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Deep learning‑derived 
cardiovascular age shares 
a genetic basis with other cardiac 
phenotypes
Julian Libiseller‑Egger 1, Jody E. Phelan 1, Zachi I. Attia 2, Ernest Diez Benavente 1,3, 
Susana Campino 1, Paul A. Friedman 2, Francisco Lopez‑Jimenez 2, David A. Leon 4,5 & 
Taane G. Clark 1,4*

Artificial intelligence (AI)‑based approaches can now use electrocardiograms (ECGs) to provide expert‑
level performance in detecting heart abnormalities and diagnosing disease. Additionally, patient age 
predicted from ECGs by AI models has shown great potential as a biomarker for cardiovascular age, 
where recent work has found its deviation from chronological age (“delta age”) to be associated with 
mortality and co‑morbidities. However, despite being crucial for understanding underlying individual 
risk, the genetic underpinning of delta age is unknown. In this work we performed a genome‑wide 
association study using UK Biobank data (n=34,432) and identified eight loci associated with delta 
age ( p ≤ 5× 10

−8 ), including genes linked to cardiovascular disease (CVD) (e.g. SCN5A) and (heart) 
muscle development (e.g. TTN). Our results indicate that the genetic basis of cardiovascular ageing 
is predominantly determined by genes directly involved with the cardiovascular system rather than 
those connected to more general mechanisms of ageing. Our insights inform the epidemiology of 
CVD, with implications for preventative and precision medicine.

For decades it has been known that a person’s electrocardiogram (ECG) changes with  age1,2. Therefore, in light of 
its non-invasiveness, ease of obtainment, and consequential ubiquity, there is great potential in using the 12-lead 
ECG as a biomarker for physiological changes caused by  ageing3. As these changes occur gradually and at a rate 
that is different between individuals, there is substantial variation in the risk of chronic disease and mortality 
in older populations. In order to understand the sources of this variation, several indicators for “biological age” 
have been investigated, including changes in telomere  length4, the  epigenome5, blood-derived  biomarkers6, and 
the  transcriptome7. Crucially, these markers have been shown to be only weakly correlated with each  other8, 
suggesting that they do not describe the same underlying physiological processes but rather different aspects 
of  ageing9. Since cardiovascular disease (CVD) is a major source of mortality and morbidity, with drastically 
increasing prevalence in older  age10, the deep learning-enabled ECG-derived surrogate for cardiovascular age 
introduced by Attia et al.11 represents a valuable addition to other “ageing” metrics, with both preventative and 
personalised medicine benefits. Here we report the results of a genome-wide association study (GWAS) using 
the difference between a person’s actual age and this metric as phenotype.

Initial studies trying to link chronological age to the ECG signal mostly focused on human-defined ECG 
features, such as the QRS duration or the length of the PR  interval12. However, the extraction of these features 
is not devoid of  error13 and captures only a fraction of the available information. Recent developments in deep 
learning allowed researchers to address this limitation by adapting modern convolutional artificial neural net-
work architectures to predict patients’ ages from their  ECGs11,14,15. These models can be trained “end-to-end” on 
the raw ECG traces from which they learn to extract (and combine in a non-linear manner) the features most 
suitable for a prediction task. Thus, the impact of human bias is minimised and predictive power improved as all 
the information in the signal is taken into account. In fact, several studies have shown that deep learning models 
trained on ECG traces already match and in some cases even exceed the performance of medical professionals 
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in diagnosing certain cardiac  conditions16–18. Given the increasing prevalence of ECG data, machine learning 
models of such capabilities could transform predictive medicine and cardiovascular research.

In order to use ECGs for age prediction, the neural network needs to learn how the “average” ECG for a 
particular age group looks. Thus, when it predicts an age considerable larger than the corresponding person’s 
chronological age (a large “delta age ”), this might be indicative of accelerated ageing of the cardiovascular sys-
tem – with implications for this individual’s health. Indeed, large delta age has been shown to be associated with 
CVD, treatment outcomes, and  mortality3,11,14. This observation suggests at least two principal areas of applica-
tions for the ECG-derived age (or delta age). On one hand, it could be used in the clinic as a readily obtainable 
prognostic tool for screening large numbers of patients. In this capacity, delta age is conceptually similar to the 
“excess heart age”19, the discrepancy between a person’s chronological age and their “heart age” (the age cor-
responding to their risk of a CVD event), which has been devised as an easily interpretable measure for CVD 
 risk20. However, while the excess heart age represents the increased CVD risk due to risk factors and lifestyle 
choices, the delta age reflects the actual functional state of the heart. Hence, in addition to clinical use cases, 
ECG-derived age could also complement biomarkers used in research (e.g. telomere length or the epigenetic 
clock, among others) for tracking ageing in general and vascular ageing in particular. One crucial advantage 
of the ECG-derived age over many other ageing-related biomarkers used in research is the wide-spread use of 
the ECG and how comparatively easy it is to obtain. This makes it especially interesting for association studies 
which suffer from low effective sample sizes for many disease-related phenotypes as these are usually relatively 
rare or can remain undiagnosed, diluting the strength of the statistical signal. Furthermore, delta age is not tied 
to a single type of CVD, but instead combines effects on the ECG of multiple conditions in addition to “normal” 
changes expected due to ageing. It might therefore lead to the discovery of genetic variants that are not associ-
ated to any individual condition.

