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Abstract

The relationship between community prevalence of Plasmodium falciparum and the burden of 

severe, life-threatening disease remains poorly defined. To examine the three most common severe 

malaria phenotypes from catchment populations across East Africa, we assembled a dataset of 

6506 malaria admissions in children aged 3 months to 9 years from 2006 to 2020. Admissions 

were paired with data from community parasite infection surveys. A Bayesian procedure was 

used to calibrate uncertainties in exposure (parasite prevalence) and outcomes (severe malaria 

phenotypes). Each 25% increase in prevalence conferred a doubling of severe malaria admission 

rates. Severe malaria remains a burden predominantly among young children (3 to 59 months) 

across a wide range of community prevalence typical of East Africa. This study offers a 

quantitative framework for linking malaria parasite prevalence and severe disease outcomes in 

children.
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Plasmodium falciparum causes one of the most deadly, preventable parasitic diseases in 

Africa. Our understanding of the relationship between parasite exposure, clinical immunity, 

and malaria mortality is limited by lack of empirical evidence. The attribution of malaria 

deaths in Africa continues to rely on sparse, outdated information derived from interviews 

with bereaved relatives (1–3). These methods lack sensitivity and specificity in the absence 

of confirmatory clinical and parasitological examinations (4). Modelled interpolations 

on predicted age patterns of malaria mortality have been met with skepticism (5). An 

alternative source of information is age patterns of severe, potentially life-threatening 

malaria admissions to hospitals; we use these data to investigate the relationship between 

community prevalence of Plasmodium falciparum and the burden of severe, life-threatening 

disease.

During the 1990s and early 2000s, ecological analyses were undertaken at various hospital 

sites to define the age-specific rates of hospitalization from communities with known levels 

of parasite exposure (6) or proxies of transmission intensity based on temperature-related 

effects of altitude on transmission (7). Age and clinical phenotypes of severe malaria varied 

by transmission intensity, such that disease incidence declined rapidly in young children 

in areas of high transmission in which disease presentations were dominated by severe 

malaria anaemia (SMA). By contrast, disease incidence declined more slowly with age 

under conditions of low transmission intensity. Under such conditions, cerebral malaria 

(CM) was proportionally more common than in areas of high transmission. A historical 

controversy (8–11) regarding the effects of altering natural parasite exposure, immunity, 

and the medium- to long-term impacts of vector control and chemoprevention (12–15) was 
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reignited by the observation that across a wide range of transmission settings common to 

Africa at that time, overall rates of severe malaria among children aged <10 years appeared 

similar.

Despite major increases in the coverage of control activities across Africa (16) and 

a changing landscape of infection prevalence (17), there have been no large-scale 

epidemiological descriptions of the rates of severe malaria among African children in the 

past 20 years. Understanding how changes in community parasite prevalence alters the rate 

and age distribution of children hospitalized with severe malaria is essential for optimizing 

and predicting the impact of malaria control efforts. Given the scarcity of detailed time 

series data that indicate how interventions lower transmission and reduce the malaria burden 

(18), comparing and contrasting data patterns (e.g., age patterns) from sites with different 

malaria ecologies presents an opportunity to infer what transitioning between different 

transmission regimes might represent in terms of the rate and age distribution of severe 

malaria cases.

To define the incidence of pediatric severe malaria admissions against community-based 

levels of parasite prevalence (age-standardised Plasmodium falciparum parasite rate, 

PfPR2-10), we analysed active surveillance data from 13 hospitals in East Africa. These 

hospitals served 26 communities over 35 time-site specific periods spanning 2006 to 2020 

(supplementary materials section 1, fig. S1, and table S1) in which community-based 

malaria parasite prevalence was recorded (supplementary materials section 1 and table 

S2). The dataset contains 924 months of hospital observations and 833,864 child-years 

of community risk across the 35 time-specific catchment areas between 2006 and 2020. 

A total of 6506 malaria admissions in children aged 3 months to 9 years were used to 

define severe malaria. The 35 time-site locations represent the range of contemporary 

malaria ecologies common to the subregion, from historically negligible transmission as 

determined by parasite prevalence (PfPR2-10 <1%) at Kabale (Uganda) to high transmission 

sites (PfPR2-10 >67%) at Bungoma, Busia, Siaya (Kenya), and Muheza (Tanzania) (table 

S2).

