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Objective: The aim of this study was to develop a predictive model for
overall survival after esophagectomy using pre/postoperative clinical
data and machine learning.
Summary Background Data: For patients with esophageal cancer, accu-
rately predicting long-term survival after esophagectomy is challenging.

This study investigated survival prediction after esophagectomy using
a Random Survival Forest (RSF) model derived from routine data from
a large, well-curated, national dataset.
Methods: Patients diagnosed with esophageal adenocarcinoma or squ-
amous cell carcinoma between 2012 and 2018 in England and Wales who
underwent an esophagectomy were included. Prediction models for overall
survival were developed using the RSF method and Cox regression from
41 patient and disease characteristics. Calibration and discrimination
(time-dependent area under the curve) were validated internally using
bootstrap resampling.
Results: The study analyzed 6399 patients, with 2625 deaths during fol-
low-up. Median follow-up was 41 months. Overall survival was 47.1% at
5 years. The final RSF model included 14 variables and had excellent
discrimination with a 5-year time-dependent area under the receiver
operator curve of 83.9% [95% confidence interval (CI) 82.6%–84.9%],
compared to 82.3% (95% CI 81.1%—83.3%) for the Cox model. The
most important variables were lymph node involvement, pT stage, cir-
cumferential resection margin involvement (tumor at < 1 mm from cut
edge) and age. There was a wide range of survival estimates even within
TNM staging groups, with quintiles of prediction within Stage 3b
ranging from 12.2% to 44.7% survival at 5 years.
Conclusions: An RSF model for long-term survival after esophagectomy
exhibited excellent discrimination and well-calibrated predictions. At a
patient level, it provides more accuracy than TNM staging alone and
could help in the delivery of tailored treatment and follow-up.
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E sophagectomy for cancer is a highly morbid operation from
which patients frequently take > 18 months to recover.1–3

Long-term prognosis for patients also remains poor, with 5-year
survival estimated to be < 50%.4

Presently, clinicians have a limited number of tools to
identify patients with esophageal cancer who are likely to respond
well to surgery and those who may not. TNM staging is widely
used for patient stratification, but the classification is based on
largely historic data (patients treated in 1980 s—2000 s).5 In
addition, staging groups remain coarse, even with the introduction
of post-neoadjuvant staging (ie, ypTNM) in TNM 8.6 Important
characteristics that are readily available and routinely collected
(such as circumferential resection margin) are not considered for
the sake of simplicity, leading to a range of survival outcomes for
patients within the same stage groups. This makes application at
the patient level inaccurate.

The delivery of personalized long-term survival estimates
after treatment for esophageal cancer is challenging. In addition
to informing patients, reliable survival figures would enable theDOI: 10.1097/SLA.0000000000004794
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identification of high-risk individuals or groups in whom
enhanced surveillance or treatment intensification (with tradi-
tional or novel agents such as immunotherapy) could be con-
sidered, or conversely patients where de-escalation would be the
preferred option.

Prognostic models can address these limitations by com-
bining multiple risk factors, although none have entered wide-
spread use among surgeons or oncologists treating esophageal
cancer.7,8 Models based on machine learning (ML) techniques
may produce more accurate predictions than models built using
traditional statistical methods (eg, logistic/cox regression).9,10 In
particular, Random Survival Forest (RSF) models have pro-
duced promising results11–13 in various settings, and in esoph-
ageal cancer were used to derive the AJCC TNM 7th and 8th

edition staging manuals,5,6 and to quantify the benefits of opti-
mizing treatment.14 RSF is a machine-learning method that,
when developed to predict survival, builds many decision trees
with log-rank test based split points to identify different survival
trajectories, with the predicted probability for an individual
being derived as the average prediction across all of the trees.

The aim of this study was to derive and validate a prog-
nostic model based on RSF methods for long-term survival after
esophagectomy for cancer, and to compare its performance to a
model developed using a common statistical approach (Cox
regression), using a population-based dataset from England
and Wales.

