B). It is important to note here

that when both antibiotics are present, phage numbers do not increase throughout the 24h

period, regardless of transduction ability (Fig 3A, middle and bottom rows and 3B, right).

With a reduced starting concentration of either S. aureus strain to 106 cfu/mL, while the

other remains at 109 cfu/mL, the conclusions are similar as described above, regardless of

which strain is in the minority. Fig 4 shows the scenario where tetracycline-resistant bacteria

are in minority, and S3 Fig shows the scenario where erythromycin-resistant bacteria are in

Fig 2. Growth curves of NE201KT7 (tetracycline-resistant, left), NE327 (erythromycin-resistant, middle) and DRPET1 (double-resistant, right),

exposed to varying concentrations of erythromycin (top) or tetracycline (bottom). Solid lines show in vitro data, with error bars indicating mean +/-

standard deviation, from 3 replicates. Dashed lines show model output after fitting. Values indicate the percentage of model points that fall within the range of

the corresponding in vitro data point +/- standard deviation. cfu: colony-forming units. Note that cfu per mL are shown on a log-scale.

https://doi.org/10.1371/journal.pcbi.1010746.g002
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Fig 3. a) Model-predicted dynamics with two single-resistant strains starting at carrying capacity (109 colony-forming units (cfu)/mL), in the presence

of no antibiotics (1st column), erythromycin only (2nd column), tetracycline only (3rd column), or both erythromycin and tetracycline (4th column),

combined with either no phage (top row), phage incapable of transduction (middle row), or phage capable of generalised transduction (bottom row).

The starting strains are either erythromycin-resistant (BE) or tetracycline-resistant (BT). Antibiotics and/or phage (PL) are present at the start of the simulation,

at concentrations of 1 mg/L (4 x MIC for susceptible strains) and 109 plaque-forming units (pfu)/mL respectively. Double-resistant bacteria (BET) can be

initially generated by generalised transduction only, and then by replication of existing BET. Dashed line indicates the detection threshold of 1 cfu or pfu/mL. b)

Change in bacteria (single-resistant to erythromycin, single-resistant to tetracycline, or double-resistant) and phage numbers depending on the

antibiotic exposure, in the presence of phage capable of generalised transduction. Dashed line indicates the detection threshold of 1 cfu or pfu/mL.

https://doi.org/10.1371/journal.pcbi.1010746.g003
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minority. When erythromycin, tetracycline, and phage capable of generalised transduction are

all present, BET are still generated, although they only reach a concentration higher than 1 cfu/

mL after 16h, instead of 6h above (Figs 4 and 3).

Effect of variation in antibiotic and phage timing and concentration on

bacterial populations

Under conditions where both erythromycin and tetracycline are present, the timing and con-

centration of antibiotics and phage capable of generalised transduction drives substantial vari-

ation in dynamics, with failure to clear all bacteria after 48h being a possibility (Fig 5A and 5B

top row).

With a phage concentration of 108 cfu/mL and for any antibiotics concentration between

0.2 and 2.2 mg/L (Fig 5A), the optimal conditions to clear bacteria within 48h are when phage

are initially present, and antibiotics are introduced at least 5h later (Fig 5A, top row). However,

this systematically leads to BET appearance, with a peak concentration between 10 and 100 cfu/

mL (Fig 5A, middle row), and a presence time (hours when cfu/mL > 1) of up to 10h (Fig 5A,

bottom row). The presence of antibiotics at the same time or shortly before phage leads to fail-

ure to clear bacteria within 48h (up to between 108 and 1010 cfu/mL remaining after 48h - top

row), and substantial BET appearance (maximum concentration up to between 108 and 1010

cfu/mL—middle row; presence time up to between 30 and 40h- bottom row). Regardless of

timings, the addition of at least 2.2 mg/L of antibiotics guarantees that less than 100 bacteria

remain after 48h (top row), and no detectable BET if the antibiotics are added at least 2h before

the phage (bottom row).