The rates of three common severe malaria phenotypes–severe malaria anaemia (SMA), 

respiratory distress (RD) and cerebral malaria (CM–were modelled for each of the 

35 time-site periods. A Bayesian regression model was implemented with propagated 

uncertainty in parasite prevalence (supplementary materials section 2.1) and syndrome 

reporting (supplementary materials section 2.2) to define the relationship between the 

time-matched, age-standardized diagnostic-corrected parasite prevalence and minimum 

community-adjusted severe malaria rates per 1000 children per annum (p.a.) (supplementary 

materials section 1). For a given time-site, the number of malaria admissions for each 

severe phenotype (or for all three combined) was modelled with three model forms: 

intercept-only, log-linear, and three-parameter log-logistic models. These model forms were 

compared using the difference in model deviance information criterion (ΔDIC) (19) to 

test the hypothesis that severe malaria rates were independent of a linear or asymptotic 

(sigmoidal) function of community parasite prevalence. Each model form was fitted with 

both a Poisson and negative binomial distribution; the latter accounts for overdispersion in 

counts of admitted children (supplementary materials section 1). Model outputs are reported 
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as the median of the Bayesian posterior estimates, with uncertainty described using highest 

density intervals (HDIs).

Admission rates of severe malaria increased log-linearly with community parasite 

prevalence (Fig. 1). Because admission counts were overdispersed, a negative binomial 

distribution was a better fit than a Poisson (ΔDIC = 1716). A log-linear form for ƒ(PfPR2-10) 

was favoured over a log-logistic despite an identical DIC, because more complex functional 

forms with more parameters must be justified by a considerable reduction in the DIC. An 

intercept-only formulation performed poorly compared with the log-linear structure (ΔDIC 

= 22) (table S4). The selected model suggests that with every 25% increase in community 

parasite prevalence, annual severe malaria admission rates approximately doubled (2.06 

HDI: 1.58 to 2.73). This manifested as an estimated severe malaria admission rate of 1.02 

per 1000 children p.a. (HDI: 0.84 to 1.28) at 25%, 2.10 per 1000 children p.a. (HDI: 1.61 

to 2.95) at 50%, and 4.33 per 1000 children p.a. (HDI: 2.67 to 7.79) at 75% community 

parasite prevalence (Fig. 1). The model estimated that in the absence of any prevalence 

(PfPR2-10 = 0), there would be a background rate of 0.49 (HDI: 0.34 to 0.74) annual 

admissions of severe malaria phenotypes per 1000 children p.a. Here, PfPR2-10 = 0 was 

interpreted as a scenario characterized by either low survey power in detecting parasitaemia 

or instances in which infection was acquired outside the study area.

We examined individual relationships between incidences of SMA, RD, CM, and 

community parasite prevalence. Admission rates of SMA were positively associated with 

community parasite prevalence (Fig. 2A). The best-fitting model described the number 

of SMA admissions with a negative binomial distribution (ΔDIC = 225.1), indicating 

overdispersion. A sigmoidal curve was the best-fitting functional form for ƒ(PfPR2-10), with 

a lower DIC than either a log-linear (ΔDIC = 13.4) or an intercept-only function (ΔDIC 

= 39.7) (table S4). The effect of community parasite prevalence on SMA admissions was 

multiphasic; admission rates were very low when community prevalence was low and then 

increased sharply towards an asymptote. With higher parasite prevalence, the model fit had 

higher uncertainty, entertaining a range of asymptotic admission rates when community 

prevalence was high. There was a positive log-linear correlation between rates of RD (a 

marker of severe malaria indicating acidotic breathing) and community parasite prevalence, 

but with high uncertainty (Fig. 2B and table S4). Admission counts were overdispersed, 

with the negative binomial distribution favored for explaining the counts (ΔDIC = 525.3). 

There was no correlation between parasite prevalence and rare presentations of CM using 

any model forms (Fig. 2C), although rates were still overdispersed (ΔDIC = 104.1). CM was 

estimated to occur at a low, constant rate (0.19 per 1000 children p.a.) (HDI: 0.13 to 0.30) 

for all values of PfPR2-10.

To explore the relationship between admissions rate, age, and parasite prevalence in more 

detail, a model that described admissions as continuous functions of both parasite prevalence 

and age was developed (supplementary materials section 2.3). This model estimated that 

if community parasite prevalence was lower than 15.9% (HDI: 14.1 to 17.6), a uniform 

distribution was an adequate description of the data (Fig. 3) - i.e., site with low transmission 

show little or no age dependence in severe malaria admissions (fig. S2). Determining this 

cutoff does not preclude age dependence in admissions below this level but may reflect 
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a lack of statistical power to identify age dependencies as severe malaria becomes rare at 

low-prevalence sites. Above a community parasite prevalence of 15.9%, the peak age of 

admission was predicted to decrease from 15.24 months (HDI: 12.18 to 18.24) at a PfPR2-10 

of 25% to 3.32 months (HDI: 3.05 to 4.02) at 75%. This shift in peak age was concomitant 

with an approximate four-fold increase (4.22; HDI: 2.62-7.03) in admissions across the same 

change in parasite prevalence (25 to 75%).

