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a b s t r a c t 

Purpose: Capture-recapture methods estimate the size of hidden populations by leveraging the proportion 

of overlap of the population on independent lists. Log-linear modeling relaxes the assumption of list 

independence, but best model selection criteria remain uncertain. Incorrect model selection can deliver 

incorrect and even implausible size estimates. 

Methods: We used simulations to model when capture-recapture methods deliver biased or unbiased 

estimates and compare model selection criteria. Simulations included five scenarios for list dependence 

among three incomplete lists of population of interest. We compared metrics of log-linear model selec- 

tion, accuracy, and precision. We also compared log-linear model performance to the decomposable graph 

approach (a Bayesian model average), the sparse multiple systems estimation (SparseMSE) approach that 

accounts for zero or low cell counts, and the Sample Coverage approach. 

Results: Log-linear models selected by Akaike’s information criterion (AIC) calculated accurate population 

size estimates in all scenarios except for those with sparse or zero cell counts. In these scenarios, the 

decomposable graph and the Sample Coverage models produced more accurate size estimates. 

Conclusions: Conventional capture-recapture model selection fails with sparse cell counts. This naïve ap- 

proach to model selection should be replaced with the implementation of multiple different models in 

order triangulate the truth in real-world applications. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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In public health, valid estimates of population sizes are needed 

o understand disease burden, distribution, and the impact of 
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ontrol effort s [1] . Many populations of special interest lack a 

ensus or representative sample. Numerous methods have been 

eveloped to leverage incomplete information from biased sam- 

les to estimate the total size of target populations [2] . Capture- 

ecapture (CRC) is a well established population size estimation 

PSE) method that estimates the population size based on the de- 

ree of overlap between two or more incomplete lists (samples) of 

he population [ 3 , 4 ]. Intuitively, with a high level of overlap (i.e.,

he same individuals seen on multiple lists), then most individuals 

n the population are likely already observed on the combined lists. 

ith little overlap across lists, the size of the population is likely 

uch larger than what has been observed. CRC has broad appli- 

ations for estimating unobserved populations, including disease 

nd injury surveillance [5–10] , and is commonly used to estimate 

he size of key populations for HIV surveillance [11–14] . The major 
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hallenges of surveillance during the COVID-19 pandemic highlight 

he importance of flexible feasible tools to monitor the size of hid- 

en populations. 

A key assumption for CRC estimation is that lists are statisti- 

ally independent from one another. Presence or absence of an in- 

ividual on one list does not affect the probability that individual 

s included on another list. This theoretical assumption is difficult 

o meet in practice, but methodologic innovations offer opportu- 

ities to estimate population size even when there is dependence 

etween lists. 

To account for potential bias due to list dependencies, at least 

hree lists must be included and log-linear regression models 

LLMs) can be fit to the data. LLM is a common approach for the 

nalysis of cross-classified categorical data [15] . In CRC estimation 

ith LLMs, data are structured with indicator variables for pres- 

nce on each list (L 1 , L 2 , or L 3 ), and a dependent variable repre-

enting the count of individuals with that combination of list inclu- 

ion (Y). These models can include up to 2 k -1 parameters (where 

 is the number of lists), with interaction terms between list indi- 

ators to control list dependency. An example of a three-list model 

ith no list dependency is log(Y) = β0 + β1 L 1 + β2 L 2 + β3 L 3 . β0 

s the log expected count for the number of people not observed 

n any list. β1 is the difference of the log of the number of people

niquely observed on L 1 and the log of the number of people not 

bserved on any list ( β1 can also be interpreted as the log of the

atio of the number of people on L 1 alone to the number of people

ot on any list). β2 and β3 offer the same contrast for L 2 and L 3 ,

espectively. The row in which L 1 , L 2 , and L 3 are 0 is unobserved in

he data. The intercept β0 is identified because of the constraints 

mplied by the lack of interaction terms in the model. For example, 

he number of people on both L 1 and L 2 but not on L 3 is predicted

y β0 + β1 + β2 . This model can be modified to include combina- 

ions of possible two-way interactions (e.g., L 1 
∗L 2 ) or a three-way 

nteraction (L 1 
∗L 2 

∗L 3 ), but at least one of these interaction terms 

ust be omitted to identify β0 . The k-way interaction is often not 

odeled because of the hierarchy principle, which instructs that 

ll lower level interactions must first be modeled before a k-way 

nteraction is included. 

