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Antimicrobials are one of the most successful therapies 
available to modern medicine but the spread of antimi-
crobial resistance (AMR) is a threat to their effective use. 

Considerable global effort is being directed at antimicrobial stew-
ardship programmes which the World Health Organization con-
siders a key tool in reducing AMR1. Antimicrobial stewardship at 
the individual level often emphasizes rationalization of antimicro-
bials through narrowing their spectrum of action as soon as pos-
sible after commencement of broad empiric antimicrobial therapy 
in severely unwell individuals. The time frame (for example, 48 h) 
for this is typically pragmatically selected to match likely availability 
of diagnostic test results. Rationalization of therapy is partly based 
on the assumption that it will reduce emergence of AMR but the 
mechanism by which antimicrobial exposure acts at the individual 
level to promote colonization and/or infection with resistant patho-
gens, and the dynamics of colonization and decolonization, are not 
well understood2–5. Improved understanding of the dynamics of 
individual-level AMR-acquisition under antimicrobial pressure can 
therefore inform the design of stewardship protocols.

One setting in which antimicrobial stewardship is a considerable 
challenge is in the treatment of severe febrile illness in the low- and 
middle-income countries of sub-Saharan Africa (sSA). In Blantyre, 
Malawi, for example, as in much of sSA, limited availability of diag-
nostics results in prolonged courses of broad-spectrum antimicro-
bials—mainly ceftriaxone, a third-generation cephalosporin (3GC) 
antibiotic6—for severe febrile illness. Ceftriaxone has been exten-
sively used since its introduction to the Malawian national formu-
lary in 20057 but this has been associated with an increase in 3GC 
resistance8, particularly in bacteria of the order Enterobacterales. 
This is mainly mediated by extended-spectrum beta-lactamase 

(ESBL) enzymes8–10. ESBL-producing Enterobacterales (hence-
forth ESBL-E) are an increasing public health challenge throughout 
much of sSA11,12 and often have few or no locally available treat-
ment options; in Blantyre, 91% of invasive Klebsiella pneumoniae 
are now 3GC resistant8 and strategies to reduce ESBL-E infections 
are needed.

Gut mucosal colonization with ESBL-E is thought to precede 
invasive infection, is common across sSA and has often been found 
to be associated with prior hospitalization and/or antimicrobial 
exposure12,13. An improved mechanistic understanding of coloniza-
tion dynamics following these exposures therefore has the potential 
to inform evidence-based interventions to reduce colonization and 
hence opportunity for transmission. Here, we present the results 
from a clinical study of longitudinal ESBL-E carriage in Blantyre, 
Malawi, sampling adults as they pass through the hospital and 
are exposed to antimicrobials. We use multistate modelling14 and 
whole-genome sequencing as a high-resolution bacterial typing tool 
to describe and understand the dynamics of ESBL-E colonization.

Results
Antimicrobial exposure drives increase in ESBL-E prevalence. 
Between 19 February 2017 and 2 October 2018, we recruited 
425 adults: (1) 225 patients with sepsis and antimicrobial expo-
sure, admitted to Queen Elizabeth Central Hospital (QECH), 
Blantyre; (2) 100 antimicrobial-unexposed inpatients and (3) 100 
antimicrobial-unexposed community participants (Table 1). There 
were 1,631 study visits, with successful stool or rectal swab collec-
tion at 1,417/1,631 (87%) visits; missing samples were equally dis-
tributed across all study arms and visits (Fig. 1 and Supplementary 
Fig. 1). At least one ESBL-E species was cultured in 723/1,417 
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(51%) of samples. A total of 1,032 organisms were isolated, most 
commonly Escherichia coli (n = 686) and K. pneumoniae spe-
cies complex (KpSC, n = 245; Fig. 1, Supplementary Table 1 and 
Extended Data Fig. 1). Phenotypic resistance to other antimicrobial  
classes (determined for 442 E. coli and 167 KpSC) was common 
(Extended Data Fig. 2).

Baseline prevalence of ESBL-E colonization was 178/420 42% 
(95% confidence interval (CI) 38–47%, Fig. 2a and Supplementary 
Table 1). In multivariable modelling (Supplementary Table 2), 
co-trimoxazole preventative therapy exposure (CPT, administered 
lifelong for people living with HIV as per WHO guidelines) was 
associated with ESBL-E colonization (adjusted odds ratio (aOR) 
of colonization 2.34, 95% CI 1.00–5.66) as was use of unprotected 
water sources (aOR 2.96, 95% CI 1.07–8.75), rainy season (aOR 
2.21, 95% CI 1.07–8.75), number of adults in the household (aOR 
1.20, 95% CI 1.03–1.40) and recent hospitalization (aOR 6.64, 95% 
CI 1.98–30.75)).

Following enrolment, there was rapid increase in ESBL-E 
colonization prevalence in antimicrobial-exposed inpatients 
(109/222 (49%) day 0 to 127/162 (78%) day 7) compared to the 
antimicrobial-unexposed inpatients (41/99 (41%) day 0 to 32/62 

(51%) day 7; Fig. 2a and Supplementary Fig. 2). Ceftriaxone was the 
most commonly received antimicrobial (183/225, 80%) followed 
by co-trimoxazole (110/225, 49%), ciprofloxacin (61/225 27%) 
and antitubercular chemotherapy (52/225, 23%) but person-days 
of co-trimoxazole exposure was higher because of chronic CPT 
administration (Extended Data Fig. 3 and Supplementary Table 3). 
Median (interquartile range, IQR) length of hospital stay was longer 
in the antimicrobial-exposed (5 (IQR 2–10) days) compared to the 
antimicrobial-unexposed (2 (IQR 2–7) days) inpatient groups.

We used continuous-time multistate Markov models to under-
stand determinants of ESBL-E carriage and to account for differ-
ences in exposures across the arms of the study. In this model, 
each patient is ‘colonized’ or ‘non-colonized’, with the transition 
rate governed by a linear function of time-varying covariates 
(hospitalization and antimicrobial exposure). When comparing 
a stepwise-constant covariate model (where the effect of hospital-
ization and antimicrobial exposure cease immediately as exposure 
ceases) to a model which included a prolonged effect of antimicro-
bial exposure, modelled as an exponential decay that continues to 
exert an effect when exposure ceases, the latter was a better fit to 
the data as assessed by leave-one-out cross-validation (estimated 

Table 1 | Baseline characteristics of included participants

Variable Sepsis, receiving 
antibiotics (n = 225)

inpatient, not receiving 
antibiotics (n = 100)

Community, not receiving 
antibiotics (n = 100)

P Total (n = 425)

Demographics

Age (yr) 35.9 (27.8–43.5) 40.4 (29.1–48.3) 32.5 (24.0–38.4) <0.001 35.6 (26.9–43.9)

Male 114/225 (51%) 51/100 (51%) 40/100 (40%) 0.163 205/425 (48%)

HiV status

HIV-positive 143/225 (64%) 12/100 (12%) 18/100 (18%) <0.001 173/425 (41%)