METHODS

Study Cohort
The study used a linked dataset prepared by the National

esophago-Gastric Cancer Audit (NOGCA), a national clinical
audit of patients undergoing treatment for cancer of the esoph-
agus or stomach in England and Wales.15 The audit was com-
missioned by the Healthcare Quality Improvement Partnership
(HQIP) and funded by NHS England and the Welsh govern-
ment. Patients were eligible for inclusion in the audit if they had
a histological diagnosis of epithelial cancer, with the first patients
being registered in April 2012. The audit collects a dataset that
covers the care pathway from diagnosis to the end of initial
treatment and links these patient records with information from
other national health care datasets, including the National
Cancer Registration and Analysis Service (NCRAS, see15 for
more details). Data collection was approved by the Con-
fidentiality Advisory Group under section 251 of the NHS
Act 2006.

Ethics Approval
The study is exempt from UK National Research Ethics

Committee approval as it involved secondary analysis of an
existing dataset of anonymized data. The National Esophago-
gastric (OG) Cancer Audit has approval for processing health
care information under Section 251 (reference number: ECC 1–
06 (c)/2011) for all National Health Service (NHS) patients
diagnosed with OG cancer in England and Wales. Data for this
study are based on patient-level information collected by the
NHS, as part of the care and support of patients with cancer.

The study cohort included patients diagnosed with ade-
nocar-cinoma or squamous cell carcinoma of either the esoph-
agus or gastroesophageal junction (Siewert I—II) between April
1, 2012 and March 31, 2018 who underwent a planned curative
esophagec-tomy. The study excluded patients who died in hos-
pital before discharge, had confirmed metastatic disease on

postoperative histology, or had an inadequate lymphadenectomy
(< 15 lymph nodes),16 in whom interpretation of lymph node
status would be biased. Supplementary Figures S.1, http://links.
lww.com/SLA/C964 and S.2, http://links.lww.com/SLA/C964
details the patient exclusions and assumptions to derive the final
sample size (n = 6399).

The primary outcome was overall survival from the date
of discharge following surgery. Survival was confirmed by link-
ing the audit records with records from the Office for National
Statistics death register. Median duration of follow-up was
41 months (interquartile range 24–59).

Variable Definition
The audit data contained 41 variables that were routinely

measured in clinical practice, were beyond the control of the
provider, had > 50% completeness, and were clinically relevant
to survival, listed in Table S.1, http://links.lww.com/SLA/C964.
The dataset contained patient characteristics, disease informa-
tion, details of treatment received, postoperative complications,
and tissue pathology. Circumferential resection margins were
considered involved if there was tumor at < 1 mm from the cut
edge and longitudinal resection margins were considered
involved if tumor was found at the cut edge, in line with Royal
College of Pathologists Guidelines.17 In patients undergoing
neoadjuvant therapy, treatment was specified as “complete” if it
was completed as prescribed or “not complete” (due to disease
progression, treatment toxicity, technical problems, or patient
choice). Malignant esophageal and gastric surgery is centralized
in England and Wales and undertaken solely by dedicated teams.
We therefore defined annual hospital volume as average number
of major upper gastrointestinal resections (esophagectomy/major
gastrectomy) per year, in line with NHS commis ioning guide-
lines.18 Staging was conducted using the 8th edition of the AJCC
TNM staging manual.