In addition to the advances in machine learning mentioned above, the availability of genomic data (from 
microarrays and—more recently— whole-genome sequencing) is ever-increasing. This wealth of information 
has facilitated a vast number of association studies, linking biological variation in countless phenotypes to the 
underlying  genotypes21. Some of these studies investigated the genetic basis of ECG-features (e.g. for the PR 
 interval22 or the QRS  complex23), while others sought to determine the impact of genetic variants on the shape 
of the ECG traces in  general24 or on a more holistic representation of the cardiac state including the  ECG25.

In light of these converging developments, we used a previously published convolutional neural  network11 to 
predict the “cardiovascular age” of 36,349 participants of the UK biobank (UKB) from their 12-lead ECGs, and 
performed a GWAS on the difference between predicted and chronological age (i.e. delta age). We found eight 
loci of genome-wide significance ( p ≤ 5× 10−8 ), many of which have been associated with cardiac or muscle 
development (and in extension with CVD) in the past. Functional and pathway enrichment analyses confirmed 
this connection to the cardiovascular system. We also explored the association of delta age with specific ECG 
features, risk factor-derived excess heart age, and the dynamic organism state indicator (DOSI), a complementary 
biomarker for ageing derived from complete blood count (CBC) data. Overall, our results elucidate the genetic 
underpinning of this ECG-derived biomarker for cardiovascular age and validate its utility for use in research 
as well as in the clinic.

Results
Predicting age from ECGs in the UK Biobank. We employed a previously described deep learning 
model trained on patients of the Mayo  clinic11 to predict the age of 36,349 participants of the UKB from their 
12-lead ECGs. On average, individuals were 64 years old, marginally more likely to be women (52%), and had 
high levels of education (tertiary education for more than 50%). They comprised a relatively healthy cohort (e.g. 
less than 6% had diagnosed cardiovascular conditions more severe than hypertension), commonly reporting 
lifestyle choices considered preventive of CVD (e.g. 63% never smoked), and showing predominantly normal 
ranges for body mass index (BMI), lipids, and blood pressure (Table 1).

As the ECGs in the UKB were noisier than those used for training the model  originally11, an initial signal 
filtering step was applied prior to prediction. After this pre-processing step, prediction performance on the UKB 
cohort was comparable to the holdout data set in the original study with a mean absolute error of 6.1 instead 
of 6.9 years, respectively (Fig. 1). The Pearson correlation coefficient between chronological and predicted age 
was ρ=0.53.

The participants’ chronological ages were then subtracted from the predicted ages to obtain the delta age 
(median 0.27; interquartile range −4.81–5.15 years). It was strongly associated with certain anthropometric fea-
tures and cardiovascular conditions (Table 1), consistent with previous  studies3,11,14. When adjusting for age and 
sex, tertiary education and physical activity were associated with a lower delta age ( p ≤ 1× 10−13 ). BMI, mean 
arterial pressure (MAP), and low density lipoprotein (LDL), on the other hand, as well as classic cardiovascular 
risk factors and outcomes, such as frequently drinking alcohol, history of smoking, diagnosed diabetes, hyperten-
sion, angina, stroke, or heart attack were associated with higher delta age ( p ≤ 3× 10−3 ). These findings were 
predominantly robust to multivariate analysis when including all mentioned variables in the model (Table 1). 
Interestingly, men had a lower delta age than women and the negative association with male sex increased when 
more covariates were taken into account.

Modern ECG machines automatically determine certain human-derived ECG features (e.g., PQ interval, 
QRS duration) when taking measurements. In the UKB data, many of these features were strongly associated 
with chronological age, predicted age, or both (Supplementary Table S1). However, only a small fraction of the 
variance in age could be explained by these human-derived features ( r2 = 0.08 for a linear regression of age on 
the ECG features). The Pearson correlation coefficient between the age predicted from the ECG features and the 
chronological age was ρ=0.28 (compared to ρ=0.53 for the neural network). Interestingly, for the ages predicted 
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by the neural network, this fraction increased almost three-fold ( r2 = 0.22 ), indicating that the model relies 
on information retained in these features. This insight has also been shown in a recent study, which found that 
some features extracted by the convolutional layers of the neural net were strongly correlated with those defined 
by  humans26.

