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Summary: Randomized trials with continuous outcomes are often analyzed using ANCOVA, with adjustment for prognostic
baseline covariates. The ANCOVA estimator of the treatment effect is consistent under arbitrary model misspecification. In
an article recently published in the journal, Wang et al proved the model based variance estimator for the treatment effect is
also consistent under outcome model misspecification, assuming the probability of randomization to each treatment is 1/2. In
this reader reaction we derive explicit expressions which show that when randomization is unequal, the model based variance
estimator can be biased upwards or downwards. In contrast, robust sandwich variance estimators can provide asymptotically
valid inferences under arbitrary misspecification, even when randomization probabilities are not equal.
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1. Introduction

In randomized trials with continuous outcomes the baseline covariate adjusted treatment effect estimator (ANCOVA) is
consistent under arbitrary misspecification of the assumed linear regression model (Yang and Tsiatis, 2001). Recently in the
journal Wang et al. (2019) proved that the model based variance estimator from an ANCOVA analysis of a randomized
trial is valid under arbitrary misspecification, and therefore advocated its use for analysis of trials with continuous outcomes.
Concurrently, the US Food and Drug Administration (2019) have recently issued draft guidance on the topic of baseline
covariate adjustment in randomized trials with continuous outcomes. This draft guidance also advocates use of ANCOVA,
and states that the type I error rate is controlled even when the model is misspecified.

Wang et al. (2019) assumed that the probability of randomization to each arm is 1/2, and stated that if this is not the
case, a robust variance estimator should be used. While a randomization probability of 1/2 is most common, many trials are
conducted with unequal randomization probabilities. In particular often the probability of randomization to the experimental
arm is greater than 1/2 in light of a hoped for improved outcome on the experimental treatment compared to control. In
this reader reaction we provide explicit expressions for the variance of the ANCOVA treatment effect estimator and the
probability limit of the model based variance estimator, thereby shedding more light on the impact of model misspecification
on the validity of model based inferences in this setting.

2. Model based ANCOVA variance estimation with unequal randomization

Following the notation of Wang et al. (2019), we assume we observe n i.i.d. copies of (W, A, Y ), where W is a k × 1 column
vector of bounded baseline covariates, A is the binary treatment group indicator (A = 1 for experimental treatment, A = 0
for control) and Y is the continuous outcome. Like Wang et al. (2019), we assume A ⊥⊥ W , but we let P (A = 1) = π, where
π may differ from 1/2.

The target of inference is the average treatment effect ∆ = E(Y |A = 1) − E(Y |A = 0). The unadjusted estimator of ∆
is the difference in treatment group sample means: ∆̂unadj =

∑n
i=1 YiAi/

∑n
i=1Ai −

∑n
i=1 Yi(1 − Ai)/

∑n
i=1(1 − Ai). The

ANCOVA estimator adjusts for the baseline covariates W by fitting the following linear regression model:

E(Y |A,W) = β0 + βAA+ βT
WW, (1)

where the regression coefficients are estimated by the ordinary least square estimators β̂0, β̂A, and β̂W. The ANCOVA
estimator ∆̂ancova of ∆ is ∆̂ancova = β̂A. We let β

0
, β

A
and β

W
denote the probability limits of these estimators.

As noted by Wang et al. (2019), Yang and Tsiatis (2001) and Tsiatis et al. (2008) proved, under the stated assumptions,
that ∆̂ancova is a consistent estimator of ∆ under arbitrary misspecification of the linear model in equation (1), so that
β
A

= ∆. Following Wang et al. (2019), we let V ar∗(∆̂ancova) denote the asymptotic variance of ∆̂ancova, in the sense that

n1/2(∆̂ancova −∆) converges in distribution to a mean zero normal with variance V ar∗(∆̂ancova).
Inferences from ANCOVA are by default in statistical software packages based on the so called model based variance
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estimator for ∆̂ancova, which is given by

V̂ arM (∆̂ancova) =
V̂ ar(Y − β̂0 − β̂AA− β̂T

WW)

(n− 1)
{
V̂ ar(A)− Ĉov(W, A)T V̂ ar(W)−1Ĉov(W, A)

} ,
where following Wang et al. (2019) the estimated variances and covariances on the right hand side are sample variance and
sample covariances, with degrees of freedom taken into account (see the Supporting Information of Wang et al. (2019) for

precise definitions). Wang et al. (2019) prove that when π = 1/2, nV̂ arM (∆̂ancova) converges in probability to the true
asymptotic variance V ar∗(∆̂ancova). As a consequence, under these assumptions, asymptotically Wald-type hypothesis tests
have the correct type I error under the null ∆ = 0 and the corresponding confidence intervals attain their nominal coverage
levels.