HIV-negative 70/225 (31%) 77/100 (77%) 22/100 (22%) 169/425 (40%)

HIV unknown 12/225 (5%) 11/100 (11%) 60/100 (60%) 83/425 (20%)

ART statusa

Current CPT 98/141 (70%) 5/12 (42%) 7/18 (39%) 0.013 110/171 (64%)

Current ART 117/143 (82%) 9/12 (75%) 18/18 (100%) 0.082 144/173 (83%)

Months on ART 28.7 (3.7–72.6) 35.1 (2.9–79.8) 31.5 (13.0–79.9) 0.698 29.5 (3.8-72.8)

Healthcare exposure

Antibiotics within 28 db 60/225 (27%) 0/100 (0%) 0/100 (0%) <0.001 60/425 (14%)

Hospitalized within 28 d 18/225 (8%) 1/100 (1%) 0/100 (0%) <0.001 19/425 (4%)

Current TB treatment 10/225 (4%) 0/100 (0%) 4/100 (4%) 0.083 14/425 (3%)

Household

Number of adults 2.0 (2.0–3.0) 3.0 (2.0–4.0) 2.0 (2.0–4.0) 0.907 3.0 (2.0–4.0)

Number of children 2.0 (1.0–3.0) 2.0 (1.0–3.0) 2.0 (1.0–3.0) 0.395 2.0 (1.0–3.0)

Keep animals 71/225 (32%) 43/100 (43%) 15/100 (15%) <0.001 129/425 (30%)

-Poultry 46/71 (65%) 34/43 (79%) 10/15 (67%) 90/129 (70%)

-Dogs 18/71 (25%) 11/43 (26%) 9/15 (60%) 38/129 (29%)

-Goats 12/71 (17%) 7/43 (16%) 1/15 (7%) 20/129 (16%)

-Other 3/71 (4%) 6/43 (14%) 0/15 (0%) 9/129 (7%)

electricity in house 119/225 (53%) 41/100 (41%) 58/100 (58%) 0.041 218/425 (51%)

Flush toiletc 14/225 (6%) 5/100 (5%) 1/100 (1%) 0.110 20/425 (5%)

Protected water sourced 216/225 (96%) 92/100 (92%) 98/100 (98%) 0.124 406/425 (96%)

Treat drinking water with chlorine 19/225 (8%) 5/100 (5%) 0/100 (0%) 0.004 24/425 (6%)

P values are from two-sided Fisher’s exact test or Kruskal–Wallis for categorical or continuous variables, respectively. ART, antiretroviral therapy; CPT, co-trimoxazole preventative therapy; TB, tuberculosis. 
Numeric variables are presented as median (IQR) and categorical variables as proportions. P values are from Fisher’s exact test or Kruskal–Wallis tests (categorical or continuous variables, respectively) 
across the three groups; P value for HIV status compares distribution of HIV status across the three groups. In some cases, denominator may be less than the total number of participants due to missing 
data. aDenominator for ART status is HIV reactive participants only. bexcluding TB treatment and CPT. cFlush toilet versus latrine (pit or hanging) or no toilet. dProtected water source includes borehole, 
water piped into or outside dwelling or public standpipe; unprotected sources include surface water or unprotected springs.
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Fig. 1 | Study overview. a,b, Flow of patients through study (a) and number of samples collected at each time point (b) showing number of samples in 
which eSBL E. coli, K. pneumoniae sequence complex or other species were identified and how many E. coli or K. pneumoniae sequence complex isolates 
were sequenced and passed QC (blue colouring of bar). QC, quality control; LTFU, loss to follow up.

NATuRE MiCRoBioLogy | VOL 7 | OCTOBeR 2022 | 1593–1604 | www.nature.com/naturemicrobiology 1595

http://www.nature.com/naturemicrobiology


Articles Nature Microbiology

expected pointwise log predictive value (ELPD) difference 10.5 
(standard error 4.2) in favour of the exponential decay model) and 
posterior predictive checks (Extended Data Fig. 4).

In this model, hospitalization increased both ESBL-E gain and 
loss parameters resulting in a modest increase in overall carriage 
prevalence, whereas antibacterial therapy largely acted to prolong 
ESBL-E carriage by reducing loss and acted with a prolonged effect 
with half-life 43.7 (95% credible interval (CrI) 15.4–97.7) days  
(Fig. 2c,e and Supplementary Table 4). Posterior plots of pairs of 
parameters revealed some non-identifiability between the gain and 
loss parameters, manifesting as correlation (Supplementary Fig. 3). 
Overall, in terms of estimated person-days of colonization, antimi-
crobial exposure had a greater effect than hospitalization (Extended 
Data Fig. 5). Posterior predictive simulations from the final fitted 
model (Fig. 2b) considering an hypothetical 7-day hospital admis-
sion with 7, 2 or 0 days of antimicrobial therapy suggest that anti-
microbial therapy and hospitalization act together to produce the 
observed rapid increase in ESBL-E but that there is very little differ-
ence in ESBL-E prevalence carriage from truncating 7 days of anti-
microbial therapy to 2 days.

In sensitivity analysis, we refit the final model but disaggre-
gated antimicrobial exposure into ceftriaxone and non-ceftriaxone 
exposure. The effect of ceftriaxone was similar to non-ceftriaxone  

antimicrobials (Extended Data Fig. 6) suggesting coselection of 
ESBL-E carriage by exposure to non-beta-lactam antimicrobials.

Within-host ESBL persistence mechanism not horizontal gene 
transfer. Next we used short-read whole-genome sequencing to 
track bacteria and ESBL genes within study participants. Following 
quality control, 473 E. coli and 203 KpSC genomes were included 
in the analysis with a median (IQR) 3 (2–4) E. coli isolates per par-
ticipant from 230 participants and 2 (1–2) KpSC isolates per par-
ticipant from 142 participants. Most (n = 190) KpSC isolates were 
K. pneumoniae subsp. pneumoniae. An analysis of population struc-
ture, core-gene phylogeny and AMR and plasmid gene content of 
these isolates has previously been made15,16 and AMR gene and 
plasmid incompatibility group (Inc-types) content is summarized 
in Supplementary Figs. 4–6. To track bacteria within-participant we 
mapped reads to reference genomes and defined high-level sequence 
clusters using popPUNK-17 and single nucleotide polymorphism 
(SNP)-clusters as isolates with whole-genome SNP distance ≤5. 
PopPUNK grouped E. coli into 87 clusters representing 58 sequence 
types (STs) and KpSC into 91 clusters representing 75 STs, 55 of 
these K. pneumoniae subsp. pneumoniae (Supplementary Figs. 7 
and 8). These clusters (henceforth, popPUNK-clusters) were largely 
concordant with the core-gene phylogenies (Supplementary Fig. 9). 
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To track ESBL genes and their genomic environment (because full 
plasmids usually fail to assemble into a single molecule with de novo 
assembly of short reads due to repeat-regions) we clustered de novo 
assembled contigs containing 3GC-resistance genes using the 
cd-hit18 algorithm, including those from both KpSC and E. coli. A 
total of 714 3GC-resistance gene-containing contigs were identified 
in 672/676 samples; 18 different genes formed 195 clusters (hence-
forth, contig-clusters) of median size 1 (range 1–42; Supplementary 
Fig. 10). They were genus- and lineage-associated (Extended Data 
Fig. 7), although 21/195 (11%) of contig-clusters contained both  
E. coli and KpSC genomes. In sensitivity analysis, cluster mem-
bership was stable to increasing the sequence identity and length 
cut-off of the cd-hit algorithm (Supplementary Fig. 11), although 