Among the 41 variables considered for inclusion, five had
missing values for > 5% of patients: completion of neoadjuvant
treatment (19.9%), return to theater (15.8%), grade of differ-
entiation (7.0%), cT stage (5.9%), and surgical approach (5.7%).
Missing data were assumed to be missing at random and were
addressed using multiple imputation by chained equations with
10 imputations.19

Model Development
The study aimed to develop a model using a subset of

variables so that data collection would be straightforward, and
the model easy to use in clinical settings. To select core variables,
we used permutation based Random Forest variable importance
(VIMP)11 with bootstrapped confidence intervals. Variables with
a P< 0.01 for VIMP > 0 were included in the final model (Table
S.2, http://link-s.lww.com/SLA/C964). Pre-treatment histology
(ie, adenocarcinoma or squamous cell carcinoma) was also
included to improve the face validity of the model. The final
model was trained using 14 variables: age, sex, cT, cN, site of
tumor, pre-treatment histology, neoadjuvant treatment, com-
pletion of neoadjuvant treatment, pT/ypT, number of positive
lymph nodes, circumferential and longitudinal margin involve-
ment, grade of differentiation, and presence/absence of surgical
complications. The RSF hyperparameters (ie, number of trees,
number of variables per tree, and minimum node size) were
optimized by grid search. Final predictions were combined
across the imputed data.20–22

A cox regression model was also developed using the same
set of variables. Not all relationships between survival and
continuous variables were linear, and a square root
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transformation was adopted for positive lymph nodes, whereas
age was included as a restricted cubic spline.

Assessment of Model Performance
Model performance was quantified by discrimination and

calibration. Discrimination was assessed using the time-
dependent area under the receiver operator curve (tAUC).23

Here this represents the proportion of random pairs of patients
(1 alive at time point “t” and 1 dead before this) where the model
gives the patient who is alive a higher probability of survival
than the patient who is dead. It can be considered analogous to
the standard AUC in a binary regression model, extended to
survival by weighting of censored patients,24 and has advantages
over the C-statistic measure of performance.25 Assessment of
calibration was conducted visually for 5 patient subgroups of

increasing risk (ie, patients were grouped by quintiles of pre-
dicted risk of mortality at 5 years). In addition, we calculated the
integrated brier score.26,27 A score closer to 0 indicates better
accuracy of predictions.

Finally, the relative performance of the 2 models was
compared using decision curve analysis.28 This method is based
on evaluating the “net-benefit” of model predictions across of
range of possible decision thresholds that reflect how a patient
might weigh the risk of harm associated with a false-positive
result (compared with a true positive result). Models with a
better performance have a greater net benefit across all thresh-
olds of probability.

Data analysis was conducted in R 3.5.3.29 The RSF was
trained using the packages Ranger30 and RF-SRC.31 This study
was conducted to comply with the AJCC prognostic model32 and

TABLE 1. Background Characteristics of Patients Who Underwent An Esophagectomy Between April 2012 and March 2018

Characteristic N = 6399 Median Survival Characteristic N = 6399 Median Survival

Sex Anastomotic leak
Male 5045 (78.8) 47 No 5923 (92.6) 54
Female 1354 (21.2) 72 Yes 445 (7.0) 40

Age Unknown 31 (0.5) NR
0—40 64 (1.0) NR Any complication
41—50 405 (6.3) 68 No 3810 (59.5) 55
51—60 1397 (21.8) 59 Yes 2558 (40.0) 49
61—70 2615 (40.9) 60 Unknown 31 (0.5)
71—80 1787 (27.9) 42 Involved longitudinal margin
81 + 131 (2.0) 29 No 6188 (96.7) 55

Site of tumor Yes 211 (3.3) 19
Upper/mid esophagus 792 (12.4) 61 Involved circumferential margin
Lower esophagus 3795 (59.3) 52 No 4617 (72.2) 77
GEJ (S1—2) 1812 (28.3) 53 Yes 1534 (24.0) 21