When keeping the antibiotic concentrations at 1 mg/L, but varying the phage concentra-

tion, the impact of the delay between phage and antibiotic presence on the bacterial population

is strongly dependent on phage concentration (Fig 5B). We again see that bacteria are not

cleared within 48h if antibiotics are present at the same time as or shortly before a concentra-

tion of phage between 105 and 109 pfu/mL (Fig 5B, top row). However, we now note that this

also occurs if antibiotics are introduced after a concentration of phage between 105 and 108

pfu/mL (Fig 5B, top row). Regardless of timing, the presence of a phage concentration of more

than 109 pfu/mL guarantees bacterial clearance within 48h (top row), but leads to BET if the

antibiotics are introduced after the phage (maximum concentration between 10 and 100 cfu/

mL—middle row; presence time between 1 and 10h - bottom row).

To investigate the dynamics behind these results, we selected four conditions from Fig 5B

(indicated by the 4 black rectangles) with varying antibiotic addition times and plotted the

underlying phage and bacteria dynamics over 48h for each (Fig 5C). In all four conditions the

starting concentrations are 108 pfu/mL for phage and 1 mg/L for antibiotics, but antibiotics

are introduced either 0h, 3h, 5h or 15h after phage. These plots show that if phage are increas-

ing, they stop immediately following antibiotic addition (Fig 5C, 3 and 5h delay). If antibiotics

are added too soon after phage (Fig 5C, 0 and 3h delay), phage do not reach a high enough

number to exert a sufficient killing pressure on bacteria. In that case BET, which are not sub-

stantially affected by either antibiotic, replicate faster than they are killed by phage. After more

than 35h, the BET population reaches a sufficiently high number such that the phage popula-

tion increases, and the resulting pressure is enough to lead to a net negative bacterial growth

rate. If antibiotics are added 15h or later after phage (Fig 5B and 5C), BET generation will not

change, as during this period they will have already arisen by transduction and been removed

by phage predation. The presence of antibiotics 5h after phage is optimal to ensure the lowest

maximum number of BET (Fig 5C—compare horizontal dotted lines). This timing allows

phage to initially increase to a concentration of 1010, sufficiently high to exert a strong killing
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Fig 4. a) Model-predicted dynamics with one single-resistant strains starting at carrying capacity (109 colony-forming units (cfu)/mL) and the second in

minority (106 cfu/mL), in the presence of no antibiotics (1st column), erythromycin only (2nd column), tetracycline only (3rd column), or both

erythromycin and tetracycline (4th column), combined with either no phage (top row), phage incapable of transduction (middle row), or phage capable

of generalised transduction (bottom row). Erythromycin-resistant bacteria (BE) are initially present at a concentration of 109 cfu/mL, and tetracycline-

resistant bacteria (BT) at 106 cfu/mL. Antibiotics and/or phage (PL) are present at the start of the simulation, at concentrations of 1 mg/L (4 x MIC for

susceptible strains) and 109 plaque-forming units (pfu)/mL respectively. Double-resistant bacteria (BET) can initially be generated by generalised transduction

only, and then by replication of existing BET. Dashed line indicates the detection threshold of 1 cfu or pfu/mL. b) Change in bacteria (single-resistant to

erythromycin, single-resistant to tetracycline, or double-resistant) and phage numbers depending on the antibiotic exposure, in the presence of phage

capable of generalised transduction. Dashed line indicates the detection threshold of 1 cfu or pfu/mL.

https://doi.org/10.1371/journal.pcbi.1010746.g004
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Fig 5. a-b) Varying timing (x-axis) and dose of antibiotic and phage (y-axis) affects total bacterial count after 48h (top), maximum concentration of

double-resistant bacteria (BET) (middle), and time when the concentration of BET is greater than 1 colony-forming unit (cfu) per mL (bottom). a) Adding

108 plaque-forming units (pfu) per mL of phage, and between 0.2 and 2.2 mg/L of both erythromycin and tetracycline. b) Adding 1 mg/L of both erythromycin

and tetracycline, and between 105 and 1010 pfu/mL of phage. The x-axis indicates the time when antibiotics were added, relative to when phage were added. For
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pressure on bacteria, while the added effect of antibiotics prevents further BET generation by

decreasing the single-resistant strains.