Conventionally, the model with the lowest information criterion 

e.g., Akaike Information Criterion [AIC]), a data-based statistic re- 

ecting the fit of the statistical model to the observed data ad- 

usted for the complexity of the model, is selected as the best es- 

imate. This model selection approach is referred to as naïve CRC. 

lternatively, as recommended by Cormack et al., researchers may 

elect the fully saturated model (i.e., the model with all possible 

airwise interaction terms) as the best estimate [16] . In contrast, 

esson et al. applied CRC models to evaluate the completeness of 

he HIV surveillance system in Alameda County, CA and found that 

s the models became more saturated population size estimates of 

eople living with HIV became more biased, less precise, and ulti- 

ately implausible ( Table 1 ) [17] . 

ethods 

imulation study 

We simulated a population of 10 0 0 individuals and three in- 

omplete lists generated by randomly sampling from this source 

opulation. Four scenarios were specified, varying the probabilities 

hat individuals were sampled and the degree of list dependence, 

hile maintaining the marginal probabilities with which each list 

ampled the population. A fifth scenario was simulated that var- 

ed the marginal probabilities to test the performance of estimators 

hen sampling probabilities are small. 
25 
Scenario 1 depicts perfect independence: L 1 randomly sampled 

0% of the population, L 2 randomly sampled 25% of the population, 

nd L 3 randomly sampled 30% of the population. 

Scenario 2 depicts direct positive dependency between L 1 and 

 3 . L 1 randomly sampled 20% of the population, L 2 randomly sam- 

led 25%, and, if an individual was not included on L 1 , L 3 randomly

ampled 24%. However, if an individual was included on L 1 their 

robability of inclusion on L 3 increased by 30 percentage points 

PP). This scenario could occur in practice if a medical center had 

 policy of referring their patients to a specialty clinic. 

Scenario 3 includes a third-order interaction. L 1 and L 2 ran- 

omly sampled 20% and 25% of the population, respectively. The 

robability of inclusion on L 3 is 25% if not on L 1 or L 2 . Inclusion

n L 3 increases by 45 PP if included on L 1 , and increases by 20

P if included on both L 1 and L 2 . In this case, L 3 could represent

 surveillance system that receives reports of cases from multiple 

ources – presence on one source substantially increases inclusion 

n the surveillance list and presence on multiple other sources 

early guarantees inclusion. 

Scenario 4 depicts dependency between two lists due to a 

hared variable. Individuals coded as “0 ′′ for this binary third vari- 

ble, U (e.g., males, if the third variable is sex) have 0% chance 

f being sampled by L 1 or L 2 (e.g., being on OB/Gyn clinic patient 

ists), violating the capture homogeneity assumption (i.e., for each 

ample, each individual has the same probability of being included 

n the sample). U has probability of 50%. L 1 samples 40% of the 

opulation when U = 1. L 2 samples 50% of the population when 

 = 1. L 3 randomly samples the entire target population, irrespec- 

ive of U. 

Scenario 5 also depicts dependency between two lists due to a 

hared third variable and tests model performance when sampling 

robabilities are small. The probability of being observed on L 1 or 

 2 increases for people coded as “1 ′′ for the binary third variable, 

 (e.g., females, if the third variable is sex). U has a probability 

f 50%. The probability of being observed on L 1 when U = 0 is 

% (and is increased by 20 PP if U = 1). The probability of being

bserved on L 2 when U = 0 is 3% (and is increased by 20 PP if

 = 1). The probability of being observed on L 3 is 6%, irrespective 

f U. 