Histopathology Unknown 248 (3.9) 57
Adenocarcinoma 5540 (86.6) 51 pT/ypT
SCC 859 (13.4) 68 T0/is 524 (8.2) NR

cT T1 1201 (18.8) NR
T0/is/1 467 (7.3) NR T2 836 (13.1) NR
T2 1294 (20.2) 67 T3 3549 (55.5) 30
T3 3979 (62.2) 38 T4 289 (4.5) 13
T4 284 (4.4) 36 Lymph nodes examined 26 [15—130]
Unknown 375 (5.9) NR pN/ypN

cN N0 2994 (46.8) NR
N0 2551 (39.9) 76 N1 1414 (22.1) 46
N1 2547 (39.8) 41 N2 1133 (17.7) 22
N2 938 (14.7) 32 N3 858 (13.4) 14
N3 159 (2.5) 28 Grade
Unknown 204 (3.2) 47 G1 (well) 226 (3.5) NR

cM G2 (moderate) 2331 (36.4) 60
M0 6151 (96.1) 54 G3/4 (poor/anaplastic) 2697 (42.1) 38
M1 44 (0.7) 26 GX (unable to determine) 695 (10.9) 66
Unknown 204 (3.2) 47 Unknown 450 (7.0) 72

ASA NAT
1 892 (13.9) 64 Chemotherapy 3976 (62.1) 42
2 3745 (58.5) 53 Chemoradiotherapy 450 (7.0) NR
3 1726 (27.0) 42 None 1973 (30.8) 66
4 36 (0.6) 43 Completion of NAT

Approach Completed 2981 (46.6) 51
Open 3357 (52.5) 51 Not completed 282 (4.4) 32
Hybrid 1931 (30.2) 51 Not applicable 1861 (29.1) 67
MIO 748 (11.7) NR Unknown 1275 (19.9) 42
Unknown 363 (5.7) 41 Annual hospital volume

1–30 504 (7.9) 59
31–60 3351 (52.4) 55
> 60 2544 (39.8) 48

Data given as absolute number (percentage) and median (Range). MIO indicates minimally invasive esophagectomy; NAT, neoadjuvant treatment; NR, median survival
not reached; SCC, squamous cell carcinoma.
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TRIPOD33 criteria, a compliance checklist is provided in Table
S.3, http://links.lww.com/SLA/C964. Complete R code to
reproduce the analysis is available on request. More extensive
methodology and instructions to perform external validation are
provided in the supplementary materials. All performance met-
rics were validated internally by the 0.632 estimator34 in 1000
replications of the bootstrap with replacement.

RESULTS
The study included 6399 patients with esophageal cancer

who underwent an esophagectomy between April 2012 and
March 2018. Table 1 summarizes the characteristics of patients
and their treatment. The median age at diagnosis was 66 years
and only 1 in 5 were women. Tumors were predominantly ade-
nocarcinoma (87%) and about 3 in 10 were classified as GEJ-
Siewert I-II. There were 2625 recorded deaths, and the median
survival was 53 months. Survival at 1, 3, and 5 years was 83.7%,
57.1%, and 47.1% respectively (Fig. 1). Differences in survival
stratified by stage according to if patients received neoadjuvant
treatment (ie, ypTNM) or surgery alone (ie, pTNM) are shown
and discussed in supplementary Figure S.9, http:// links.lww.
com/SLA/C964.

A total of 13 variables were identified as important to
include in the final model in addition to histological diagnosis.
The RSF variable importance measure indicated the number of

lymph nodes as the most important single risk factor for worse
prognosis followed by pT/ypT stage (see partial dependence
plots, supplementary figures S.3/S.4, http://links.lww.com/SLA/
C964).

Model Performance: Internal Validation
The RSF model demonstrated excellent discrimination,

with a bootstrapped tAUC at 60 months of 83.9% (95% CI
82.6%–84.9%), which was similar at other time points (Figure
S.6, http://links. lww.com/SLA/C964). This was better than the
Cox regression model (coefficients of which are given in Table
S.4, http://links.lww.com/ SLA/C964), which had a bootstrapped
tAUC of 82.3% (95% CI 81.1%–83.3%) and TNM stage alone
(tAUC 74.5%). Figure 2 shows the agreement between the RSF
model predicted and observed survival times for patients
grouped according to quintile of prediction and in both models,
calibration was visually good throughout these groups. The
integrated brier scores for the RSF model was superior to the cox
regression at 0.136 (95% CI 0.134–0.138) and 0.141 (0.139–
0.143), respectively. Decision curve analysis also showed a
greater net benefit for the RSF over Cox regression model
(Figure S.7, http:// links.lww.com/SLA/C964) or using TNM
alone (Figure S.8, http:// links.lww.com/SLA/C964).