These results also apply to a scenario where one of the two bacterial strains is in the minor-

ity (starting concentration of 106 instead of 109 cfu/mL), regardless of which strain is in the

minority (S4 & S5 Figs). However, BET peak, presence time, and total bacteria remaining after

48h decrease faster with a higher dose of antibiotic or phage, or with a higher delay between

phage and antibiotics, suggesting that phage and antibiotics are able to exert a greater killing

pressure and generate fewer BET when one strain is in the minority.

Effect of variation in phage and bacteria parameters on multidrug-

resistance evolution

Our results above rely on parameters estimated from phage and bacteria interactions in vitro,

but these may vary depending on the bacteria, phage, and environment. We can explore these

different conditions using our model to quantify the dynamics under varying values for

parameters governing phage-bacteria interactions (see Table 1 for the ranges used) to deter-

mine whether our results would hold.

We first examine the impact of varying the transduction probability on our results (corre-

sponding to the probability that a transducing phage carrying an AMR gene is released instead

of a lytic phage during bacterial burst) as this is a vital and yet poorly quantified parameter.

When 109 cfu/mL of each single-resistant strain are simultaneously exposed to 109 pfu/mL of

phage and 1 mg/L of erythromycin and tetracycline, varying the transduction probability

between 10−10 and 10−6 leads to a similar log-fold increase in double-resistant bacteria num-

bers (BET, Fig 6A). Decreasing the probability only delays the appearance of BET in the model,

and does not prevent it. However, a probability lower than 10−11 may prevent the appearance

of BET in reality, since the single-resistant strains become almost undetectable (< 1 cfu/mL)

before the BET become detectable. If antibiotics are added more than 10h after phage, BET will

have already started declining due to phage predation, hence the antibiotics only contribute to

further increasing the decline in bacterial numbers (Figs 5 and 6B). Under these conditions, a

transduction probability lower than 10−9 is necessary to prevent BET from increasing past the

detection threshold (1 cfu/mL) (Fig 6B). If antibiotics are introduced 10h before phage, the

resulting decline in single-resistant bacteria prevents any BET from reaching a detectable level

before single-resistant bacteria are eradicated (< 1 cfu/mL), even with the highest transduction

probability of 10−6 (Fig 6C).

Looking at how changes in other phage and bacteria parameters may affect our results, par-

tial rank correlation shows that an increase in phage predation either through an increase in

phage adsorption rate (β), phage concentration at half saturation (P50) or phage burst size

(δmax) correlates with a decrease in maximum BET detected over 48h (Fig 6D, blue). For exam-

ple, the correlation coefficient of -0.95 between β and maximum BET implies that a 100%

increase in adsorption rate is correlated with a 95% decrease in maximum double-resistant

bacteria detected over 48h. An increase in these parameters is also correlated with a decrease

in bacteria remaining after 48h (Fig 6D, red). An increase in latent period (τ), equivalent to a

decrease in predation since phage will take longer before lysing the bacteria, is weakly

example, the value “4” indicates that phage were present at the start of the simulation, and antibiotics were introduced 4h later. The segments with black

borders correspond to the dynamics shown in c). c) Phage and bacteria dynamics over 48h for 4 conditions taken from panel b. In all 4 conditions, indicated

by the black rectangles, phage are initially present at a concentration of 108 pfu/mL, while erythromycin and tetracycline are both introduced at concentrations

of 1 mg/L after either 0h, 3h, 5h or 15h, stated on the plots, with the timing indicated by the vertical dashed lines. Horizontal dotted lines indicate bacteria

remaining after 48h (corresponding to the top row of a-b) and maximum double-resistant bacteria (BET) concentration (middle row of a-b). Solid line indicates

the detection threshold of 1 cfu or pfu/mL. The concentrations of single-resistant bacteria (BE, blue, and BT, green) overlap and cannot be distinguished.