Each scenario was simulated 500 times. We used four model- 

ng frameworks for estimation. First, the R package Rcapture esti- 

ated the population size using conventional LLMs [21] . Each sce- 

ario built all possible combinations of interaction terms, except 

he three-way interaction term. Second, the R package DGA esti- 

ated the population size using the decomposable graph approach 

DGA) [22] . DGA uses a Bayesian approach to average the posterior 

robability distributions from all possible models of list dependen- 

ies, weighted by the marginal likelihood of each model [ 17 , 22 , 23 ].

GA does not involve model selection because information from 

ll models is used to calculate a single posterior probability distri- 

ution, from which the mean is calculated as the point estimate, 

ounded by a 95% credible interval. The third approach was the R 

ackage SparseMSE , a recently developed model from the human 

rafficking literature to account for small or no overlap between 

ists [ 24 , 25 ]. In conventional LLMs, the statistical model will search 

he parameter space for the value that maximizes the likelihood 

f the sparse or zero cell count. The model will iterate towards 

egative infinity in search of, but never reaching, the maximum 

ikelihood until the default maximum number of iterations for the 

rogram is reached. This search of the extreme range of the pa- 

ameter space impacts the estimation of the remaining parameters 

n the model and drives down the value of the information cri- 

erion, making the model appear more favorable. The SparseMSE 

odel prevents this iterative search of the extreme range of the 

arameter space by selecting a large negative value for the maxi- 

um likelihood of the parameter for sparse or zero cell count, ef- 
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Table 1 

Population Size Estimates of the diagnosed PLWH population under Alameda County, CA, public health jurisdiction from the best fitting 

Identifiable Models, 2013 

Model ˆ N 95% CI AIC df ∗

Base 5943 5867 – 6023 974.5 10 

Base + L1 ∗L3 5891 5820 – 5965 715.1 9 

Base + L1 ∗L3 + L2 ∗L3 5846 5780 – 5915 485.8 8 

Base + L1 ∗L3 + L2 ∗L3 + L3 ∗L4 5684 5625 – 5747 417.7 7 

Base + L1 ∗L3 + L1 ∗L4 + L2 ∗L3 + L2 ∗L4 6198 6069 – 6338 391.2 6 

Base + L1 ∗L3 + L1 ∗L4 + L2 ∗L3 + L2 ∗L4 + L3 ∗L4 7543 6270 – 11,026 387.4 5 

Base + L1 ∗L3 + L1 ∗L4 + L3 ∗L4 + L1 ∗L3 ∗L4 + L2 ∗L3 + L2 ∗L4 10,234 6739 – 30,225 382.75 4 

Base + L1 ∗L3 + L1 ∗L4 + L3 ∗L4 + L1 ∗L3 ∗L4 + L2 ∗L3 + L2 ∗L4 + L3 ∗L4 + L2 ∗L3 ∗L4 1.113e10 8062 – 3.339e10 379.9 3 

∗ Degrees of freedom remaining. Selected models are the best-fitting model (lowest AIC) within strata of models with equivalent degrees 

of freedom remaining (e.g., among the log-linear models with nine degrees of freedom remaining, models where only one interaction term 

is included along with the Base parameters, the model with the L1 ∗L3 interaction had the lowest AIC) .Base = main terms corresponding 

to each individual list (not including list interactions); L1 = List 1; L2 = List 2; L3 = List 3; L4 = List 4. ̂ N = estimated population size.Other 

researchers have advised against naïve CRC, as multiple LLMs can fit the data equally well yet generate very different size estimates [18] . 