There were a broad range of predictions yielded even
within p/ ypTNM staging groups, with the lowest risk quintile of
Stage 3b patients having a predicted 5-year survival of 44.7%

FIGURE 1. Survival of patients
who underwent an esoph-
agectomy between April 2012
and March 2018, stratified by
TNM stage.
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compared to 12.2% for the highest risk quintile. Moreover, there
is a subgroup of early-stage disease (TNM stage 0—1), who
would generally be considered to be cured, who had a relatively
poorer survival of only 64.7% at 5 years (Fig. 3) and overlap of
quintiles between staging groups.

Figure 4 gives an overview of mean predicted 5-year sur-
vival for combinations of the most important variables (Lymph
node status, T-stage, circumferential resection margin involve-
ment, and age at diagnosis). Age at diagnosis is most influential
with early stage (T0—2, N0-1) disease; however, its importance
diminishes with increasing T/N-stage. Examples of how the
model might be used are given in the supplementary materials
(Figure S.10, http://link-s.lww.com/SLA/C964)

DISCUSSION
Accurate predictions of long-term survival following

surgery for esophageal cancer may help clinicians and patients.
This study has demonstrated that an RSF model can discrim-
inate between patients with different long-term prognoses using
a small number of routinely collected variables. The model
showed very good calibration and discrimination on internal
validation, and exceeded that achieved using Cox regression
analysis. The model is applicable to patients who have
undergone a planned curative esophagectomy for adenocarci-
noma or squamous cell carcinoma of the esophagus, who had
an adequate lymphadenectomy and survived to discharge from
hospital.

At present, information given to patients after surgery
about their long-term survival is limited and is largely based on
TNM staging. This can mean the information provided to

patients can be vague, such as “50% survive to 5 years.” Deci-
sions on whom to offer adjuvant treatment or consider for entry
into trials may involve more criteria than TNM staging, but the
relationship between these criteria and survival may be
uncertain.

The model described here provides a more precise pre-
diction of prognosis for an individual patient than TNM staging
alone, and this will be valuable in postoperative discussions with
patients. This increased accuracy has several benefits. In a
research setting, it is key for establishing the efficacy of treat-
ment. In clinical practice, it supports selecting the right patients
for the right treatments, particularly with the emergence of novel
therapies (eg, Immune checkpoint inhibitors35). Further research
on how best to communicate predicted survival to patients is
required; even in early-stage disease, desire for detail of prog-
nosis is highly variable,36 and the effective use of decision aids is
challenging.37

The model compares favorably to those published pre-
viously. Cox proportional hazard models using a variety of
predictors have reported C-index/tAUCs between 0.61 and
0.70.38—40 In comparison the C-index of our model was 0.76
(0.75—0.78) and the 5-year tAUC 0.84 (0.83—0.85). It also is
more broadly applicable and includes patients with all modalities
of neoadjuvant treatment.

The variables found to be most influential are consistent
with clinical experience and the findings from other studies, with
lymph node involvement being widely recognized as the most
influential determinant of long-term survival in esophageal
cancer. Both clinical T stage and clinical N stage were found to
be important independent of their pathological equivalents.
There is some logic to support including both clinical and

FIGURE 2. Calibration of predictions from RSF model. Patients grouped into quintiles according to predicted survival at
60 months post-surgery.
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pathological variables, in that changing variables within patients
may indicate the impact of neoadjuvant treatment (although this
is limited by the relatively decreased accuracy of clinical staging).
This is supported by recent studies which have shown that
downstaging after neoadjuvant treatment improves absolute
survival independent of the ypTNM stage.41 Completion of
neoadjuvant treatment was included which is biologically sen-
sible, and important in the context of the increasing use of
potentially more toxic regimens such as FLOT.4

The main strength of this study is the large sample size
from a national population. The case ascertainment of esoph-
agectomies exceeds 90% in the national audit, and the dataset
was representative of patients within England and Wales who
underwent curative surgery. Another strength is the linkage of
audit records with ONS mortality data which enabled complete
follow-up.