https://doi.org/10.1371/journal.pcbi.1010746.g005
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Fig 6. Sensitivity of phage-bacteria dynamics to changes in model parameters. Effect of varying the transduction probability between 10−10 and 10−6

when a) antibiotics and phage are present at the start of the simulation, b) phage are present at the start, antibiotics are introduced 10h later, and c)

antibiotics are present at the start, phage are added 10h later. Transduction probability is defined as the probability that a transducing phage carrying an

AMR gene is released instead of a lytic phage during bacterial burst. The dashed lines for single-resistant bacteria overlap and cannot be distinguished. Vertical

dashed lines indicate timing of addition of antibiotics or phage. cfu/mL: colony-forming units per mL. d) Partial rank correlation between model

parameters, and remaining bacteria after 48h (pink) or maximum double-resistant bacteria (BET) concentration (blue). Information on the parameter

ranges investigated can be found in Table 1. β: adsorption rate, P50: phage concentration at half saturation, δmax: burst size, τ: latent period, α: transduction

probability, γP: phage decay, γE: erythromycin decay, γT: tetracycline decay, μmax
E: BE growth rate, μmax

T: BT growth rate, μmax
ET: BET growth rate.

https://doi.org/10.1371/journal.pcbi.1010746.g006
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correlated with an increase in maximum BET, but is not substantially correlated with bacteria

remaining after 48h. Finally, in this partial rank correlation analysis the transduction probabil-

ity α was not significantly correlated with either bacteria numbers remaining after 48h or max-

imum BET, likely since the range investigated was too small (Table 1).

Although we were not able to parameterise our model for antibiotic decay, our 24h time-

kill curves suggest that antibiotics no longer decrease bacterial numbers after 24h (S6 Fig).

Phage may also be affected by decay in the environment. Hence, we included these parameters

in our partial rank correlation analysis. An increase in phage or antibiotic decay (γP, γE, γT) is

correlated with an increase in maximum BET (Fig 6D, blue), but unexpectedly with a decrease

in bacteria remaining after 48h (Fig 6D, red). This is explained by the fact that such an increase

leads to a weakened killing pressure on BET, which are able to increase faster. This translates to

a shorter time before the phage population is able to increase again due to enough bacteria

being available for predation, and thus a shorter time before BET start decreasing due to phage

killing (S7 Fig). Finally, single-resistant bacterial growth rates (μmax
E, μmax

T) are not substan-

tially correlated with either maximum BET or remaining bacteria, while double-resistant

growth rate (μmax
ET) is only weakly positively correlated with maximum BET, and negatively

with remaining bacteria.

Discussion

Summary of results

In this work, we reconcile the existing literature suggesting either that phage and antibiotics

can synergistically kill bacteria, or that antibiotics reduce the efficacy of phage predation,

whilst also considering the synergy of phage and antibiotics on antimicrobial resistance

(AMR) evolution. We showed that although phage replication is limited in the presence of

antibiotics, which negatively affect bacterial growth, phage are still able to exert a strong killing

pressure on bacteria to complement the action of antibiotics. Under such conditions, the con-

centration and timing of antibiotics and phage are essential: phage introduced after antibiotics

at a low concentration may not be able to replicate and hence not contribute to killing the bac-

terial population. Phage and antibiotics can act synergistically to drive AMR evolution when

phage generate multidrug-resistant bacteria by transduction, and antibiotics act as a selection

pressure. This is again exacerbated by the reduction in phage replication caused by antibiotics:

a low concentration of phage capable of transduction introduced after antibiotics will not exert

a strong killing pressure on bacteria, and instead generate multidrug-resistant bacteria at a

background rate which are then selected for by the antibiotics.