The non-identifiability of PSE through CRC, as well as the weak identifiability through various constraints, has been well-described in other 

disciplines[ 19 , 20 ]. While these fundamental concerns are not wholly unknown to epidemiologists, naïve CRC remains common, potentially 

introducing unreliable denominators to characterize populations and disease surveillance. Therefore, we conducted a simulation study to 

test the robustness and limits of CRC estimators in different data-generating systems and inform the more critical application of this tool 

among epidemiologists. 
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ectively making that value zero and removing its contribution to 

he maximization of the likelihood of the remaining parameters. 

he remaining parameters are then fit through a stepwise process 

o determine which dependencies should be modeled, resulting in 

 single model for the population size. The final approach was the 

ample Coverage approach, developed by Chao and Tsay[ 20 , 26 , 27 ],

mplemented using the R package CARE1 [28] . This model estimates 

he population size based on the fraction observed on two or more 

ists. Three estimators are calculated: ˆ N 0 , assumes list indepen- 

ence; ˆ N , accounts for list dependence and estimates the popu- 

ation size when sample coverage is sufficient ( > = 55%); and 

ˆ N 1 , 

stimates an upper (lower) bound when there is negative (posi- 

ive) dependence and sample coverage is insufficient to estimate 

he population size parameter itself ( < 55%). 

Model accuracy for each scenario was evaluated according to 

he bias and root mean squared error (RMSE). Additional model 

erformance metrics included the percent of simulations each 

odel was selected as the best estimate (lowest AIC) and the per- 

ent of simulations the 95% confidence interval (CI) included the 

rue population size. As a sensitivity analysis, we repeated simula- 

ions for population sizes of 10,0 0 0 and 50,0 0 0. The relative RMSE

RRMSE) was calculated by dividing the RMSE by the true popula- 

ion size to compare standardized results across population sizes. 

esults 

Table 2 shows simulation results. Under scenario 1, perfect 

ndependence, all LLMs produced valid estimates with negligible 

ias. The correct model assuming list independence was selected 

6.4% of the time and nominal coverage of the 95% CI. Although 

odels incorrectly including interactions were selected in over a 

hird of simulations, these models delivered similar point esti- 

ates. Including gratuitous interactions when the underlying sam- 

ling processes were independent widened CIs but did not sub- 

tantially bias estimated population size. 

In scenario 2 the correct model was selected the majority of 

imulations (74.2%). In most cases when the correct model was not 

elected, another model that included the L 1 L 3 interaction among 

ther interaction terms was chosen. These models calculated valid 

ize estimates with moderately wider CIs. 

In scenario 3, generated with a third-order dependency, the 

odel selected most often (93%) grossly over-estimated the pop- 

lation size (9.7 billion times higher than the truth). The CIs had 

oor coverage, containing the truth only 26.8% of the time. The two 

odels selected the remaining 7% of simulations, each included 
26 
he L 1 L 3 interaction and accurately estimated the population size 

ith valid CIs. 

In scenario 4, the correct model was selected 74.4% of the time, 

ith valid CIs. Other models selected almost always included the 

 1 L 2 interaction and had accurate estimates with appropriate (al- 

eit wider) coverage. 

In scenario 5, where sampling probabilities were greatly re- 

uced, the correct model, which included an L 1 L 2 interaction term, 

alculated valid size estimates on average, but was only selected in 

alf of simulations (50.6%). The CI for this model, and most others 

n this scenario, could not be calculated due to undefined upper 

imits. The next most oft selected model assumed independence 

nd resulted in nearly four times the bias and poor CI coverage. 

ther selected models increased in bias to unacceptable levels. 

The DGA model provided approximately correct estimates for 

ost scenarios. Although this model underestimated the truth in 

cenario 4, the 95% credible intervals were conservative, including 

he truth nearly 100% of simulations. When capture probabilities 

ere small (scenario 5), results indicated moderate bias and 95% 

redible intervals that never included the truth. 

The SparseMSE model produced reasonably accurate estimates 

or most scenarios. In scenarios 3 and 5, which were most likely 

o include small list intersections ( Fig. 1 ), the model did not over-

ome the statistical bias. Bias was moderate in scenario 3, though 

ar preferable to the best-fitting LLMs, and CIs had appropriate cov- 

rage. In scenario 5, the bias was again moderate, though compa- 

able to or less than most other models, however the CI included 

he truth in less than 1/3 of simulations. 