with some fragmentation of clusters apparent at sequence iden-
tity of 1.0. The nucleotide diversity and insertion sequence, AMR 
gene and plasmid replicon content of the ten most common 
contig-clusters (present in 248/714 (35%) of samples) is shown in 
Supplementary Figs. 12–21. Generally, shorter assembled contigs 
terminated in insertion sequences (consistent with compound 
transposons), often IS26, and showed low nucleotide diversity 
to the portion of the cluster representative to which they were 
matched. Where nucleotide diversity was present, it was often 
flanking transposable elements, which could be consistent with 
transfer/rearrangement events. In some cases, the ESBL gene was 
assembled onto a contig with a plasmid replicon but this was not  
the norm.
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For participants colonized with E. coli or KpSC at a time t = 0, the 
probability of remaining colonized returned to a baseline by 100–
150 d (Fig. 3a,b) but the probability of remaining colonized with the 
same contig-cluster or popPUNK-cluster was lower and the prob-
ability of remaining colonized with an organism differing by five 
or fewer SNPs was lower still (Fig. 3c,d), suggesting considerable 
within-participant strain diversity. Nevertheless, a temporal signal 
was present: two samples closer together in time were more likely 
to contain the same popPUNK-, contig- and SNP-cluster, enabling 
us to seek hospital-associated transmission events. Sensitivity anal-
ysis varying the definition of SNP-cluster from 0 to 20 SNPs did 
not alter these conclusions (Supplementary Fig. 22). Comparing 
within-patient sample pairs to between-patient sample pairs, the 
popPUNK-cluster contig-cluster combination was conserved more 
than either popPUNK-cluster or contig-cluster alone (Fig. 3e,f), 
consistent with the suggestion that within-participant persistence of 
ESBL, where it occurs, is caused by persistence of ESBL-containing 
bacteria rather than horizontal gene transfer and persistence of 
ESBL genes.

Hospital-linked lineages/transmission clusters are unusual. 
Next, we examined any hospital association of popPUNK-clusters. 
In-hospital and post-discharge isolates were distributed throughout 
the core-gene phylogenies and only one popPUNK-cluster contained 

more hospital isolates than would be expected by chance following 
correction for multiple comparisons (Fig. 4a,c). This corresponded 
to E. coli ST410. Similarly, one contig-cluster was associated with 
in-hospital isolation (Fig. 4d); this blaCTX-M-15 containing contig-cluster 
was primarily associated with E. coli ST410 (CTX_M_15.113 in 
Extended Data Fig. 7b). Sensitivity analysis aggregating in-hospital 
and post-discharge isolates to a ‘healthcare-associated’ category 
did not identify any distinctly healthcare-associated popPUNK- or 
contig-clusters (Supplementary Fig. 23).

As hospital-associated popPUNK-clusters were infrequent, we 
investigated putative hospital-related transmission SNP-clusters 
which could represent transmission clusters. We found that 
151/473 (32%) E. coli and 21/203 (10%) KpSC were members of an 
SNP-cluster and hence represent possible transmission events (Fig. 
5). The clusters were generally small (median size 2 (IQR 2–5) for 
E. coli and 2 (IQR 2–3) for KpSC) and, in E. coli, mainly contained 
samples from different participants rather than the same participant: 
only 6% (10/175) of pairwise comparisons of within-SNP-cluster E. 
coli samples were from the same participant. Fewer KpSC formed 
an SNP-cluster but more were from the same participant (58% 
(7/12)) rather than between participants. Most clusters (149/192 
(78%) E. coli and 31/57 (54%) KpSC) contained two or more 
healthcare-associated isolates, which might represent transmission 
events. However, the proportion of samples that were members of an 

a b

0

1

2

3

popPUNK-cluster

–l
og

(P
)

c

0

1

2

3

Contig-cluster

–l
og

(P
)

d

In-hospital

Post-discharge

Community

Fig. 4 | Hospital association of popPuNK-clusters and contig-clusters. a,b, Maximum-likelihood core-gene phylogenetic tree for E. coli (a) and K. 
pneumoniae subsp. pneumoniae (b) showing in-hospital (dark blue), post-discharge (light blue) and community (green) isolates, where post-discharge 
is defined as up to 120 d post-hospital discharge. Hospital-associated samples are distributed across the tree but only the popPUNK-cluster highlighted 
in red shows an association with in-hospital isolation. c,d, Manhattan plots showing P value of two-sided Fisher’s exact test for association of 
popPUNK-cluster (c) and contig-cluster (d) with in-hospital isolation. Dotted line shows Bonferroni-corrected value corresponding to P = 0.05. Only one 
popPUNK-cluster is significantly associated with in-hospital isolation (highlighted in red on the plot (c) and core-gene tree (a)) at this level. Similarly, one 
contig-cluster is associated with in-hospital isolation, highlighted in red; this is the contig-cluster associated with the hospital-associated lineage.

NATuRE MiCRoBioLogy | VOL 7 | OCTOBeR 2022 | 1593–1604 | www.nature.com/naturemicrobiology1598

http://www.nature.com/naturemicrobiology


ArticlesNature Microbiology

SNP-cluster were similar between healthcare-associated isolates and 
community isolates. For E. coli 54/171 (32%) of community isolates 
versus 96/300 (32%) of healthcare-associated isolates were members 
of an SNP-cluster (P = 1.00, Fisher’s exact test). For KpSC 4/74 (5%) 
of community isolates versus 17/128 (13%) of healthcare-associated 
isolates were members of an SNP-cluster (P = 0.15). This is not con-
sistent with widespread hospital-associated transmission above the 
level of community transmission. Sensitivity analysis varying the 
SNP threshold from 0 to 10 did not materially alter the conclusions 
(Supplementary Figs. 24–26).

Discussion
Combining longitudinal sampling, multistate modelling and 
whole-genome sequencing, we describe the dynamics of ESBL-E 
colonization in Malawian adults. These findings advance our 
understanding of the effects of antimicrobial exposure on 
AMR-acquisition, with potentially notable implications for the 
directions of future research into the design of both antimicrobial 
stewardship and infection prevention and control interventions.

First, baseline sampling provides insight into drivers of ESBL-E 
colonization in Blantyre. ESBL-E colonization is very common 
and identification of community risk factors for baseline coloni-
zation, suggests considerable community transmission consistent 
with other studies across sSA12 and elsewhere19. ESBL-E coloniza-
tion was associated with unprotected water use for drinking and 
higher prevalence in rainy season which suggests inadequate access 
to water, sanitation and hygiene (WASH) infrastructure and/or 
WASH behavioural practices may be contributing. Associations of 
colonization with household crowding suggests within-household 
transmission.