Optimal conditions to clear bacteria and minimise AMR evolution

The best conditions to guarantee bacterial eradication within 48h whilst minimising the risk of

multidrug-resistant bacteria evolution in our system are when antibiotics are present before

phage, and either when erythromycin and tetracycline are present at a concentration of at least

2 mg/L (8 x MIC for susceptible strains), or phage at a concentration of at least 1010 pfu/mL

(Fig 5A and 5B). Multidrug-resistant bacteria generation is also restricted if phage are intro-

duced at least 10h after antibiotics (Fig 5A and 5B). This may be particularly relevant in the

context of antibacterial treatment, further discussed below. The worst outcome in which anti-

biotics and phage fail to rapidly clear all bacteria and instead act synergistically to drive AMR

evolution is a combination of a low antibiotic dose (< 1 mg/L) with a low phage dose (< 109

pfu/ml), introduced around the same time (Fig 5A and 5B). Unfortunately, this may corre-

spond to values seen in natural environments where phage are commonly found and antibiot-

ics are residually present due to pollution [2,3].
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Importance of transduction in the environment and during phage therapy

Our results highlight the necessity to better understand the role of transduction in AMR

spread and evolution, and not assume by default that it is too rare to be relevant compared to

other mechanisms of horizontal gene transfer such as conjugation and transformation. We

found that multidrug-resistance evolution remained possible even at the lowest probability we

considered here of a transducing phage carrying an AMR gene being released instead of a lytic

phage during burst (1 transducing phage per 1011 lytic phage). Additionally, in this work we

assumed that transduction rates are constant, but previous research has shown that sub-MIC

antibiotic exposure can lead to an increase in transducing phage, but not lytic ones [52].

Hence, our results may still underestimate the relative impact of transduction versus predation

by phage when antibiotics are present. However, our findings are encouraging for conditions

under which AMR evolution is limited, since even with a high risk of transduction (1 trans-

ducing phage per 106 lytic phage), if phage are only introduced to an environment more than

10h after antibiotics, multidrug-resistant bacteria do not reach detectable levels before single-

resistant strains are eradicated (Fig 6C).

To the best of our knowledge, our model is the first to consider the potential consequences

of transduction in a system where concentrations of bacteria, phage, and antibiotic are similar

to those we may see during phage therapy. Previously our work only considered bacteria and

phage capable of generalised transduction in the absence of antibiotics [28], whilst others have

explored bacteria phage and antibiotics without including generalised transduction [6–8,10].

We echo the conclusions from these previous studies which highlighted that the timing of anti-

biotics and phage introduction during phage therapy can affect the rate at which bacteria are

cleared, but extend these to show that timing may also impact the risk for multidrug-resistant

bacteria to be generated. Here, we suggest that, although both sequential treatments can ulti-

mately lead to bacterial eradication, the timing leads to a trade-off between a slower clearing

rate of bacteria (if antibiotics are added before phage), and a higher risk of multidrug-resistance

evolution (if phage are added before antibiotics). Future studies and clinical trials of phage ther-

apy should investigate varying timings of phage and antibiotics, instead of only investigating

their simultaneous application, and consider the risk of transduction during treatment.

In any case, our ability to measure the impact of transduction as a driver of AMR evolution

in vivo is currently limited since individuals are not routinely screened for phage. A first step

to measure this despite the limitation may be to investigate evidence for within-patient

changes in the resistance profile of S. aureus isolates, as these would likely be caused by trans-

duction [23]. In the case of antibiotic treatment, the natural presence of phage capable of trans-

duction may explain instances of treatment failure, if these generate multidrug-resistant

strains which are then selected for by the antibiotics. Future studies monitoring therapeutic

outcomes of antibacterial treatment in patients where phage are also detected will be essential

to better understand how our findings translate to in vivo settings.

Limitations

The major limitation of our work is the deterministic nature of our model. While it does not

account for stochastic events which would play a large role when bacterial numbers are low,

the deterministic model is useful for analysis purposes, as it represents the average scenario we

would observe. In reality, we would likely see either bacterial clearance or unexpected increases

at low numbers of bacteria. We only generated model predictions for up to 48h, as our param-

eter values were obtained using data from experiments over 24h. Beyond this time, bacteria

and phage may be affected negatively due to resource depletion, depending on the

environment.
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Our model does not include some dynamics which may be present in vivo, as we do not

currently have robust data available to parameterise these features, and would instead have

had to rely on assumptions or previously estimated parameter values from different settings.