In nearly all scenarios, at least one of the three Sample Cov- 

rage estimators demonstrated high accuracy and appropriate CI 

overage. The estimator with the least bias did not always align 

ith the true data structure (e.g., ˆ N 0 was most biased in scenario 

 and the least biased in scenario 2; Table 2 ). Although model ro- 

ustness declined in scenario 5, performance metrics still outper- 

ormed other leading models (including DGA and SparseMSE ). As 

he true population size increased, relative accuracy of each of the 

stimators improved as well ( Fig. 2 ). 

Naïve CRC calculated the population size with minimal bias 

nd appropriate CIs in most scenarios. Results from scenario 4 

ere surprising because some members of the population had zero 

robability of capture on two of the three lists. Our simulations 

uggest that the assumption that all members of the population 

ust have non-zero chance of being on all lists may be relaxed 

f there is at least one list for which all members have a positive 

robability of representation. 
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simulations. 
However, the naïve CRC approach selected biased estimates 

ith third-order list dependencies so extreme that they produced 

parse or zero list overlaps (scenario 3). In this scenario, the 

odel selected by naïve CRC overestimated the truth, produc- 

ng implausibly large size estimates with CIs that contained the 

ruth only a quarter of the time. We observed this result in our 

mpirical study in Alameda County [9] . Our simulation demon- 

trates that as list overlaps shrink, uncertainty in the model in- 
Table 2 

Population size estimation results from five different simulation sc

Scenario 1: L 1 = 20%; L 2 = 25%; L 3 = 30% 

Model Bias RMSE # of time

1. Independence ∗ 0.3 52.8 332 (66.4

2. L 1 
∗L 2 −0.2 61.3 50 (10) 

3. L 1 
∗L 3 0.3 61.0 50 (10) 

4. L 2 
∗L 3 −3.9 66.6 43 (8.6) 

5. L 1 
∗L 2 , L 1 

∗L 3 −1.6 76.3 6 (1.2) 

6. L 1 
∗L 2 , L 2 

∗L 3 −9.3 88.9 7 (1.4) 

7. L 1 
∗L 3 , L 2 

∗L 3 −11.4 92.9 12 (2.4) 

8. L 1 
∗L 3 , L 2 

∗L 3 , L 1 
∗L 2 −30.2 195.0 0 

9. DGA 0.7 54.9 NA 

10. SparseMSE 0.5 53.0 NA 

11. ˆ N 0 −18.8 196.5 NA 

12. ˆ N −1.1 52.5 NA 

13. ˆ N 1 −0.1 69.6 NA 

Scenario 2: L 1 = 20%; L 2 = 25%; L 3 = 24% + (30% ∗L 1 ) 

Model Bias RMSE # of time

1. Independence 193.5 196.9 0 

2. L 1 
∗L 2 232.5 235.4 0 

3. L 1 
∗L 3 

∗ −0.6 66.2 371 (74.2

4. L 2 
∗L 3 275.3 277.3 0 

5. L 1 
∗L 2 , L 1 

∗L 3 −3.4 87.8 56 (11.2)

6. L 1 
∗L 2 , L 2 

∗L 3 333.8 335.0 6 (1.2) 

7. L 1 
∗L 3 , L 2 

∗L 3 −17.7 120.6 67 (13.4)

8. L 1 
∗L 3 , L 2 

∗L 3 , L 1 
∗L 2 −30.1 195.8 0 

9. DGA 0.2 71.0 NA 

10. SparseMSE 0.2 67.8 NA 

11. ˆ N 0 −22.7 154.1 NA 

12. ˆ N 191.5 194.9 NA 

13. ˆ N 1 136.8 146.1 NA 

Scenario 3: L 1 = 20%; L 2 = 25%; L 3 = 25% + (45% ∗L 1 ) + (20% ∗L 1 
∗L 2 )

Model Bias RMSE # of time

1. Independence 249.3 251.6 0 

2. L 1 
∗L 2 297.4 299.1 0 

3. L 1 
∗L 3 −1.6 70.5 27 (5.4) 

4. L 2 
∗L 3 286.4 288.5 0 

5. L 1 
∗L 2 , L 1 

∗L 3 −6.5 101.0 8 (1.6) 