GWAS on delta age. To understand the genetic underpinning of delta age, association tests were performed 
on ∼6.4 million autosomal variants in 34,432 individuals (after filtering and quality control) while adjusting for 
age, sex, genotyping array, and UKB assessment centre (Fig. 2). This analysis revealed eight loci of genome-wide 
significance ( p ≤ 5× 10−8 ) and another seven loci of suggestive significance ( p ≤ 1× 10−6 ; Table 2).

The variants with the strongest association with delta age were detected on chromosome 14 in the gene 
SIPA1L1, which has been linked to ECG features and other cardiac traits according to the GWAS  Catalog27. 
Recently, SIPA1L1 has also been found to be associated with heart  trabeculation28 and it is involved in the regu-
lation of water transport in the  kidney29. It might thus have an impact on the cardiovascular system via kidney 
function or control of blood volume. However, instead of altering SIPA1L1, the causal variant in this locus could 
alternatively affect the expression levels of RGS6, which lies ∼200 kb downstream. RGS6 is listed in the GWAS 
Catalog as associated with systolic blood pressure, heart rate, and heart rate variability, for which there is also 
mechanistic  evidence30.

Another strong association signal was found 30–100 kb upstream of VGLL2 on chromosome 6. VGLL2 plays 
a role in the development of skeletal  muscle31, but, to our knowledge, has not been directly linked to CVD so 
far. Nonetheless, the GWAS Catalog lists associations with relevant traits like ECG morphology, blood pressure, 
and atrial fibrillation, but also BMI and waist circumference. Interestingly, VGLL2 has also been shown to be 
associated with an age-dependent response to sepsis in the hearts of  mice32. However, VGLL2 is not the only 
protein-coding gene in the region. The next closest ( ∼100 kb) is ROS1, a variant of which has been associated 
with pathological vascular  remodelling33.

Table 1.  Association of anthropometric features and cardiovascular risk factors in participants of the UKB 
with delta age. The “Info” column lists the number of corresponding participants for categorical features (with 
the percentage of the total population in parentheses) or the mean value for numerical features (with the 
standard deviation in parentheses). P-values and effect sizes in the left double-column are adjusted for age 
and sex (or only sex for the age-row and vice versa). In the right double-column, the adjustment also includes 
all other parameters listed in the table. In the “Effect size” columns, values in parentheses denote the lower 
and upper bounds of the 95% confidence interval. P-values smaller than the Bonferroni-corrected threshold 
( 0.05/19 = 0.0026 ) are highlighted in bold. BMI, body mass index; MAP, mean arterial pressure; LDL, low-
density lipoprotein; PA, physical activity.

Covariate
Info
(Ntotal = 36, 349)

Adjust for age, sex Adjust for all

Effect size P-value Effect size P-value

Sex (male) 17607 (48.4%) −0.56 (−0.71, −0.41) 4.7e-13 −1.15 (−1.31, −0.98) 4.1e-42

Age 64.25 (±7.57) −0.37 (−0.38, −0.36) 0.0e+00 −0.40 (−0.41, −0.39) 0.0e+00

Education – – 4.6e-18 – 2.4e-06

Secondary (ref. level) 14437 (40.1%) – – – –

Tertiary 19186 (53.3%) −0.69 (−0.85, −0.53) 1.7e-17 −0.41 (−0.57, −0.25) 9.7e-07

Other 2343 (6.5%) 0.04 (−0.29, 0.36) 0.83 0.01 (−0.33, 0.34) 0.98

History of health problems:

Diabetes 1979 (5.5%) 0.81 (0.47, 1.15) 2.2e-06 −0.22 (−0.58, 0.14) 0.23

Hypertension 8419 (23.2%) 1.85 (1.67, 2.04) 3.7e-88 0.77 (0.56, 0.97) 2.1e-13

Angina 727 (2.0%) 0.88 (0.34, 1.42) 1.5e-03 0.11 (−0.48, 0.70) 0.72

Stroke 366 (1.0%) 1.47 (0.71, 2.23) 1.6e-04 0.99 (0.20, 1.78) 0.014

Heart attack 524 (1.4%) 1.49 (0.85, 2.13) 4.6e-06 1.43 (0.75, 2.12) 4.1e-05

Physiological measurements:

BMI 26.62 (±4.25) 0.24 (0.22, 0.25) 3.6e-149 0.16 (0.14, 0.18) 3.8e-55

MAP 81.11 (±8.89) 0.13 (0.12, 0.14) 9.9e-173 0.10 (0.09, 0.11) 3.0e-80

LDL [mM] 3.58 (±0.82) 0.15 (0.05, 0.24) 2.6e-03 0.03 (−0.07, 0.13) 0.52

Lifestyle:

Smoking – – 6.2e-11 – 1.6e-04

 Never / rarely smoked (ref. level) 22477 (62.5%) – – – –

 Active smoker 1300 (3.6%) 0.50 (0.09, 0.92) 0.017 0.41 (−0.01, 0.84) 0.056

 Smoked in the past 12212 (33.9%) 0.56 (0.40, 0.72) 2.3e-11 0.34 (0.17, 0.51) 7.9e-05

Alcohol at least 3x per week 16405 (45.2%) 0.24 (0.09, 0.39) 2.3e-03 0.33 (0.17, 0.49) 6.3e-05

Days of moderate PA per week 3.72 (±1.87) −0.16 (−0.20, −0.11) 8.4e-14 −0.020 (−0.071, 0.030) 0.43

Days of vigorous PA per week 1.93 (±1.58) −0.25 (−0.30, −0.20) 1.1e-24 −0.16 (−0.22, −0.10) 2.0e-07
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Figure 1.  ECG-derived age vs. chronological age for 36,349 participants of the UKB. The Pearson correlation 
coefficient was 0.53. The red dashed line illustrates a perfect fit. Data is grouped into boxes as the chronological 
age at the time of recording the ECG was only available as the number of years. Note that ranges and scales are 
different between the x- and y-axis due to outliers in the predicted age being considerably outside the range 
of the chronological age in the cohort. Box plot features: blue centre lines, median; box limits, first and third 
quartile; whiskers, 1.5× inter-quartile range; markers, outliers.

Figure 2.  Manhattan plot. Association tests (n=34,432) were adjusted for age, sex, genotyping array, and 
UKB assessment centre. Horizontal lines mark the thresholds of genome-wide and suggestive significance 
( p ≤ 5× 10

−8 and p ≤ 1× 10
−6 , respectively).
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Variants in CAMK2D also showed a strong association with delta age. CAMK2D encodes the δ chain of the 
Ca2+/calmodulin-dependent protein kinase II, which phosphorylates (in addition to itself) a wide variety of 
targets involved in a multitude of cellular functions, including neuroplasticity and memory  formation34. It also 
plays a role in cardiac Ca2+ homeostasis and constitutive activation can lead to CVD and heart  failure35.

The next notable locus was found on chromosome 8 and many of the variants associated with delta age within 
this locus have also been associated with essential hypertension in the GWAS Catalog. It was located between 
a group of three genes for β-defensins (DEFB136, DEFB135, DEFB134 – with DEFB136 being the closest) and 
CTSB. Being antimicrobial peptides, β-defensins are an integral part of the innate immune system, but they 
also have a range of other  functions36. CTSB, located ∼50 kb downstream of the variants associated with delta 
age, codes for cathepsin B, a protease relevant for proteolysis of intracellular proteins as well as constituents of 
the extracellular  matrix37. It has been associated with a large number of diseases, including different types of 
 cancer38, cardiac remodelling and  hypertrophy39, as well as  atherosclerosis40. Interestingly, cathepsin B activity 
has also been shown to increase with  age41.

On chromosome 2, variants in TTN were associated with delta age. TTN codes for the giant protein titin, 
responsible for passive mechanical properties of muscle (elasticity and stiffness) and sarcomere  structure42. 
Mutations in TTN (especially when causing truncations) have been linked to dilated cardiomyopathy (DCM)43 
and the GWAS Catalog mapped a variety of cardiovascular phenotypes and ECG traits to TTN, ranging from 
atrial fibrillation to the PR interval and left ventricular ejection fraction.

SCN5A and the neighbouring SCN10A (both on chromosome 3) harboured two independent groups of 
variants at genome-wide significance. Both genes encode subunits of sodium channels (most prevalent in the 
 myocardium44 and neurons – including intracardiac  ganglia45 – respectively). Variants in SCN5A have been 
linked to multiple cardiac disorders and mutations in both genes can cause the arrhythmia-inducing Brugada 
 syndrome46,47.

The last locus of genome-wide significance stretched across ∼400 kb and six protein-coding genes (KLHL3, 
HNRNPA0, MYOT, PKD2L2, FAM13B, and WNT8A) on chromosome 5. The gene product of KLHL3 causes the 
ubiquitination of substrate proteins and is involved in regulating kidney  function48. It has been associated with 
a rare hereditary form of hypertension (familial hyperkalaemic hypertension)49 and other forms of congenital 
heart disease in the  past50. FAM13B encodes a GTPase-activating protein, low expression levels of which have 
been linked to atrial  fibrillation51. However, if we assume that there is only one causal variant at this locus, it is 
most likely to be found in MYOT, which codes for myotilin, a component of the Z-disc complex in skeletal and 
cardiac  muscle52. Myotilin variants can cause myofibrillar myopathy, which sometimes also affects the  heart53. We 
did not find any connections with cardiovascular phenotypes for the other three genes, but the GWAS Catalog 
lists associations with dysrhythmias and atrial fibrillation across the whole 400 kb-spanning locus and beyond.