Notably, we have not included the effect of the immune system, which may limit the number

of multidrug-resistant bacteria generated as it could suppress both bacteria and phage popula-

tions in vivo [53,54]. If the model was extended to include the immune system, it would also

have to consider potential detrimental effects of large doses of phage and antibiotics, which

would restrict these concentrations to prevent side effects in vivo [55,56].

In addition, we assume that all the bacteria in our environment are equally susceptible to

phage infection, and have not considered the possibility for any further evolution. This

includes adaptation mutation allowing multidrug-resistant bacteria to overcome any fitness

cost, as well as resistance to phage. In our own previous in vitro experiments using these S.

aureus strains and phage, we did not detect evidence of bacterial resistance to phage appearing

within 24h [28]. However, such resistance may arise over longer periods of time [57,58]. The

threat represent by phage resistance evolution is clear for multidrug-resistant bacteria, as these

would then no longer be affected by either antibiotics nor phage. On the other hand, if single

antibiotic-resistant strains developed resistance to phage in our system, they would still be

removed by the other antibiotic they are susceptible to, but may then be more likely to benefit

from transduction and become multidrug-resistant, depending on the phage resistance mech-

anism. If resistance occurs by targeting and neutralising phage DNA in the cell (e.g. CRISPR--

Cas [58]), bacterial DNA injected by a transducing phage would not be targeted, hence

protecting the resistant bacteria from phage lytic infection whilst still allowing transduction.

However, if resistance occurs by preventing of phage binding (e.g. surface receptor modifica-

tion [58], although there is limited evidence of this type of phage resistance in S. aureus [59]),

then the bacteria would no longer benefit from transduction. In any case, the risk of phage

resistance could be mitigated by rapid killing of bacteria, before phage resistance arises,

highlighting the importance of measuring how fast bacterial eradication occurs.

Although we varied the concentration of antibiotics in our results, we have consistently

added erythromycin and tetracycline in equal amounts. Our model would allow us to change

this, yet we have chosen not to for simplicity and because the antibacterial effect curves look

similar for these two antibiotics in our setting (S1 Fig). However, for other antibiotics it may

be necessary to revisit this assumption and investigate concentrations which may better reflect

those to which bacteria are exposed to in the environment or during antibacterial treatment.

Generalisability

Our model is extensively parameterised using data from a single phage and three S. aureus
strains, making it a robust tool to study the dynamics of these organisms, as it relies on a mini-

mum number of assumptions [28]. However, the parameters we have estimated (adsorption

rate, phage concentration at half saturation, burst size, latent period and transduction proba-

bility) will likely vary depending on the phage, bacteria, and environment studied. Our sensi-

tivity analysis shows that the model outputs are reasonable with alternative parameter values,

predicting for example that phage with a higher predation capacity (higher adsorption rate,

phage concentration at half saturation or burst size, or lower latent period) would clear more

bacteria within 48h, and reduce the maximum number of multidrug-resistant bacteria gener-

ated. This model has been developed as part of an interdisciplinary project alongside in vitro
experiments, hence it could be easily re-parameterised using data for other strains of bacteria

and phage showing similar dynamics of lysis and generalised transduction. The structure of

the model is generalisable to other systems of generalised transducing phage and bacteria, as it
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captures the relevant biological characteristics of phage predation and generalised transduc-

tion [28].

The unique dynamics of phage, bacteria, and antibiotics

We suggest that transduction and the effect of antibiotics should be considered in the context

of the previously described unique dynamics of phage and bacteria. These imply that phage

must first reach a certain concentration (previously referred to as “inundation threshold”)

before they can offset bacterial growth and decrease the bacterial population, and bacteria

must first reach a certain concentration (“proliferation threshold”) before the phage popula-

tion can increase [10]. Generalised transduction and antibiotics affect the size of the bacterial

population, and therefore how phage interact with bacteria to clear them and generate multi-

drug-resistant bacteria. Thus, multidrug-resistant bacteria are able to increase in our model if

phage are initially present at a concentration lower than the inundation threshold (Fig 5C).