6. L 1 
∗L 2 , L 2 

∗L 3 356.6 357.8 0 

7. L 1 
∗L 3 , L 2 

∗L 3 −9.70e + 9 1.39e + 11 465 (93) 

8. L 1 
∗L 3 , L 2 

∗L 3 , L 1 
∗L 2 −6.32e + 11 8.29e + 12 0 

9. DGA 225.1 316.4 NA 

10. SparseMSE −661.7 2539.3 NA 

11. ˆ N 0 −1054.2 1290.1 NA 

12. ˆ N 219.4 222.4 NA 

13. ˆ N 1 32.1 68.2 NA 

Scenario 4: U = 50%; L 1 = 40% ∗U; L 2 = 50% ∗U; L 3 = 30% 

Model Bias RMSE # of time

1. Independence 183.8 187.6 0 

2. L 1 
∗L 2 

∗ −9.8 66.3 372 (74.4

3. L 1 
∗L 3 237.9 240.9 0 

4. L 2 
∗L 3 266.0 268.4 0 

5. L 1 
∗L 2 , L 1 

∗L 3 −16.8 95.0 61 (12.2)

6. L 1 
∗L 2 , L 2 

∗L 3 −22.3 116.8 66 (13.2)

7. L 1 
∗L 3 , L 2 

∗L 3 347.1 348.3 1 (0.2) 

8. L 1 
∗L 3 , L 2 

∗L 3 , L 1 
∗L 2 −42.5 185.7 0 

9. DGA −10.8 72.4 NA 

10. SparseMSE −9.8 66.3 NA 

11. ˆ N 0 −30.7 162.6 NA 

12. ˆ N 196.7 200.0 NA 

13. ˆ N 1 139.3 148.3 NA 

27 
reases as two- and three-way interaction coefficients are de- 

ermined by a small number of people. In addition, small cell 

ounts for some overlaps will impact the entire model because 

oefficients are jointly determined, which in turn further alters 

he prediction. We observe similar findings in scenario 5, which 

lso suffers from small counts at list intersections, resulting in 

odels selected with moderate to severe bias in nearly half of 
enarios and four capture-recapture modeling frameworks. 

s selected (%) CI includes N (%) Average CI width 

) 475 (95) 205.7 

470 (94) 235.0 

479 (95.8) 245.3 

476 (95.2) 266.7 

472 (94.4) 302.1 

473 (94.6) 347.3 

479 (95.8) 386.4 

469 (93.8) 752.8 

481 (96.2) 225.6 

475 (95) 298.9 

489 (97.8) 1117 

473 (94.6) 211.9 

481 (96.2) 281.3 

s selected (%) CI includes N (%) Average CI width 

3 (0.6) 134.0 

1 (0.2) 130.8 

) 479 (95.8) 271.7 

0 124.8 

 471 (94.2) 355.8 

0 99.4 

 482 (96.4) 517.7 

475 (95) 789.0 

487 (97.4) 332.1 

166 (33) 206.5 

492 (98.4) 716.7 

4 (0.8) 136.7 

173 (34.6) 201.5 

 

s selected (%) CI includes N (%) Average CI width 

0 98.0 

0 89.9 

478 (95.6) 267.6 

0 81.0 

476 (95.2) 347.2 

0 58.6 

134 (26.8) ND 

∗∗

120 (24) ND 

∗∗

499 (99.8) 869.3 

473 (94.6) 254.7 

236 (47.2) 16,677.2 

2 (0.4) 136.7 

448 (89.6) 235.7 

s selected (%) CI includes N (%) Average CI width 

7 (1.4) 137.5 

) 481 (96.2) 266.9 

0 133.5 

0 128.9 

 479 (95.8) 379.3 

 477 (95.4) 464.0 

0 92.5 

481 (96.2) 771.7 

488 (97.6) 320.2 

498 (99.6) 248.2 

490 (98) 479.9 

5 (1) 135.3 

168 (33.6) 204.5 

( continued on next page ) 
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Table 2 ( continued ) 