Second, Markov models fitted to longitudinal sampling data 
allow insight into the dynamics of ESBL-E colonization. We dem-
onstrate a rapid increase in ESBL-E colonization following hospi-
tal admission and antimicrobial exposure. Modelling suggests that 
both hospitalization and antimicrobial exposure may act to drive 
this increase, although antimicrobial exposure has a greater effect 
by exerting an effect long after antimicrobial exposure finishes, 

with a half-life of 43.7 (95% CrI 15.4–97.7) days. Simulations sug-
gest that, due to the sustained effect of antimicrobials, short courses 
of antimicrobials could exert a similar effect to that of prolonged 
courses in terms of ESBL-E carriage. This finding has clear implica-
tions for antimicrobial stewardship protocols, suggesting that trun-
cating courses of antimicrobials may have limited effect on ESBL-E 
carriage compared to avoiding antimicrobial administration alto-
gether. In addition, non-ceftriaxone antimicrobials exerted a sim-
ilar effect on ESBL-E carriage as ceftriaxone; this, along with the 
high prevalence of resistance to other antimicrobial classes in these 
isolates, suggests that coselection for ESBL-E by non-beta-lactam 
agents is occurring. Hence, switching ceftriaxone to other classes of 
agent in treatment protocols may have a limited effect on ESBL-E 
carriage in this setting.

Previous ESBL-E longitudinal sampling and modelling stud-
ies examining the effect of antimicrobials on colonization have 
examined community and post-travel carriage in adults in the 
Netherlands2,3,5 and transmission of ESBL-E in neonatal units in the 
high-prevalence setting of Cambodia20. In the former studies, some 
association of ESBL-E carriage with antimicrobial exposure was 
found but antimicrobial exposure was not common; further, sam-
pling was neither intensive nor linked to antimicrobial exposure to 
fully define the effects. In a Cambodian neonatal unit, antimicro-
bial therapy was robustly linked to an increased daily probability of 
acquiring K. pneumoniae colonization but long-term sampling was 
not available to define post-antimicrobial effects as we have done 
here. Further work to understand the dynamics of ESBL-E coloni-
zation and decolonization under antimicrobial pressure to guide 
stewardship efforts should be a priority in other settings to guide 
antimicrobial stewardship programmes.

More broadly, these findings highlight a need to define and 
measure clinically relevant individual-level AMR carriage as an 
endpoint in trials of antimicrobial treatment strategies. An expand-
ing evidence base has demonstrated equivalence of clinical out-
comes in a variety of clinical infection syndromes for shorter 
versus longer courses of antimicrobial therapy21 but a nonlinear 
relationship between antimicrobial exposure and colonization with 

a b
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Fig. 5 | Visualising networks of SNP-clusters. a,b, Network plot of SNP-clusters (putative transmission clusters) for E. coli (a) and K. pneumoniae species 
complex (b) showing that putative transmission clusters are not exclusively hospital associated. Points are samples, coloured by place of isolation 
(in-hospital (black), community (white) or up to 120 d post-discharge (grey)). Red lines link samples that are within a single participant. Blue lines link 
samples that are differ by five or fewer SNPs. The plot shows that most samples are not members of an SNP-cluster; that most SNP-clusters encompass 
samples from different (rather than multiple samples from the same) participants; and that SNP-clusters are not exclusively hospital-associated, that is 
they contain in-hospital, community and post-discharge samples.
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AMR-bacteria (as we demonstrate here) may mean that 7 days com-
pared to 14 days of antimicrobials (for example) has little benefit 
in reducing ESBL-E colonization. Defining clinically relevant AMR 
endpoints for trials and measuring them to understand their rela-
tionship with antimicrobial exposure is thus crucial for optimizing 
the way in which antimicrobials are used in clinical practice.

Third, using whole-genome sequencing as a high-resolution typ-
ing tool allowed us to explore the mechanism by which antimicrobi-
als promote ESBL-E carriage. This is a key question: antimicrobials 
could either act to promote healthcare-associated transmission 
by reducing colonization resistance or select for low-abundance 
resistant bacteria that were already present in the microbiota but 
not detected by bacterial culture on admission. Hospitalization 
exerted an effect to increase ESBL-E colonization in the absence 
of antimicrobial exposure, suggesting that transmission within 
the hospital is occurring. However, we found limited support for 
hospital-associated lineages or hospital-associated transmission 
clusters above the level of transmission in the community. This 
suggests that either ESBL-E acquisition had occurred in the com-
munity and was enriched by antimicrobial exposure in hospital; 
that the diversity of isolates transmitted in the hospital was rep-
resented by the diversity of isolates in the community (a distinct 
possibility in our setting); or our sparse sampling strategy missed 
hospital-associated transmission events. Genomic epidemiology 
studies of ESBL-E colonization and infection clearly demonstrate 
that true healthcare-associated transmission of ESBL-E occurs22–24 
but few studies have longitudinal sampling pre-, during- and 
post-antimicrobial exposure. Defining the contribution of antimi-
crobial selection versus new ESBL-E acquisition events following 
antimicrobial exposure will guide prevention efforts and should 
be a priority for future studies—as should understanding the way 
in which antimicrobials may act to reduce colonization resistance 
and aid transmission. Healthcare-associated transmission could be 
reduced by infection prevention and control procedures but anti-
microbial selection pressure amplifying minority ESBL-E carried 
before hospital admission would need new strategies to protect 
the microbiota against selection for ESBL-E, such as antimicrobial 
binding compounds25 or oral beta-lactamases26.

We demonstrate considerable within-participant ESBL-E bacte-
rial diversity (as defined by SNP-clusters and popPUNK-clusters) 
over time, even in participants who remain colonized with the same 
genus; a further key question is whether this temporal bacterial 
diversity with preserved ESBL-E colonization could represent hori-
zontal gene transfer of ESBL genes between bacteria. Horizontal gene 
transfer could also explain an apparent lack of hospital-associated 
transmission clusters, if ESBL genes disseminated into diverse 
clones in the healthcare setting. We find that within-participant the 
popPUNK-cluster and contig-cluster combination was conserved 
more than either popPUNK-cluster or contig-cluster alone, consis-
tent with the hypothesis that within-participant persistence of ESBL, 
where it occurs, is caused by persistence of ESBL-containing bacte-
ria rather than horizontal gene transfer of ESBL genes to differing 
bacterial hosts. This does not support the suggestion of horizontal 
gene transfer as primary mechanism of ESBL temporal persistence 
within-participant on the timescale of the study.