This also explains our counterintuitive observation that higher decay rates may lead to less bac-

teria remaining after 48h (Fig 6D), as this would allow bacteria to reach the proliferation

threshold sooner, and therefore allow phage to increase up to the inundation threshold

sooner (S7 Fig). Importantly, our results similarly suggest that higher decay rates for antibiot-

ics present alongside phage would reduce bacteria remaining after 48h, at the cost of a higher

peak concentration of multidrug-resistant bacteria, since this decay would allow bacteria

to reach the proliferation threshold sooner (Fig 6C, S7 Fig). This knowledge may be further

useful in the context of phage therapy, to select the antibiotics that will be given alongside

phage [51].

Conclusions

Our results demonstrate the complex synergy between phage and antibiotics to kill bacteria

and drive the evolution of AMR. We suggest this synergy leads to a trade-off between a slower

clearing rate of bacteria (if antibiotics are added before phage), and a higher risk of multidrug-

resistance evolution (if phage are added before antibiotics), further exacerbated by low concen-

trations of either phage or antibiotics. Interdisciplinary frameworks such as ours combining in
vitro data and mathematical models are key to understanding both fundamental AMR evolu-

tion, and new interventions like phage therapy or screening for phage in patients. Our conclu-

sions form hypotheses to guide future experimental and clinical work, notably for studies of

phage therapy which should consider the risk for multidrug-resistance evolution by transduc-

tion, and investigate varying timings and concentrations of phage and antibiotics instead of

only their simultaneous use.

Supporting information

S1 Fig. Antibiotic-induced death rate erythromycin and tetracycline measured in vitro
(pink) and obtained after fitting Hill equations (blue). Death rate is relative to bacterial

growth, such that a value greater than 1 indicates killing (net negative growth), while a value

between 0 and 1 indicates only a decrease in growth rate. NE201KT7 contains a tetracycline-

resistance gene (tetK), NE327 contains an erythromycin-resistance gene (ermB) and DRPET1

contains both resistance genes. The Hill equation is shown in Eq 3.

(TIF)

S2 Fig. a) The antibacterial effect of 1 mg/L of both erythromycin and tetracycline along-

side 109 pfu/mL of phage is equivalent to b) the effect of 1.97 mg/L of erythromycin and

1.08 mg/L of tetracycline in the absence of phage. This was estimated by setting the
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concentration of phage to 0 in b) and fitting the concentrations of erythromycin and tetracy-

cline to reproduce the decrease in bacteria numbers seen in a). cfu: colony-forming units; pfu:

plaque-forming units.

(TIF)

S3 Fig. a) Model-predicted bacterial dynamics in the presence of no antibiotics (1st col-

umn), erythromycin only (2nd column), tetracycline only (3rd column), or both erythro-

mycin and tetracycline (4th column), combined with either no phage (top row), phage

incapable of transduction (middle row), or phage capable of generalised transduction (bot-

tom row). Tetracycline-resistant bacteria (BT) are initially present at a concentration of 109

colony-forming units (cfu)/mL, and erythromycin-resistant bacteria (BE) at 106 cfu/mL. Anti-

biotics and/or phage (PL) are present at the start of the simulation, at concentrations of 1 mg/L

and 109 plaque-forming units (pfu)/mL respectively. Double-resistant bacteria (BET) can be

generated by generalised transduction only. Dashed line indicates the detection threshold of 1

cfu or pfu/mL. b) Change in bacteria (single-resistant to erythromycin, single-resistant to

tetracycline, or double-resistant) and phage numbers depending on the antibiotic expo-

sure, in the presence of phage capable of generalised transduction.