Scenario 5: U = 50%; L 1 = 2% + (20% ∗U); L 2 = 3% + (20% ∗U); L 3 = 6% 

Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width 

1. Independence 257.7 273.0 76 (15.2) 168 (33.6) 356.6 

2. L 1 
∗L 2 

∗ −67.0 287.2 253 (50.6) ND 

∗∗ ND 

∗∗

3. L 1 
∗L 3 300.9 314.5 42 (8.4) ND 

∗∗ ND 

∗∗

4. L 2 
∗L 3 306.9 320.6 41 (8.2) ND 

∗∗ ND 

∗∗

5. L 1 
∗L 2 , L 1 

∗L 3 −7.11e + 9 1.59e + 11 28 (5.6) ND 

∗∗ ND 

∗∗

6. L 1 
∗L 2 , L 2 

∗L 3 −3.53e + 10 4.96e + 11 27 (5.4) ND 

∗∗ ND 

∗∗

7. L 1 
∗L 3 , L 2 

∗L 3 365.9 377.1 33 (6.6) ND 

∗∗ ND 

∗∗

8. L 1 
∗L 3 , L 2 

∗L 3 , L 1 
∗L 2 −2.09e + 11 2.69e + 12 ND 

∗∗ ND 

∗∗

9. DGA 312.7 319.7 NA 0 338.7 

10. SparseMSE 258.6 296.1 NA 144 (28.8) 359.1 

11. ˆ N 0 −454.6 3373.5 NA 411 (82.2) 67,275.0 

12. ˆ N 206.8 229.4 NA 279 (55.8) 426.2 

13. ˆ N 1 175.4 217.4 NA 382 (76.4) 536.6 

L 1 = List 1; L 2 = List 2; L 3 = List 3; U = binary third variable; CI = confidence interval; DGA = Decomposable Graph Approach; ˆ N 0 = 

Sample Coverage model assuming independence; ˆ N = Sample Coverage model allowing list dependence and sufficient sample 

coverage fraction ( > = 55%); ˆ N 1 = Sample Coverage model estimating lower(upper) bound estimate due to insufficient sample 

coverage fraction ( < 55%); RMSE = Root Mean Squared Error. 

N = 10 0 0 (the true population size). 

ND ∗∗= Not Defined. Upper limit of confidence interval not defined in simulations; therefore, average confidence interval width 

could not be calculated. 

Bias = (E ̂ N i − N) ; RMSE = 

√ 

1 
m 

m ∑ 

i =1 

( N − ˆ N i ) 
2 
); where ˆ N i is the estimated population size from simulation i , m is the number of 

simulations, and N is the true population size. 
∗ Indicates the correct log-linear model for each scenario. 

Fig. 1. Plotted interquartile ranges of the distribution of cell counts for each list intersection from 500 simulations for each scenario featuring a different list dependency 

structure. 

L1 = (List 1 = 1, List 2 = 0, List 3 = 0); L2 = (List 1 = 0, List 2 = 1, List 3 = 0); L3 = (List 1 = 0, List 2 = 0, List 3 = 1); L1xL2 = (List 1 = 1, List 2 = 1, List 3 = 0); 

L1xL3 = (List 1 = 1, List 2 = 0, List 3 = 1); L2xL3 = (List 1 = 0, List 2 = 1, List 3 = 1); L1xL2xL3 = (List 1 = 1, List 2 = 1, List 3 = 1). Where 1 = observed on list, 0 = not 

observed on list. 

w

t

p

n

w

s

E

l

t

n

p

b

w

T

Our results align with a recent simulation study by Gutreuter, 

hich highlights the unreliability of naïve CRC to select the model 

hat matches the correct data structure and variation in encounter 

robabilities [29] . The performance of naïve CRC improves with the 

umber of lists and encounter probabilities but, as shown here as 

ell, is generally outperformed by the DGA model. 