There are limitations to our study. Most importantly, due to 
resource limitation, we took only one colony pick from each 
patient-time point sample for sequencing and so we may have 
missed intrahost ESBL-E diversity27,28 and hence underestimated the 
numbers of transmission clusters. We used short-read sequencing 
and clustered ESBL-containing contigs as a proxy for mobile genetic 
elements but our approach probably under-represents transfer/
rearrangement events in the flanking contexts around ESBL genes. 
Hence, inferring that inclusion in a specific contig-cluster repre-
sents a single stable/consistent genetic construct should be done 
very cautiously. We used an arbitrary SNP threshold of five SNPs 

to define SNP-clusters, a strong assumption, which could misclas-
sify isolates; this cut-off (empirically derived) has been used by 
public health bodies in England and Canada to define possible E. 
coli outbreaks29,30. We used a map-to-reference approach to iden-
tify core-genome SNPs that could have introduced bias due to the 
choice of reference. We have looked at high-level clustering with 
popPUNK and it may be that a high-resolution clustering approach 
using local, lineage-specific references would give the resolution to 
identify more hospital-associated transmission events. The models 
of AMR carriage assumed a 100% sensitivity and specificity of sam-
pling, which may not be valid. We were not able to disaggregate the 
effect of different antimicrobial agents because of the sample size. 
We did not collect data on sibling or family connections between 
hospitalized and community participants which could explain 
apparent community links. For hospitalized patients, we did not 
sample the ward environment, carers, staff, food or toilets; and 
our sampling strategy was sparse. In the analysis of associations of 
ESBL-E colonization at enrolment, we relied on self-reported anti-
microbial exposure and hospitalization and it is possible in our set-
ting that people may take medication without knowing the exact 
nature of it and that this may differ from true antimicrobial expo-
sure. Hospitalization records were not available to exclude the pos-
sibility that antimicrobials were received, which could explain some 
of the association between hospitalization and ESBL-E colonization 
at enrolment.

In conclusion, we describe the dynamics of ESBL-E colonization 
in Malawian adults as they are exposed to both antimicrobial ther-
apy and hospitalization. Antimicrobial therapy and hospitalization 
act rapidly to promote ESBL-E colonization. Antimicrobial therapy 
exerts a prolonged effect which means that truncated courses of 
antimicrobials may have a similar effect to longer ones, which has 
implications for stewardship protocols. Short-read whole-genome 
sequencing did not identify widespread, distinct hospital-associated 
lineages or that putative hospital-associated transmission clusters 
were more common than community SNP-clusters. Future work 
should define dynamics of intrahost ESBL-E diversity under anti-
microbial pressure, using longitudinal sampling, metagenomic 
sequencing methods to describe diversity and long-read sequencing 
to characterize mobile genetic elements. This will facilitate develop-
ment of clinically relevant AMR endpoints for clinical trials and the 
development of a sound evidence base for stewardship protocols at 
the individual level—an evidence base that is currently lacking.

Methods
Study setting and design. The study took place in QECH, Blantyre, Malawi, a 
government tertiary referral hospital for the Southern Region of Malawi and 
the only hospital providing free healthcare to the ~800,000 residents31 of urban 
Blantyre. Nursing ratios at QECH are usually around two trained nurses to a 
60-patient ward and basic nursing care is provided by family members; food is 
supplied to all patients on the ward by the hospital and each ward has one toilet 
which is shared by all patients. Malawi is a low-income country in southeast Africa, 
with an estimated adult human immunodeficiency virus (HIV) prevalence of 9% 
(UNAIDS, Malawi Country Profile https://www.unaids.org/en/regionscountries/
countries/malawi) and a high tuberculosis incidence of 133/100,000 person-years32. 
Blantyre has a subtropical climate with a rainy season from November to April.

Adults (>15 years) with sepsis, defined by fever and organ dysfunction criteria, 
were recruited from the emergency department of QECH 7:00-17:00 Monday 
to Friday as part of a study of sepsis aetiology, as described elsewhere33. Two 
comparator cohorts of participants were recruited: age- and sex-matched adults 
from QECH emergency department who had a plan from their attending clinical 
team to admit to hospital but no plan for antimicrobial administration; and 
community members matched by age, sex and home location to recruited sepsis 
patients. Exclusion criteria were: for the last two groups, antimicrobial exposure 
within the past 4 weeks (except co-trimoxazole preventative therapy (CPT) and 
antituberculous chemotherapy); hospitalized participants who lacked capacity to 
give informed consent and had no guardian to give proxy consent; participants 
who spoke neither English nor Chichewa; and participants who lived >30 km 
from Blantyre city. Geographic matching on home location between community 
members and sepsis patients was achieved by random walk from the houses of 
sepsis participants with initial direction established by spinning a bottle on the 
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floor. Written informed consent was obtained from all participants. An admission 
questionnaire was administered to all participants at enrolment and hospitalized 
patients were reviewed daily by a study team member until discharge to extract 
details of antimicrobial therapy from the clinical record. All clinical decisions 
were at the discretion of the attending clinical team. Further review by the study 
team occurred at days 7, 28, 90 and 180, except for community members in whom 
the day 7 and day 90 visits were omitted. If participants failed to come to their 
scheduled visits, then they were traced by telephone or, if that failed, by home visit. 
Hospitalized patients were not financially compensated for their time but all other 
participants were at a rate of 500 Malawian Kwacha (MWK) for home visits and 
2,000 MWK for hospital visits. Data were captured using a combination of direct 
electronic data entry by study team members onto tablet devices (open data kit34, 
Get ODK Inc.) and paper forms (TeleForm, Opentext).

Ethics statement. The study was approved by the research ethics committees of the 
Liverpool School of Tropical Medicine (16-062) and Malawi College of Medicine 
(P.11/16/2063).

Microbiologic methods. At each study visit (enrolment, days 7, 28, 80 and 190 
for hospitalized participants and enrolment, days 28 and 190 for community 
members) stool was collected in a sterile polypropylene pot; if a participant was 
not able to provide a stool sample, then a rectal swab was taken by a trained 
study team member and stored in Amies medium for transport. Stool and rectal 
swab samples were stored at 4 °C before being batch processed weekly: samples 
were plated directly onto commercially available ESBL selective chromogenic 
agar (CHROMagar ESBL, CHROMagar) and cultured aerobically overnight. 
Morphologically distinct white or blue colonies were speciated with the API 
20E system (Biomerieux, France); pink colonies were identified as E. coli. ESBL 
production was confirmed with the combination disc method on iso-sensitest 
agar with discs of cefotaxime (30 μg) and ceftazidime (30 μg) with and without 
clavulanic acid (10 μg), with ESBL production confirmed if there was a difference 
of 5 mm or more between the clavulanic acid and non-clavulanic acid discs 
for either cephalosporin. For organisms likely to carry a chromosomal blaampC 
beta-lactamase gene and hence able to hydrolyse cefotaxime and ceftazidime 
(defined for our purposes as Enterobacter spp., Citrobacter freundii, Morganella 
morganii, Providencia stuartii, Serratia spp. and Hafnia alvei); cefipime (30 μg), 
an AmpC-stable cephalosporin was used with and without clavulanic acid (10 μg) 
and ESBL production confirmed if there was a difference of 5 mm or more 
between the clavulanic acid and non-clavulanic acid discs. For a subsample of 
isolates, antimicrobial sensitivity testing (AST) using the disc diffusion method 
on iso-sensitest agar following British Society for Antimicrobial Chemotherapy 
guidelines (https://bsac.org.uk/) was carried out for meropenem, amikacin, 
chloramphenicol, ciprofloxacin, co-trimoxazole and gentamicin. The first 442  
E. coli and 167 K. pneumoniae species complex isolates cultured in the study (this 
number determined by resource and logistic considerations) underwent AST.