(TIF)

S4 Fig. Effect of varying antibiotic and phage timing and concentration when the tetracy-

cline-resistant bacterial strain (BT) is in minority (106 cfu/mL). a-b) Varying timing (x-

axis) and dose of antibiotic and phage (y-axis) affects total bacterial count after 48h (top),

maximum concentration of double-resistant bacteria (BET) (middle), and time when the

concentration of BET is greater than 1 colony-forming unit (cfu) per mL (bottom). a) Add-

ing 108 plaque-forming units (pfu) per mL of phage, and between 0.2 and 2.2 mg/L of both

erythromycin and tetracycline. b) Adding 1 mg/L of both erythromycin and tetracycline, and

between 105 and 1010 pfu/mL of phage. The x-axis indicates the time when antibiotics were

added, relative to when phage were added. For example, the value “4” indicates that phage

were present at the start of the simulation, and antibiotics were introduced 4h later. The seg-

ments with black borders correspond to the dynamics shown in c). c) Phage and bacteria

dynamics over 48h for 4 conditions taken from panel b. In all 4 conditions, indicated by the

black rectangles, phage are initially present at a concentration of 108 pfu/mL, while erythromy-

cin and tetracycline are both introduced at concentrations of 1 mg/L after either 0h, 3h, 5h or

15h, stated on the plots, with the timing indicated by the vertical dashed lines. Horizontal dot-

ted lines indicate bacteria remaining after 48h (corresponding to the top row of a-b) and maxi-

mum double-resistant bacteria (BET) concentration (middle row of a-b). Solid line indicates

the detection threshold of 1 cfu or pfu/mL.

(TIF)

S5 Fig. Effect of varying antibiotic and phage timing and concentration when the erythro-

mycin-resistant bacterial strain (BE) is in minority (106 cfu/mL). a-b) Varying timing (x-

axis) and dose of antibiotic and phage (y-axis) affects total bacterial count after 48h (top),

maximum concentration of double-resistant bacteria (BET) (middle), and time when the

concentration of BET is greater than 1 colony-forming unit (cfu) per mL (bottom). a) Add-

ing 108 plaque-forming units (pfu) per mL of phage, and between 0.2 and 2.2 mg/L of both

erythromycin and tetracycline. b) Adding 1 mg/L of both erythromycin and tetracycline, and

between 105 and 1010 pfu/mL of phage. The x-axis indicates the time when antibiotics were

added, relative to when phage were added. For example, the value “4” indicates that phage

were present at the start of the simulation, and antibiotics were introduced 4h later. The seg-

ments with black borders correspond to the dynamics shown in c). c) Phage and bacteria
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dynamics over 48h for 4 conditions taken from panel b. In all 4 conditions, indicated by the

black rectangles, phage are initially present at a concentration of 108 pfu/mL, while erythromy-

cin and tetracycline are both introduced at concentrations of 1 mg/L after either 0h, 3h, 5h or

15h, stated on the plots, with the timing indicated by the vertical dashed lines. Horizontal dot-

ted lines indicate bacteria remaining after 48h (corresponding to the top row of a-b) and maxi-

mum double-resistant bacteria (BET) concentration (middle row of a-b). Solid line indicates

the detection threshold of 1 cfu or pfu/mL.

(TIF)

S6 Fig. Growth curves of NE201KT7 (tetracycline-resistant, left), NE327 (erythromycin-

resistant, middle) and DRPET1 (double-resistant, right), exposed to varying concentra-

tions of erythromycin (top) or tetracycline (bottom). The minimum inhibitory concentra-

tion values for bacteria at 24h were identical to the ones for stock bacteria, suggesting that

antibiotic decay rather than acquired resistance is responsible for the increase in bacteria num-

bers after 24h. Error error bars indicate mean +/- standard deviation, from 3 replicates. cfu:

colony-forming units. Note that cfu per mL are shown on a log-scale.

(TIF)

S7 Fig. Impact of phage and antibiotic decay on phage and bacteria dynamics over 48h.

The conditions shown are: no decay (a), phage decay (b), erythromycin decay (c), and tetracy-

cline decay (d). In all 4 conditions, phage and antibiotics (erythromycin and tetracycline) are

initially present at concentrations of 109 pfu/mL and 1 mg/L respectively. Rates of decay are

set to either 0 or 0.1 per hour.

(TIF)
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