Within our data series, Tororo, Homa Bay, and Kilifi North (fig. S1) were sampled more 

than once, with subsequent visits coinciding with declines in community prevalence. Data 

obtained from these repeatedly measured sites all support the model prediction that rapid 

or systematic longer-term reductions in parasite prevalence have not led to an overall 

increase in severe malaria incidence in children aged 5 to 9 years, relative to those aged 

less than 5 years. For instance, we estimated that between the first data collection period in 

Tororo A (2012 to 2013) and the follow-up data gathered later (2017 to 2019), community 

prevalence declined from 64.1% (HDI: 60.7 to 67.6) to 7.0% (HDI: 4.6 to 9.6). Severe 

malaria admissions were reduced from 4.97 (HDI: 4.27 to 5.49) per 1000 children p.a. to 

1.02 (HDI: 0.71 to 1.27). As explored in our age-dependent model, a community parasite 

prevalence this low was not associated with a detectable increase in the age of admission.

We applied a statistical modeling approach to an empirical data series from 35 time-site 

periods to provide a data-driven analysis of the functional relationships between age, 

immunity, disease, and exposure. The varying age distributions of severe malaria admissions 

from low to high intensities of community prevalence have been described previously 

(14, 20–22) and are consistent with expected patterns of age, exposure, and acquisition 

of immunity (23, 24). In our analyses, we found a strong positive association between 

community parasite prevalence and the admission rate of severe malaria. Each 25% increase 

in community parasite prevalence conferred an approximately 2-fold increase in severe 

malaria admission rate, accompanied by a shift in the peak rate of admissions towards 

younger children. In the setting with the lowest transmission intensity, the mean age of 

severe malaria (43.68 months) was twice as high as that in the highest transmission settings 

(20.88 months), though the overall rates among children aged 3 months to 9 years were 

considerably lower in the low-transmission settings.

Given the declining rates of SMA and RD admissions with declining community parasite 

prevalence (Fig. 2, A and B) versus the apparent constant rate of CM admission rates across 

all transmission settings, CM inevitably accounts for an increasing proportion of severe 

malaria cases under low transmission. However, the rates of CM were very rare as there 

were only 135 cases of CM in our data, reducing the power and precision to examine the 

relationship between the rates of CM and parasite prevalence.

Our results show that severe, life-threatening malaria remains concentrated predominantly 

among younger children (3 to 59 months) regardless of transmission intensity, with a slight 

shift towards older children in low-transmission settings. However, this does not appear to 

translate to any equivalence or increased lifetime risks. The ecological analysis presented 

here suggests that few early lifetime infections might still confer some level of functional 

immunity to severe malaria before age 6 under all endemic settings (Fig. 3) (25–27). 
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Children under 5 years continue to be the focus of disease prevention control in East Africa; 

SMA remains the primary severe disease phenotype requiring hospital management, and 

CM is a rare occurence. Under endemic range of malaria that characterizes East Africa 

today, the composite admission rate of all severe malaria phenotypes changed log linearly 

with community prevalence. Although there was no evidence of an inverse relationship 

or plateau in rates when parasite prevalence was high, as previously inferred (6, 14), 

this relationship cannot be ruled out but is unlikely given the current range of parasite 

prevalence. Rates of severe malaria anaemia were asymptotic at high levels of malaria 

transmission (PfPR2-10 >75%). The selection of the log-logistic form over the log-linear 

function (ΔDIC = 13.4) makes it unlikely that this saturation in admissions is solely an 

artifact of underestimated rates at a few high-prevalence sites. The consistency in rates of 

CM across transmission settings indicates that associated clinical immunity is acquired in a 

different way than in other pediatric phenotypes.

Ecological analyses, such as the one presented here, come with unavoidable caveats. The 

data from each of the sites presented are a product of a diverse range of past transmission 

intensities, mitigation strategies, and population structures. This can only be resolved 

through detailed longitudinal data, which are rare in Africa (28, 29). We have defined 

parasite exposure as the experience of children in their respective communities at the 

time their disease profiles were defined. The epidemiology of severe malaria should be 

reconciled across contemporary malaria ecologies in the subregion; however, this does not 

capture lifetime parasite exposure. Older children may have been exposed to historical 

transmission that would have influenced their acquisition of a functional immune response 

not represented by current levels of transmission intensity. Furthermore, a mixture of 

endemicity and intervention could explain heterogeneity. With a few exceptions such as 

donor-driven subnational use of indoor residual spraying (IRS), long-lasting insecticidal nets 

(LLINs) remain the mainstay of the subregional effort to reduce malaria parasite prevalence 

in East Africa, as well as throughout the sites included in the present analysis where LLIN 

coverage was well below universal for children at risk (table S1). Combined attacks on 

the P. falciparum through increased use of LLINs, chemoprevention, and additional vector 

control efforts with IRS have been shown to rapidly reduce parasite prevalence (30–32). 