DNA extraction, sequencing and bioinformatic analysis. Due to resource and 
logistic constraints, not all samples could be taken forward for sequencing: 503/686 
E. coli and 217/233 K. pnemoniae species complex isolates were randomly selected 
from the collection for sequencing. One of each morphologically distinct K. 
pneumoniae species complex and E. coli colony, respectively, from each selected 
sample was taken forward for DNA extraction and whole-genome sequencing. 
DNA was extracted from overnight nutrient broth culture using the Qiagen DNA 
mini kit as per the manufacturer’s instructions. Extracted DNA was shipped to the 
Wellcome Sanger Institute to undergo whole-genome sequencing using Illumina 
HiSeq X10 to produce 150 base pair paired end reads. Quality control, de novo 
assembly and construction of core-gene phylogeny are described elsewhere15,16; 
in brief, species was confirmed with Kraken v.0.10.6 and Bracken v.1.0 (ref. 36) 
before de novo assembly with SPAdes v.3.14 (ref. 37), with the modifications 
described in ref. 38 and annotation with prokka v.1.5 (ref. 39) using a genus-specific 
database from RefSeq. The Roary v.1.17 pan-genome pipeline40 was used to 
identify core genes, considering genes contained in at least 99% isolates to be 
core. Samples with assembly failure (<4 megabases (Mb) assembled length) and 
samples with >10% contamination (as defined by CheckM v.1.1.3, ref. 41) were 
excluded from the analysis. A total of 203 KpSC and 473 E. coli genomes passed 
quality control and were included in the analysis. A core-gene multiple sequence 
alignment was generated using mafft v.7.205 (ref. 42), SNP-sites identified using 
SNP-sites v.2.4.1 (ref. 43) and the resultant SNP alignment (99,693 variable sites 
from a core-gene alignment of 1.39 Mb for E. coli and 378,596 variable sites 
from a 2.82 Mb core-gene alignment for K. pneumoniae complex) used to infer a 
maximum-likelihood phylogenetic tree using IQ-TREE v.1.6.3 (ref. 44) with the 
ModelFinder module, which selected the generalized time reversible model with 
FreeRate heterogeneity with five parameters for E. coli and eight parameters for K. 
pneumoniae complex. A total of 1,000 ultrafast bootstrap replicates were generated. 
Trees were visualized with ggtree v.2.2.4 (ref. 45).

AMR genes and plasmid replicons were identified using ARIBA v.2.14.6 
(ref. 46) and the curated ARG-ANNOT database used by SRST2 (ref. 47) and 
PlasmidFinder48 databases, respectively, on the sequence reads. ARIBA was also 
used to identify multilocus ST using the 7-gene Klebsiella49 and 7-gene Achtman50 

E. coli schemes hosted at pubMLST (https://pubmlst.org/). Since individual 
AMR genes from mobile genetic elements can exist in a variety of genomic 
contexts (for example, chromosomal, different plasmid backbones), we clustered 
ESBL-containing contigs from the de novo assemblies (identified with BLAST 
blastn v.2.7.1 (ref. 51) using the curated ARG-ANNOT database used by SRST2) 
to form contig-clusters using cd-hit-est v.4.8.1 (ref. 18) with 95% sequence identity 
and otherwise default settings. We varied cd-hit sequence identity from 95% to 
100% and the length cut-off parameter from 0 to 0.8 (that is, for length cut-off x, 
cluster members must be at least a fraction x of the longest cluster member) in 
sensitivity analysis. To understand the genomic environment of the ESBL gene in 
these contig-clusters we identified AMR genes, transposon and plasmid replicons 
on the cd-hit defined cluster representative sequence (that is, the longest contig in 
the cluster as per the cd-hit algorithm) in the ten most common contig-clusters. 
These ten clusters were found in 248/714 (35%) of samples. We used BLAST 
blastn with the curated ARG-ANNOT database used by SRST2 (ref. 47) for AMR 
genes, ISfinder database52 for insertion sequences and PlasmidFinder database48 
for plasmid replicons, selecting the best match by bitscore for a given location. 
In these databases, insertion sequences and AMR genes have a hierarchical 
identity structure for genes so, if there were multiple equally good matches from 
the same family, then a given gene was identified to family level, otherwise to 
individual insertion sequence or AMR gene. Inc group was determined for plasmid 
replicons. To understand differences between members of the same contig-cluster 
we generated multiple sequence alignments for each cluster by mapping all 
contig-clusters to the cluster reference using minimap2 v.2.16 (ref. 53) with the flags 
-ax asm. Nucleotide diversity (at each base) for contig-cluster multiple sequence 
alignment was calculated using the PopGenome v.2.7.5 package in R54 and coverage 
of the reference by each other contig extracted from the alignment SAM file and 
plotted for each alignment of that contig to identify synteny.

To track bacteria within- and between-participants we used map-to-reference 
pseudosequences: we defined popPUNK-clusters using the popPUNK v.2.0.2 tool17 
and defined SNP-clusters as isolates with ≤5 whole-genome SNPs. The popPUNK 
algorithm uses k-mer distances to cluster genomes on the basis of a best-fitting 
model approach, thus ensuring phylogenetically robust and reproducible high-level 
grouping of related genomes17. In contrast, delineation of putative transmission 
clusters involves analysis of very closely related genomes separated by only a few 
SNPs, for example ≤25 SNPs55. We used pairwise SNPs calculated over the core 
genome and applied a conservative SNP threshold (≤5) selected such that members 
of an SNP-cluster could represent transmission events (given a mutation rate in 
E. coli of 10−6–10−7 per base per year or 1–5 SNPs per year across the genome56,57). 
We used snippy v.4.6.0 to map reads to K-12 MG1655 E. coli (ENA accession 
U00096) and MGH78578 K. pneumoniae (ENA accession GCA_000016305.1) 
references and to call SNPs with default settings, including excluding sites with 
depth <10 as low coverage. The E. coli map-to-reference pseudosequences had a 
mean (s.d.) coverage and depth of 92% (2%) and 58× (8×) respectively, with only 
a median (IQR) 0.9% (0.4–1.5%) bases per genome excluded as low coverage and 
SNPs called at a mean (s.d.) depth of 55× (15×). The K. pneumoniae complex 
genomes had a mean (s.d.) coverage of 92% (3%) and 52× (16×), with median 
0.4% (0.3-1%) low-coverage bases excluded per genome and SNPs called at a mean 
(s.d.) depth of 51× (21×). We then used popPUNK v.2.0.2 on these assemblies, 
forming a new database with minimum k-mer size 15 (and otherwise default 
settings) and clustering with the DBSCAN algorithm. Clusters and distributions 
of k-mer distance are shown in Supplementary Figs. 7 and 8. To compare SNP 
distances between samples, we used these snippy-generated assemblies to construct 
a multiple sequence alignment, filtered regions of presumed recombination with 
gubbins v.3.0.0 (ref. 58) and calculated pairwise SNP distances using snp-dist v.0.6.2 
(https://github.com/tseemann/snp-dists) and considered two isolates with five or 
fewer SNPs difference across the genome to be likely to represent the same isolate. 
We hence used this SNP difference to define a ‘SNP-cluster’, clustering isolates 
with hierarchical clustering using the function stats::hclust in R. We performed 
sensitivity analysis and varied this SNP threshold from 0 to 10.