The following theorem, proved in Web Appendix A, gives the asymptotic variance of ∆̂ancova for arbitrary 0 < π < 1,
generalising the results of Wang et al. (2019).

Theorem 1: Given the previously stated assumptions with 0 < π < 1, the true asymptotic variance V ar∗(∆̂ancova) of the
ANCOVA estimator ∆̂ancova is given by

V ar∗(∆̂ancova) =
V ar(Y − βT

W
W|A = 1)

π
+
V ar(Y − βT

W
W|A = 0)

1− π .

The next theorem, proved in Web Appendix B, gives the probability limit of nV̂ arM (∆̂ancova) under arbitrary 0 < π < 1.

Theorem 2: For the model based variance estimator V̂ arM (∆̂ancova) we have

nV̂ arM (∆̂ancova)
P−→ V ar∗M (∆̂ancova) =

V ar(Y − βT

W
W|A = 1)

1− π +
V ar(Y − βT

W
W|A = 0)

π
.

Together the two theorems imply that the model based variance estimator of ∆̂ancova is only asymptotically valid (and
hence hypothesis tests and confidence intervals have correct asymptotic size and coverage) if π = 1/2, as assumed by Wang
et al. (2019), or if V ar(Y − βT

W
W|A = 1) = V ar(Y − βT

W
W|A = 0). The latter conditional variances are not in general

equal under misspecification of the outcome model, such that when π 6= 1/2, the model based ANCOVA variance estimator
is generally biased. A special case where they are equal is if E(Y |A,W) is a linear function of A and some function of W
and V ar(Y |A,W) does not depend on A. Otherwise bias is expected. For example, even if the conditional mean function
E(Y |A,W) is correctly specified, if V ar(Y |A,W) depends on A, the model based ANCOVA variance estimator is biased.
Alternatively, even if V ar(Y |A,W) does not depend on A, if E(Y |A,W) involves interaction terms between A and W again
bias is expected.

We note that a special case of our result occurs when W is empty, such that ∆̂ancova = ∆̂unadj . In this case our result
corresponds to the well known fact that the two sample t-test does not control the type I error rate in general if the outcome
variable has different variance in the two groups, which leads to Welch’s adaptation of the t-test allowing for unequal variances.

Our results imply that when π 6= 1/2, the model based ANCOVA variance estimator could be biased downwards or
upwards, depending on the configuration, leading to a type I error rate either below or above the nominal level. Suppose for
example that π > 1/2, such that a greater proportion of patients are randomized to the experimental treatment. Then if
V ar(Y −βT

W
W|A = 1) > V ar(Y −βT

W
W|A = 0) the model based ANCOVA variance is too large, leading to type I error rates

lower than the nominal level and confidence intervals which over-cover. If V ar(Y −βT

W
W|A = 1) < V ar(Y −βT

W
W|A = 0) the

model based ANCOVA variance is too small, leading to inflated type I error rates and confidence intervals which under-cover.
When π 6= 1/2, asymptotically valid inferences can be obtained by using a heteroskedastic robust sandwich variance estimator
(Long and Ervin, 2000). Web Appendix C of the Supporting Information contains a simulation study demonstrating these
results empirically.

3. Discussion

We have shown that the model based ANCOVA variance estimator of the average treatment effect is under general mis-
specification of the outcome model inconsistent when π 6= 1/2. Since model misspecification is always a concern, at least for
moderate to large trials with unequal randomization we recommend using a robust sandwich variance estimator for inference,
rather than the default model based variance estimator. Sandwich variance estimators are incorporated into all mainstream
statistical packages, such that this approach is easily implementable in practice.

Like Wang et al. (2019), we have assumed that randomization is simple. In practice other randomization schemes, such as
stratified randomization, are sometimes used. As noted by Wang et al. (2019), under such randomization schemes, obtaining
asymptotically valid variances when covariates not used in the randomization are adjusted for in the outcome model, under
general misspecification of the outcome model, remains an open problem.
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