The seven extra loci found at suggestive significance ( p ≤ 1× 10−6 ) are described in more detail in the 
Supplementary Results. Most of them were also in the vicinity of genes related to muscle development or the 
cardiovascular system, but more statistical power (e.g. through larger sample size) will be needed to confirm 
these associations with delta age.

To assess the robustness of our results, the GWAS was repeated with a more extensive suite of covariates 
(including history of CVD, exercise, and diet; for details see "Methods" section) and additionally with only those 
participants that reported a White British ethnic background (Supplementary Fig. S1). All three analyses showed 

Table 2.  Fifteen loci were found to be associated with delta age with at least suggestive significance 
( p ≤ 1× 10

−6). The second column lists the protein-coding gene closest to the respective lead variant. 
Positions correspond to the GRCh37 human genome  assembly81. Values in parentheses denote the lower 
and upper bounds of the 95% confidence interval of the effect size estimate. P-values with genome-wide 
significance ( p ≤ 5× 10

−8 ) are highlighted in bold. Chr., Chromosome; Pos., Position; Ref., Reference allele; 
Alt., Alternative allele; AF, frequency of the alternative allele.

Chr. Gene rsID Pos. Ref. Alt. AF Effect size P-value

14 SIPA1L1 rs35866366 71849185 A G 0.25 0.52 (0.39, 0.64) 1.1e-15

6 VGLL2 rs6901720 117510203 G T 0.47 0.43 (0.32, 0.54) 2.8e-14

4 CAMK2D rs35430511 114387138 T C 0.26 0.49 (0.36, 0.61) 3.1e-14

8 DEFB136 rs4240678 11802426 C T 0.40 0.47 (0.32, 0.62) 4.9e-10

2 TTN rs11902709 179608207 C T 0.05 0.78 (0.52, 1.03) 3.0e-09

3 SCN5A rs6773331 38684397 A T 0.98 1.24 (0.82, 1.66) 9.1e-09

3 SCN10A rs6801957 38767315 T C 0.59 −0.32 (−0.43, −0.21) 2.1e-08

5 PKD2L2 rs10076361 137252940 G A 0.18 0.41 (0.27, 0.55) 2.3e-08

8 EXT1 rs57237854 118860126 ATC TTG A 0.18 0.40 (0.25, 0.54) 5.3e-08

10 AGAP5 rs147790633 75447582 T C 0.14 −0.43 (−0.59, −0.27) 8.7e-08

10 CTNNA3 rs72799115 68008504 G A 0.21 0.35 (0.22, 0.49) 2.0e-07

12 TBX3 rs1896329 115357432 C T 0.69 −0.31 (−0.42, −0.19) 3.9e-07

2 SPTBN1 rs1802889 54756740 C T 0.68 −0.30 (−0.42, −0.19) 4.4e-07

12 SOX5 rs12826024 24776799 G A 0.15 −0.39 (−0.54, −0.24) 6.1e-07

16 CHD9 rs75778953 52906677 C T 0.01 −1.25 (−1.74, −0.76) 6.2e-07



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22625  | https://doi.org/10.1038/s41598-022-27254-z

www.nature.com/scientificreports/

very similar results qualitatively, with a total of 17 loci reaching at least suggestive significance in at least one 
analysis (Supplementary Table S2).

Heritability. The variant-based heritability ( h2g ) of delta age was estimated to be ∼12%, being robust to 
adjustment of cardiovascular risk factors ( 12.6± 1.7% for regular adjustment and 11.8± 1.8% for extended 
adjustment). This magnitude is similar to other ECG traits or cardiac phenotypes, such as PR interval (18.2%22), 
long QT syndrome (14.8%54), or atrial fibrillation (9.6%55). Interestingly, the 15 loci that reached at least sugges-
tive significance only accounted for ∼15% of the heritability estimate ( h2g, top15 = 1.8± 0.3% and 1.9± 0.3% for 
regular and extended adjustment, respectively), indicating that there are likely to be many variants with lower 
significance that are also relevant.

Functional analysis and pathway enrichment. As described above, many loci associated with ECG-
derived delta age were found in the vicinity of genes involved in cardiac development or have been linked to CVD 
in the past. Application of the DEPICT enrichment analysis  tool56 to the 15 loci with at least suggestive signifi-
cance ( p ≤ 1× 10−6 ; see Table 2) revealed that the GO-term with the strongest signal was “intercalated discs”, 
which are physical connections between cardiomyocytes. The  KEGG57 pathways with the strongest association 
were mostly linked to calcium signalling and cardiac afflictions, which was also the case with the Mammalian 
Phenotype  Ontology58 gene sets (Supplementary Data 1). We further used DEPICT to test for tissue enrichment. 
All results with P-values smaller than 0.05 were either connective tissues or part of the cardiovascular system 
(Supplementary Table S3). When including all 179 loci with p ≤ 1× 10−4 , geneset and tissue enrichment were 
both dominated by the cardiovascular system (Supplementary Data  2, Supplementary Table  S4), reinforcing 
the robustness of our observations. To confirm these findings with an orthologous method, we additionally 
employed the gProfiler functional enrichment analysis  tool59, which also detected a stark overrepresentation of 
components of the cardiovascular system (Supplementary Table S5). Like the DEPICT analysis, the strength of 
the enrichment increased when more loci were included (Supplementary Table S6).