Statistical analysis. All statistical analyses were carried out in R v.4.0.2. Summaries 
of variables are presented as proportions (with exact binomial CIs where 
appropriate) or medians with IQRs. Kruskal–Wallis and Fisher’s exact tests were 
used to test the equivalence of patient characteristics across the three study groups 
for continuous and categorical variables, respectively. Associations of baseline 
ESBL-E carriage were assessed using logistic regression, including all variables 
that were felt a priori to be associated with ESBL-E carriage as predictors and 
presenting results as odds ratios for predictor variables with 95% CIs.

To assess within-participant conservation of organism, popPUNK-cluster, 
contig-cluster and SNP-cluster, we plotted within-participant correlation curves, 
including all participants who were colonized with E. coli or K. pneumoniae at 
time t = 0 then using non-parametric LOESS regression as implemented in the R 
stats::loess function with parameters n = 80, span = 0.75 to estimate the proportion 
at a time t later who were colonized with the same organism, popPUNK-cluster, 
contig-cluster or SNP-cluster. To assess the probability of two within-participant 
samples containing the same cluster by chance we compared the within-participant 
cluster conservation proportion to the proportion of between-sample participants 
that contained the same cluster. Odds ratios with 95% CIs were used to assess the 
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odds of within-participant conservation of popPUNK-cluster and contig-cluster 
together or each alone compared to between-participant conservation.

We assessed for hospital-associated lineages by mapping metadata to the 
core-gene trees, defining isolates as either in-hospital (if they were isolated from 
a sample taken in hospital), recent discharge (if they were isolated from a sample 
taken up to 120 d following hospital admission) or community (if they were 
neither in-hospital nor recent discharge). We tested the hypothesis that popPUNK- 
and contig-clusters are healthcare-associated by comparing the proportion of 
in-hospital and healthcare-associated isolates (defined as in-hospital or recent 
discharge) for each cluster to the proportion of the remaining samples, using a 
Bonferroni-corrected Fisher’s exact test.

We looked for putative transmission clusters by plotting SNP-clusters using the 
R packages igraph v.1.2.11 (ref. 59) and ggraph v.2.0.5. We used Fisher’s exact test 
to compare the proportion of isolates that were community-associated between 
isolates that were members of an SNP-cluster and those that were not.

Modelling of ESBL-E carriage. Defining the likelihood of the model. To understand 
the dynamics of ESBL-E carriage, we extended the continuous-time Markov 
models as implemented in the MSM14 package in R. MSM allows stepwise constant 
time-varying continuous-time Markov models, whereas we aimed to assess the 
biologically plausible effect of allowing antimicrobial exposure to act with a 
non-stepwise time-varying effect.

We assumed a two-state system with N participants, where at time t participant 
n will be in a state Sn(t)—either ESBL-E colonized (Sn(t) = 1) or ESBL-E 
uncolonized (Sn(t) = 0). For each participant n we assume a measured value of 
Sn(t) at in time points, the times of which are given by tnj , j = 1, 2…in and so the in 
values of Sn(tnj ), j = 1, 2…in are known.

If we develop a model with parameters θ that predicts the probability of a 
particular participant being in a state Sn(tb) at a time point tb, given that they  
were in a state Sn(ta) at an earlier time point ta, then the likelihood of this 
observation is:

P(Sn(tb)|Sn(ta), θ) (1)

Where | indicates ‘conditional on’ as per standard probability notation. Assuming 
that all observations are independent, then the likelihood for any participant is the 
product of all the transitions for that participant; and the likelihood of the data we 
observe is the product of all transitions for all participants:

N∏

n=1

i∏

k=2

P(Sn(tnk)|Sn(t
n
k−1), θ) (2)

We assume a Markov model as the data-generating process, where the 
instantaneous probability of transition from a state i to state j is given by qij or 
traditionally in matrix notation as the Q-matrix14,60 (for a two-state system):

Q (t) =

(
q00 (t) q01 (t)

q10 (t) q11 (t)

)
=

(
−λ (t) λ (t)

μ (t) −μ (t)

)
(3)

where we have defined λ(t) as the instantaneous rate of ESBL-E loss and μ(t) as the 
instantaneous rate of ESBL-E gain and used the fact that the rows of the Q-matrix 
must sum to one (that is, every participant has to be in one state or another). Bold 
face here is used for matrices. If we define the probability of a participant being in 
a state i at time 0 and a state j a time t as pij(t) = P(t), then these probabilities are 
linked to the Q-matrix by the set of differential equations:

dP(t)
dt

= Q(t)P(t) (4)

Or, simplified if participants start in a state 0 or 1 to:

dP0(t)
dt

= −λ(t)P0(t) + μ(t)P1(t) (5)

dP1(t)
dt

= λ(t)P0(t) − μ(t)P1(t) (6)

where Pi(t) is the probability of being in state i at time t. These differential 
equations can be solved with numerical ordinary differential equation solvers for 
all state transitions and all patients to calculate the likelihood.

Incorporating covariates. Following msm and ref. 60 we incorporated covariates 
with a proportional hazard approach where the k covariates xk, k = 1, 2…k can act 
upon the hazard of transition via:

λ(t) = λ0exp(β1x1(t) + ... + βkxk(t)) (7)

μ(t) = μ0exp(α1x1(t) + ... + αkxk(t)) (8)

where the xk take the value 0 when an exposure is absent and 1 when it is  
present—this is the stepwise constant model. Parameters λ0 and μ0 are the 
instantaneous rate of ESBL-E loss and the instantaneous rate of ESBL-E gain, 
respectively, with all covariates set to 0. The parameters β and α can therefore 
be thought of as the log transform of the hazard ratio of ESBL-E loss and gain, 
respectively; and the parameters λ0 and μ0 can be interpreted as the reciprocal of 
the mean time in the uncolonized or colonized state respectively with all covariates 
set to 0.

Finally, the motivation for developing this model was to allow a time-varying 
effect of antimicrobial exposure. Assuming that antimicrobial exposure begins at 
time tstart and ends at tend, the value of the covariate xantimicrobial(t) takes the form of 
an exponential decay following exposure:

xantimicrobial =






0

1

exp−(t−tend)
γ

0 < t < tstart

tstart ≤ t ≤ tend

t > tend

(9)

where the parameter γ is the half-life of the decay of antimicrobial exposure effect, 
multiplied by the natural log of 2.