The DGA model produced accurate estimates in nearly every 

cenario, along with 95% credible intervals with excellent coverage. 
28 
ven with complex third-order interaction and sparse or zero over- 

ap counts (scenario 3), the DGA model produced 95% CIs that con- 

ained the truth in nearly every simulation. In scenario 3, the mag- 

itude of the bias for estimates from this model was minimal com- 

ared to the enormous and implausible over-estimates produced 

y naïve CRC. Notably, in scenario 5, where sampling probabilities 

ere low, the 95% CIs for the DGA model never covered the truth. 

his persisted at higher population sizes (Supplementary Tables). 
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Fig. 2. Relative Root Mean Squared Error (RRMSE) for each capture-recapture model under varying list dependency structure scenarios and true population sizes. 

Model 1 = Base 

Model 2 = Base + L 1 
∗L 2 

Model 3 = Base + L 1 
∗L 3 

Model 4 = Base + L 2 
∗L 3 

Model 5 = Base + L 1 
∗L 2 + L 1 

∗L 3 
Model 6 = Base + L 1 

∗L 2 + L 2 
∗L 3 

Model 7 = Base + L 1 
∗L 3 + L 2 

∗L 3 
Model 8 = Base + L 1 

∗L 3 + L 2 
∗L 3 + L 1 

∗L 2 
Model 9 = Decomposable Graph Approach (DGA; Bayesian Model Averaging) 

Model 10 = SparseMSE 

Model 11 = Sample Coverage – ˆ N 0 
Model 12 = Sample Coverage - ˆ N 

Model 13 = Sample Coverage - ˆ N 1 
Base = main terms corresponding to each individual list, does not include list interactions (log-linear model)DISCUSSION. 
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Our results build upon Gutreuter’s simulation study by evaluat- 

ng the performance of two additional models applied less often in 

pidemiology. Suprisingly, the SparseMSE model did not overcome 

he bias resulting from sparse cells in scenarios 3 and 5. While ac- 

uracy and CI coverage improved with higher population sizes in 

cenario 5 ( Fig. 2 , Supplementary Table), both worsened at higher 

opulation sizes in scenario 3. In contrast, results from the Sam- 

le Coverage estimators were generally robust to variations in cap- 

ure probabilities and performance improved with increasing pop- 

lation size. 

imitations 

We were not exhaustive in our selection of models. For ex- 

mple, multinomial logit models have been applied to capture- 

ecapture problems to model heterogeneities in capture probabil- 

ties due to individual-level covariates [ 30 , 31 ]. Latent class model- 

ng has also been used to satisfy the list independence assump- 

ion, conditional on assigning individuals to latent classes [ 32 , 33 ].

dditional innovative estimators using machine learning and dou- 

ly robust methods are currently in the pipeline[ 34 , 30 ]. While our

imulation study does not comment on these specific estimators, 
29
he conclusion of our study encourages using multiple different es- 

imators for triangulation, as the direction and magnitude of the 

verall bias brought on by assumption violations may be unknown. 

onclusions 

Results from our simulation study reveal the dramatic impact 

f just a few cells with sparse cell counts (as both a function of 

he underlying population size and the list sampling probabilities). 

ncritical reliance on the information criterion for model selec- 

ion often performed well but sometimes failed spectacularly. We 

arn against routinely relying on this practice without evaluat- 

ng more robust models. Our simulation study also demonstrates 

he importance of including multiple different types of statistical 

odeling. When the DGA model and the best fitting model gave 

imilar estimates, the best-fitting model was generally acurate and 

ad slightly narrower CIs. When they diverged, the DGA model 

as more accurate and gave informatively wide CIs. Although not 

onsistently the most accurate, the Sample Coverage model was 

mong the most robust to variations in capture probabilities and 

opulation size. Therefore, we recommend both the DGA and Sam- 

le Coverage as default models in future CRC studies. However, we, 
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ike Gutreuter, caution against inferring the underlying data struc- 

ure from the selected model(s). The true correlations between ad- 

inistrative lists and the selection factors that compose those lists 

re likely complex in epidemiologic applications. Implementing a 

ombination of models that each address different potential limi- 

ations of CRC analysis can reduce the impact of some biases and 

etter triangulate the truth. 
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