Association of variants in telomere length‑ and longevity‑related genes. Interestingly, genes 
associated with other forms of biological ageing (e.g. telomere length) were mostly absent from the loci found 
by our analysis. In order to further investigate this surprising result, we scanned the vicinity of loci discovered 
by recent GWAS, which had also been performed on the UKB and used  longevity60 and leukocyte telomere 
 lengths61 as phenotypes, for variants associated with delta age. We found that none of the loci associated with 
longevity and only two of those associated with telomere length (rs12615793 in ACYP2 and rs12369950 close to 
SOX5) were within one 1 Mb of variants with at least suggestive significance according to our analysis (Supple-
mentary Data 3). In the first case, the lead variant of the locus we discovered was located ∼280 kb downstream 
of rs12615793 and in SPTBN1, which is required for heart  development62. In the second case, rs12369950 was 
indeed part of the same locus we found to be associated with delta age.

Further analyses. In order to further investigate the main results described above, we performed statisti-
cal tests to detect whether the effects of the genomic variants were mediated via one of the covariates most 
strongly associated with delta age (BMI, MAP, and diagnosed hypertension), but did not find strong evidence 
for mediation. Additionally, we ascertained that most of the lead variants have been shown to have a significant 
impact on the actual shape of the ECG in a recent  study24. We also calculated the risk factor-based “heart age”20 
and the whole blood counts-derived DOSI biomarker for  ageing63 to contrast both with the ECG-derived car-
diovascular age. We found that, while the association with delta age was substantial for the “excess” heart age 
( p = 3.0× 10−78 ), it was weak for the “excess” DOSI ( p ≥ 1.4× 10−3 ). These findings are described in greater 
detail in the Supplementary Results.

Discussion
We used a deep neural network to predict the age of 36,349 individuals in the UKB from their 12-lead ECGs and 
observed that – similar to what has been shown in other  populations3,11,14 – the discrepancy to their chronological 
age was correlated with cardiovascular risk factors like blood pressure, BMI, and smoking status. In addition to 
these covariates, we also found 15 genetic loci of at least suggestive significance ( p ≤ 1× 10−6 ), eight of which 
reached genome-wide significance ( p ≤ 5× 10−8 ), in a GWAS adjusted for age, sex, genotyping array, and UKB 
assessment centre. We evaluated the robustness of these results by repeating the GWAS with a more extensive 
set of covariates including past CVD diagnoses and lifestyle variables, such as diet or the amount of physical 
exercise. We also carried out another round of association tests with only the subset of individuals of European 
ethnic origin. All three analyses yielded very similar results (Supplementary Table S7). Overall, about 12% of the 
variation in delta age could be explained by the genomic data, which is comparable to other cardiac phenotypes 
(e.g. 9.6% for atrial  fibrillation55).

In order to determine whether the associations of the lead variants with the phenotype were direct and not 
mediated via an intermediate factor, we performed tests for mediation for the covariates most strongly associ-
ated with delta age (MAP, BMI, and diagnosed hypertension). There appeared to be weak mediating effects for 
some of the variants, but the signal was not strong enough to remain significant after correcting for multiple tests 
( p ≥ 0.024 ). However, some metadata entries in the UKB were recorded a considerable amount of time before 
the imaging visit when the ECG was taken and some of the covariates might have changed in the intervening 
period. Because of this limitation and given the large number of (genetic and environmental) factors influencing 
cardiovascular health and ECG morphology, it is possible that stronger mediating effects might have been missed 
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in the present study. More research will be required in order to disentangle the network of interactions between 
genetic and non-genetic variables affecting cardiovascular age and its impact on the ECG.

Most of the loci discovered in our GWAS analysis have either been associated with CVD in the past or were 
located in the vicinity of genes involved in cardiovascular function. Functional analyses with the DEPICT enrich-
ment analysis  tool56 found significant over-representation of gene sets related to cardiac and muscle development 
as well as of genes expressed in the corresponding tissues. These associations were confirmed with an alternative 
method  (gProfiler59) and grew stronger and more robust when variants with weaker association with delta age 
were included in the analysis (i.e. when using P-value cutoffs of p ≤ 1× 10−5 or p ≤ 1× 10−4 ). Similarly, only 
a small fraction ( ∼15%) of the heritability we found could be explained by the 15 top loci. Together, these two 
findings suggest that many of the variants with only moderate significance might also be potential components 
of the genetic basis of delta age, but larger studies will be needed to verify their signal.