Fitting and comparing models. The models were coded and fit in a Bayesian 
framework in Stan v.2.19 (ref. 61) accessed via the Rstan v.2.19.2 interface in  
R and plotted using the bayesplot v.1.8 R package. All code and data to  
fit the models are contained in the blantyreESBL35 v.1.2 R package available  
at https://github.com/joelewis101/blantyreESBL. Weakly informative priors  
were used; a normal distribution with mean 0 and s.d. 2 for α and β  
(corresponding to a hazard ratio of 7.4), a normal distribution with mean 0  
and s.d. 0.2 for μ and λ and a normal distribution with a mean of 0 and s.d. of 50 d  
for γ. In each case, models were fit with four chains of 1,000 iterations each  
with 500 warmup iterations. Convergence was evaluated by inspection of 
traceplots and the Gelman–Rubin statistic62 being close to 1. Posterior estimates of 
parameters were expressed as medians with 95% CrIs generated from the quantiles 
of the posterior, excluding warmup iterations. We fit two models: one with the 
stepwise constant covariates and one with exponentially decaying effect  
of antimicrobial exposure.

To compare between the two models we used leave-one-out cross-validation 
as implemented in the loo v.2.1.0 package in R63, quantifying model fit with an 
estimate of the ELPD and comparing models with the ELPD difference and 
standard error of the difference, where a difference in ELPD of greater than two 
times the standard error of the difference could be interpreted as evidence in 
favour of the better-fitting model63. We also used graphical posterior predictive 
checks, simulating the predicted prevalence of ESBL-E across the three arms of the 
study by generating a probability of ESBL-E carriage for each participant at each 
time point for each posterior samples (excluding warmup draws) and sampling 
from a Bernoulli distribution using the predicted probability. We simulated from 
the posterior by fixing covariate values, assuming a baseline prevalence of 50% 
ESBL carriage at t = 0 and using all posterior draw covariate values (excluding 
warmup draws) and solving the likelihood differential equations using the R 
package deSolve v.1.28 (ref. 64) to generate daily predicted probabilities of carriage 
at time t, with 95% CrIs defined by simple quantiles. Mean person-days of 
colonization were estimated by calculating the area under these time–probability 
curves using the DescTools v.0.99 R package. In sensitivity analysis to explore the 
effect of non-ceftriaxone antimicrobials in driving ESBL-E carriage we refit the 
best-fitting model but disaggregated antimicrobial exposure into ceftriaxone and 
non-ceftriaxone antimicrobials, then proceeded as above.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data to reproduce this analysis are available as the blantyreESBL v.1.2 R package 
available at https://joelewis101.github.io/blantyreESBL/ and on a mirrored Zendo 
repository (https://doi.org/10.5281/zenodo.5554081). Reads from all isolates 
sequenced as part of this study have been submitted to the European Nucleotide 
Archive under project IDs PRJEB26677, PRJEB28522 and PRJEB36486 and 
accession numbers linked to metadata are available in the R package as well as in 
the Supplementary Data.

Code availability
All data to reproduce this analysis are available as the blantyreESBL v.1.2 R package 
available at https://joelewis101.github.io/blantyreESBL/ and on a mirrored Zendo 
repository (https://doi.org/10.5281/zenodo.5554081).
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Extended Data Fig. 1 | Species of bacteria isolated from stool. Samples were labelled “Gram negative bacilli” if they could not be speciated using the  
API system.
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Extended Data Fig. 2 | Results of antimicrobial sensitivity testing (AST). AST of cultured E. coli and K. pneumoniae sequence complex (KpSC) isolates 
using the disc diffusion method. A subset of isolates (442/473 e. coli and 167/203 KpSC) underwent AST.
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Extended Data Fig. 3 | Participant antimicrobial exposure and hospitalization stratified by study arm. Y axis shows proportion of participants with a 
given exposure on each day post enrolment.
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Extended Data Fig. 4 | Comparing ESBL-E carriage models. Comparing a model of eSBL-e carriage that include a stepwise-constant effect of 
hospitalization and antimicrobial exposure (where the effect of covariates ceases when exposure ceases in Model 1) to a model that allows the effect of 
antimicrobial exposure to persist when exposure finishes, modelled as an exponential decay in Model 2. A-B: Parameter estimates from Model 1 expressed 
as natural logarithm of hazard ratio of gain or loss of eSBL-e for antimicrobial exposure [abx] and hospitalization [hosp] (A) and mean time in the 
colonized or uncolonised state (B) with covariates set to 0 (that is no antimicrobials, not hospitalized). C-F: Parameter estimates from Model 2, with the 
same interpretation and the addition of the half-life (in days) of the decaying effect of antimicrobial exposure (F). In A–F, vertical line represents posterior 
median, and grey shaded area 95% CrI. G: Posterior parameter checks of two models showing actual prevalence of eSBL-e carriage stratified by study 
arm (dashed lines) with kernel density plots of predicted prevalence from fitted models, obtained by using all posterior parameter estimates (n = 2000, 
discarding warmup iterations) to predict probability of eSBL-e from the actual data, and sampling from a binomial distribution using this probability. Model 
1 underfits the antimicrobial-exposed arm of the study, which is improved by the addition of the prolonged effect of antimicrobials.
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Extended Data Fig. 5 | Visualizing relative effects of hospitalization and antimicrobial exposure. A: Predicted probability from final fitted model of 
eSBL colonization assuming 0.5 probability of colonization at time t = 0 and between 1–5 days of antimicrobial exposure (left) or hospitalization (right). 
B: estimated mean person-days of colonization for the exposures in A out to 100 days (that is the area under the curves in A top 100 days). In all panels 
confidence intervals are 95% credible intervals; the full model posterior (n = 2000 replicates) was used to estimate the quantities of interest and 
confidence intervals constructed from quantiles of estimates.

NATuRE MiCRoBioLogy | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Articles Nature MicrobiologyArticles Nature Microbiology

Extended Data Fig. 6 | Parameter estimates from models considering ceftriaxone and non-ceftriaxone antimicrobials. (A-C) show parameter estimates 
from this model; (D-F) show original model. In each case, point shows posterior median and bar and whiskers show undertainty in parameter estimate 
by 50% and 95% credible interval, respectively, constructed from quantiles of all the posterior estimates (n = 2000 replicates). Parameters are: a, loss 
parameters, b, gain parameters and g, decay parameter of effect of antimicrobials. [CRO] indicates that the parameter refers to ceftriaxone, [non-CRO] 
that the parameter refers to non-ceftriaxone antimicrobials, and [hosp] to hospitalization.
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Extended Data Fig. 7 | Distribution of contig-clusters between and within genera. (A) shows distribution of contig-clusters by genus. (B-C) show 
contig-cluster presence (purple)-absence (grey) mapped back to core-gene maximum-likelihood phylogeny for E. coli (B) and K. pneumoniae subsp. 
pneumoniae (C).
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