In addition, prompt diagnosis and effective treatment of early-stage disease will affect the 

progression and rates of severe malaria hospitalization (33). Secondary data from national 

household surveys of fever treatment, undertaken every 3 to 5 years, lacked the precision 

necessary to accurately reflect the influence of early treatment on malaria hospitalization at 

the spatial and temporal scale of our study. To address this limitation, high spatiotemporal 

survey data will be required in future models relating transmission intensity to rates of 

severe malaria in Africa. Additionally, the number of severe disease cases reported here may 

not be representative of all cases, as an unknown proportion of life-threatening infections 

may not reach the formal health care system. This study was conducted in populations with 

easy geographic access to hospitals and as such the results may not be generalizable to 

other settings in which there is limited access to hospital care. Even so, we have provided 

a quantitative framework for linking community transmission intensity of malaria and its 

manifestation in the form of severe disease outcomes in children.
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Refer to Web version on PubMed Central for supplementary material.
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Summary

The risk and age-pattern of severe malaria can be predicted by the quantity of parasite 

exposure in a given community.
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Figure 1. Relationship between the rate of admissions of severe malaria (combination of severe 
malaria anaemia, respiratory distress and cerebral malaria) and community parasite prevalence 
(PfPR2-10).
The median fit for the Bayesian regression model is denoted by the thick black line, with 

95% and 99% highest density intervals in dark and light blue, respectively. Gray points 

and vertical 95% HDIs denote the model-estimated admission rates; intervals were not 

plotted for site periods in which a formal diagnoses of malaria phenotypes were available 

for all patients. The conditions of admitted malaria patients without a specific diagnosis 

of SMA, RD, or CM were stochastically diagnosed in submodels on the basis of other 
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indicative symptoms. Horizontal intervals represent the uncertainty in parasite prevalence 

calculated from a model that age-standardizes parasite prevalence to the 2-to-10-year age 

range while accounting for sample size and correcting for the diagnostic method (corrected 

rapid diagnostic test (RDT) surveys are indicated by closed points, microscopy by open 

circles).
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Figure 2. Relationship between the admission rate of individual severe malaria phenotypes and 
community-based parasite prevalence.
Median regression model fits are denoted by the thick black line, with 95% and 99% 

highest density intervals in dark and light blue, respectively. (A) Nonlinear relationship 

between rates of SMA and PfPR2-10. (B) shows the log-linear relationship between rates 

of RD and PfPR2-10. (C) constant rate of CM for all values of PfPR2-10. We modelled 

uncertainty in the admission rates of severe malaria anaemia and respiratory distress using 

a method akin to that used for the composite measure in Fig. 1. Because there were 

no alternative definitions of CM, uncertainty in admission rates was not considered (and 

therefore no vertical intervals were present). Uncertainty in community parasite prevalence 

was standardized to the 2-to-10-year age range, with a further correction for diagnostic 

method (corrected RDT surveys are shown as closed points, microscopy as open points).
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Figure 3. Changes in age-specific admission rate per 1000 children p.a. of severe malaria 
phenotypes with parasite prevalence.
(A) Prediction surface for the model estimated rates of severe malaria for each month of 

childhood between 3 months and 9 years The white arrow and 95% highest density intervals 

show the estimated increase in the most frequent age of admission with decreasing parasite 

prevalence. The dark blue rectangle denotes the estimated cutoff below a parasite rate of 

~ 15.9% (14.1 to17.6), below which admissions are relatively rare and can be adequately 

described as stochastic outcomes with age. It should be noted that this cutoff is sensitive 

to the amount of data available to characterise the age distribution of rare events; it is 

possible that our dataset lacks the requisite sensitivity to detect age dependence in severe 

malaria admissions at lower parasite rates. The most frequent age of admission increases 

with parasite prevalence, whereas the concomitant reductions in malaria incidence largely 

offset the shift of the burden onto other age classes. For each 25% increase in community 

PfPR2-10, the age-dependent model predicted a doubling of admissions (2.05; HDI: 1.62 to 

2.65); this agrees with the estimated increase for the age invariant model (2.06; HDI: 1.58 to 

2.73). (B) The surface shown in (A) is presented as binned community parasite prevalence, 

including the associated 95% HDIs. The age dependence in admissions of severe malaria 

was modelled as a continuous process using a gamma distribution; the same diagnostic 

and community parasite rate submodels used in the age invariant model were also used 

here. A random effect for each site (on the admission rate) helped to account for sites 

with anomalously high or low rates of severe malaria for the corresponding estimate of 

community parasite prevalence.
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