In addition to their links to CVD, the lead variants in most loci of genome-wide significance have also been 
associated with the actual shape of the ECG in a recent  study24. This is a promising sign as it might help to 
illuminate the “black box” character of the neural network used for age prediction. In general, the knowledge 
about the effects of age on the ECG and the impact of genetic variants should be combined in order to aid in the 
interpretation of results produced by opaque deep learning models in the medical domain.

In addition to the relatively large sample sizes possible with easily obtainable phenotypes like the ECG, 
another interesting aspect of using metrics like delta age (or the shape of the ECG as done  in24) in association 
studies is that they provide a relatively “dense” signal compared to binary variables (e.g. the absence or presence 
of a certain type of CVD – especially when the condition is rare and / or easily misdiagnosed). Similarly, using 
the output of artificial intelligence (AI) models trained on diagnosing such diseases from the ECG as phenotypes 
might improve statistical power as their predictions need not be binary (i.e. they can – to a certain extent – quan-
tify the severity of the condition) and they might detect diseased cases that were undiagnosed in the original data.

Several different biomarkers for ageing have been proposed in the last two decades, with telomere length and 
the epigenetic clock arguably receiving the most attention. Despite each being a good predictor for mortality, 
these metrics were shown to only correlate weakly with each other, implying that they are governed by different 
aspects of the mechanisms of  ageing8,9. We observed something similar as we did not find a strong association of 
variants previously linked to  ageing60 or telomere  length61 with delta age. We also calculated the DOSI, a blood 
counts-derived marker for biological ageing and physiological  resilience63, for our cohort and – as opposed to the 
risk factor-derived “excess” heart age – correlation of the “excess” DOSI with delta age was inconclusive. More 
research relating different markers of biological ageing with delta age is needed, but the available evidence sug-
gests that genetic variants associated with more general forms of ageing (e.g. in APOE, FOXO3, TERT, LMNA) 
have little impact on cardiovascular age compared to genes involved in the development and function of the 
cardiovascular system itself.

Viewed in their entirety, our findings corroborate that the ECG-derived age reflects the physiological state of 
the heart and that it can be used to assess cardiovascular ageing and health. Interestingly, for two of the loci with 
the strongest association with delta age (SIPA1L1 and VGLL2), the connection to cardiovascular phenotypes in 
the literature was not as clear as for many others. They therefore represent promising targets for deeper mecha-
nistic investigation in future work. Additionally, efforts on fine-mapping will be needed to identify individual 
causal variants and also to confirm relevant genes since variants in linkage disequilibrium with the lead variant 
spanned hundreds of kilobases for some of the loci found in this study. This raises the opportunity of narrowing 
down the range of potential causal variants with association studies in populations of non-European ancestry.

Our work shows that genetic factors underlying cardiovascular ageing and its effect on the ECG should be 
incorporated into prediction models in order to improve their accuracy and interpretability. In a future of per-
sonalised medicine with readily available genomic information, the non-invasive ECG (including from wearable 
devices), combined with an easily obtainable measure of ECG-derived delta age, will be a valuable instrument 
in the clinicians’ toolkit for assessing heart health at routine examinations and monitoring treatment outcomes. 
Moreover, resources like the UKB, hosting an ever-increasing wealth of genomic, epigenetic, and transcriptomic 
data, will facilitate better comparisons as well as deeper understanding of the individual biomarkers for age-
ing, their underlying mechanisms, and how they complement one another. Ultimately, large-scale analysis of 
such data, combined with AI methodologies, will translate patient-level genomic and ECG information into 
preventative medicine and public health measures, leading to earlier detection of CVD and a longer healthspan.

Methods
Study population. This work has been conducted using data from the UKB, which recruited 500,000+ peo-
ple aged between 40 and 69 years in 2006–2010 from across the United  Kingdom64. With their informed consent, 
they provided detailed information about their lifestyle, had physical measures taken as well as blood, urine and 
saliva samples collected and stored for future analysis. We used the 10-second 12-lead ECG traces and CVD-
related metadata of 37,520 participants. The ECGs were recorded during the first imaging visit (after 2014) and 
the metadata questionnaires were completed during the initial and first repeat assessment visits (2006–2010 and 
2012–2013, respectively). All analyses were performed in accordance with relevant guidelines and regulations 
posed by the UKB and approved by the London School of Hygiene & Tropical Medicine ethics committee. The 
UKB project application reference was 54050 (www.ukbiobank.ac.uk).