There are a number of limitations to the approaches taken
in this study. Despite being more accurate than TNM staging at
the individual patient level in the postoperative setting, no
attempt has been made to develop a pre-treatment predictive
model and cTNM remains the criterion standard in this domain.
The NOGCA lacks several data items known to influence sur-
vival such as tumor regression grade42 and lymphovascular
invasion.43 Additionally length of tumor44 and BMI45 could be
considered, but were only available in recent years and therefore
had too many missing values. There was also no clear infor-
mation on what adjuvant treatment this patient cohort had
received in addition to their neoadjuvant/ perioperative
treatment.

Involvement of circumferential margin was defined
according to Royal College of Pathologists criteria, that is, < 1
mm from cut edge is involved. Throughout much of the rest of

the world the American College of Pathologist guidelines are
used,46 that is, involved if tumor at cut edge. There is consid-
erable debate about the most appropriate measure,47 and this
model requires validation if it is to be used with this definition. It
was not possible to use T stage subdivided into “a” or “b”
because not all patients were recorded with this information.
Consequently, the analysis used the base T stage only. Patients
treated solely with endoscopic techniques (muco-sal resection or
submucosal dissection) who did not require surgery were also
excluded and it is not appropriate to use the model in this
patient group.

The Esophageal Complications Consensus Group—
ECCG48 has recently specified and defined a core set of com-
plications for esophagectomy which has been adopted world-
wide.49 The NOGCA relies on reporting from local cancer
centers and pragmatically uses a limited set of complications
with broader definitions. In this study, the reported rate of
complications was 40.0%, which is significantly less than the
figures from the ECCG data (59%). This is likely to reflect the
varying definitions and under reporting rather than a truly lower
rate, which may explain the low overall importance of compli-
cations and absence of specific complications (eg, anastomotic
leak) in the model. The ECCG classification of complications
has recently been adopted into the national Cancer Outcomes
and Services Dataset used in cancer registration within England,
so more accurate complication data will be available in future
iterations of the model.

CONCLUSIONS
Using a large, nation-wide, contemporaneous clinical

dataset, this study has demonstrated the ability of a Random

FIGURE 3. Range of predictions by p/ypTNM stage. A, Stage 0–1. B, Stage 2–3a. C, Stage 3b. D, Stage 4a. Patients were grouped
into quintiles by predicted survival at 60 months, with the highest and lowest groups shown.
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Survival Forest model to provide accurate predictions of long-
term survival after surgery for esophageal cancer. A key benefit
of the model is its performance in identifying patients with the
same disease stage who have diverging 5-year survival. For
example within Stage 3b, the largest group with 2023 patients,
the model identifies a low-risk quintile of patients with a pre-
dicted 5-year survival > 3 times the highest risk quintile (44.7%
vs 12.2%). These groups will likely benefit from different post-
operative monitoring and/or treatment strategies. A similar
pattern is seen with stage 4a disease (21.7% vs 6.1% 5-year sur-
vival), suggesting that there is a subgroup even in the most
advanced (nonmetastatic disease) who might be well served by
targeted intervention.

The RSF model described in this article is available at
https:// uoscancer.shinyapps.io/AugisSurv/ and could be a val-
uable prognostication tool for patients, surgeons, and oncolo-
gists. In the future, it may also be useful to guide adjuvant
treatment. External validation of this tool in other health care
systems would be of benefit to confirm its performance.
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