Deep learning model, ECG pre‑processing, and age prediction. The architecture and training pro-
cedure of the deep learning model used in this study are described in more detail in the Supplementary Methods 
and in the original  publication11. In brief, 499,727 10-second 12-lead ECGs of patients of the Mayo clinic were 
used to train a convolutional neural network to predict patient age and a holdout dataset of 275,056 patients 
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was used for testing model performance. The neural network is comprised of eight convolutional blocks in 
the temporal dimension, the outputs of which are combined in a single convolutional layer across the “spatial” 
dimension (i.e. across the 12 leads of the ECGs) with max-pooling. This is followed by two fully connected layers 
before being passed to the linear output layer producing the age prediction.

Due to the ECGs in the UKB being noisier than the training data, they had to undergo a filtering step prior 
to prediction. This was achieved using a four-pole Butterworth filter allowing frequencies from 0.5 to 100 Hz to 
pass. After pre-processing, ECG-derived age was predicted for 36,349 individuals in the UKB.

Metadata processing. Whenever multiple measurements of a relevant variable were available for a given 
sample, the mean or the value with the smallest time gap to the ECG recording was used for continuous and 
categorical data, respectively. MAP was calculated from systolic (SBP) and diastolic blood pressure (DBP) meas-
urements using the equation (SBP + 2 · DBP) / 3. These MAP values were then averaged with the MAP meas-
urements derived from Pulse Wave Analysis to give the final values. The UKB contains a host of diet variables 
ranging from the amount of raw vegetables eaten per day to the type of fat used for cooking. We performed 
principal component analysis (PCA) on a selection of 24 of these variables and included the first three principal 
components (accounting for ∼25% of the total variation) as covariates in the GWAS with extended adjustment 
(see below).

Association testing. Pre-processing of genotype data and association testing were carried out using PLINK 
(v. 2.00)65. For quality control, we removed variants that either: (1) were missing in more than 1% of samples, 
(2) had a minor allele frequency less than 1%, (3) were not in Hardy-Weinberg Equilibrium ( P < 1× 10−6 ), 
or (4) had an imputation score below 0.8. Samples with more than 2% missing genotypes or that were outside 
of three standard deviations from the mean heterozygosity were dropped. Additionally, one sample from each 
closely related pair (first or second degree relations as determined by KING robust kinship  inference66) was 
removed. The dimension of the final genotype matrix was 34,432 samples times 6,357,764 autosomal variants. 
 PCA67 was performed on this matrix and the first 10 principal components were retained for use as covariates 
in the association tests.

In total, four GWAS with delta age as phenotype were carried out. The main analysis included all participants 
remaining after filtering and adjusted for age, sex, genotyping array, and UKB assessment centre. Additionally, in 
order to assess the robustness of the results, the association tests were repeated with an extended set of covari-
ates: education (secondary, tertiary, other); smoking status (current smoker, past smoker, never / rarely smoked); 
alcohol consumption three or more times per week; having been diagnosed with diabetes, hypertension, angina, 
stroke, or heart attack in the past; BMI; MAP; LDL concentration; days of moderate exercise per week; days 
of vigorous exercise per week; and three principal components derived from a PCA of 24 diet variables avail-
able in the UKB. Both analyses were then repeated with the subset of participants with white British as ethnic 
background ( N = 31, 971).

Heritability estimation and pathway enrichment analysis. The variant-based heritability of delta 
age was estimated using GREML-LDMS68 implemented in GCTA (v. 1.93.2)69 while stratifying the variants 
based on linkage disequilibrium (four bins) and minor allele frequency (MAF) (two bins with MAF = 0.05 as 
boundary). The analysis was carried out with both sets of covariates and later repeated with the subsets of vari-
ants found within the 15 loci of at least suggestive significance in order to also calculate the heritability of the top 
hits found by the GWAS. Genomic position ranges of the individual loci were calculated as part of the DEPICT 
workflow.  DEPICT56 and  gProfiler59 were used for pathway and tissue enrichment analyses. DEPICT was run 
on the GWAS summary statistics with p = 1× 10−6 and p = 1× 10−4 as thresholds. It uses PLINK internally 
to determine independent loci based on the P-value threshold and a 500 kb clumping window before testing 
for gene set and tissue enrichment relying on data from the following databases: Gene  Ontology70,  KEGG57, 
 Reactome71,  InWeb72, Mouse Genome  Database73, and Gene Expression  Omnibus74. The coordinates of the loci 
found by DEPICT were additionally pasted into the gProfiler web tool, which tested for enrichment based on 
the Gene Ontology, KEGG, Reactome,  WikiPathways75,  TRANSFAC76,  miRTarBase77, Human Protein  Atlas78, 
 CORUM79, and Human Phenotype  Ontology80 databases.

Data availability
All data is available from the UKB (www. ukbio bank. ac. uk).
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