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imputation under uncongeniality and
misspecification
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Abstract

Multiple imputation has become one of the most popular approaches for handling missing data in statistical analyses. Part

of this success is due to Rubin’s simple combination rules. These give frequentist valid inferences when the imputation

and analysis procedures are so-called congenial and the embedding model is correctly specified, but otherwise may not.

Roughly speaking, congeniality corresponds to whether the imputation and analysis models make different assumptions

about the data. In practice, imputation models and analysis procedures are often not congenial, such that tests may not

have the correct size, and confidence interval coverage deviates from the advertised level. We examine a number of

recent proposals which combine bootstrapping with multiple imputation and determine which are valid under uncon-

geniality and model misspecification. Imputation followed by bootstrapping generally does not result in valid variance

estimates under uncongeniality or misspecification, whereas certain bootstrap followed by imputation methods do. We

recommend a particular computationally efficient variant of bootstrapping followed by imputation.
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1 Introduction

Multiple imputation (MI) has proven to be an extremely versatile and popular tool for handling missing data in
statistical analyses. For a recent review, see Murray.1 Its popularity is due to a number of factors. The imputation
and analysis stages are distinct, meaning it is possible for one person to perform the imputation and another the
analysis. It is flexible, in being able to accommodate various constraints and restrictions that the imputer or
analyst may want to impose. Auxiliary variables can be used in the imputation process to reduce uncertainty
about missing values or make the missing at random (MAR) assumption more plausible, yet need not be included
in the analyst’s model.

In MI, the analysis model of interest is fitted to each imputed dataset. Estimates and standard errors from each
of these fits are pooled using ‘Rubin’s rules’.2 These give a point estimate as the simple average of the imputed
data estimates. Rubin’s variance estimator combines the average within-imputation variance with the between-
imputation variance in estimates. This requires an estimator of the complete data variance, which for most
estimators is available analytically.
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In Rubin’s original exposition, the estimand was a characteristic of a fixed finite population of which some
units are randomly sampled and data are obtained.2 Rubin defined conditions for an imputation procedure to be

so-called ‘proper’ for a given complete data analysis. If in addition the complete data analysis gives frequentist
valid inferences, MI using Rubin’s rules yields valid frequentist inferences.1–3 Subsequently, Rubin’s rules were

criticised by some (e.g. Fay4) because in certain situations Rubin’s variance estimator could be biased relative to
the repeated sampling variance of the MI estimator. In response, Meng defined the concept of congeniality
between an imputation procedure and an analyst’s complete (and incomplete) analysis procedure.5 If an impu-

tation and analysis procedure are congenial, this implies the imputation is proper for the analysis procedure.6

Meng showed that for certain types of uncongeniality, Rubin’s variance estimator is conservative, ensuring the
intervals have at least the advertised coverage level.5 In other settings, however, it can be biased downwards,

leading to under-coverage of confidence intervals.7

Rubin’s rules have proved fantastically useful since MI’s inception, in particular because they facilitate

the separation of imputation and analysis into two distinct parts and because they are so simple.
Nevertheless, in settings where Rubin’s variance estimator is asymptotically biased, if feasible, the analyst may
desire sharp frequentist valid inferences. Robins and Wang proposed a variance estimator which is valid

without requiring congeniality or correct model specification.7 Their estimator requires calculation of
various quantities depending on the estimating equations corresponding to the particular choice of imputation

and analysis models. As such, it is arguably harder to apply their approach when the imputer and analyst
are separate entities. As far as we are aware, its use has been extremely limited thus far in practice due to
these requirements.

Combining bootstrapping with MI was first suggested over 20 years ago,8 and recently a number of papers have
investigated a wider variety of approaches to combining them. Schomaker and Heumann investigated four

variants which combined bootstrapping with MI.9 Their motivation for exploration of using bootstrap with
MI was for situations where an analytical complete data variance estimator is not available, or one is concerned
that the MI estimator is not normally distributed. On the basis of theoretical and empirical investigation, they

recommended three of the four variants for use. They did not explicitly seek to investigate performance under
uncongeniality or model misspecification however. von Hippel and Bartlett proposed an alternative combination
of bootstrapping with MI in the context of proposing frequentist type (improper) MI algorithms and noted that it

would be expected to be valid under uncongeniality.10 Lastly, Brand et al. investigated six different combinations
of MI with bootstrapping in the context of handling skewed data and recommended using percentile bootstrap

confidence intervals with single (stochastic) imputation.11

In this paper, we investigate the properties of the different combinations of MI and bootstrap which have been

recommended by these previous papers, giving particular emphasis to their validity under uncongeniality or model
misspecification. In Section 2, we review MI, Rubin’s combination rules and congeniality. In Section 3, we
describe the various combinations of bootstrapping and MI that have been recently recommended and consider

their validity under uncongeniality or model misspecification. Section 4 presents two sets of simulation studies,
empirically demonstrating the impacts of uncongeniality and model misspecification on the frequentist perfor-
mance of the different variants. We conclude in Section 5 with a discussion.

2 MI using Rubin’s rules and congeniality

2.1 Rubin’s rules

In this section, we review MI and Rubin’s combination rules, following Meng5 and Xie and Meng.12 The imputer

will multiply impute the missing data. The analyst will analyse the resulting MIs. In some settings, the imputer and
analyst are the same person. Let Zcom denote the complete data, Zobs and Zmis, respectively, the observed and
missing data and h the analyst’s parameter of interest. Further, let V denote additional data that the imputer

might have access to but which will not be released to the analyst. In Rubin’s MI, the imputer specifies a Bayesian

model for fIðZmisjZobs;VÞ (I denoting imputer). They then impute the missing values by drawing independently M

times from this model. This results in M completed data sets ~Z
ðmÞ
com ¼ ðZobs; ~Z

ðmÞ
misÞ; m ¼ 1; . . . ;M.

The analyst chooses a complete data estimation procedure which, given complete data Zcom, returns an esti-
mate bhAðZcomÞ of h and a variance estimatorWAðZcomÞ (A denoting analyst). The analyst applies this procedure to
each of the M imputed datasets, giving estimates bhm ¼ bhAð ~ZðmÞ

comÞ and variance estimates WðmÞ ¼ WAð ~ZðmÞ
comÞ for

m ¼ 1; . . .;M.
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The MI estimate of h is given by �hM ¼ 1
M

XM

m¼1
bhm. Rubin’s variance estimator is

dVarRubinð�hMÞ ¼ TM ¼ 1þ 1

M

� �
BM þ �WM (1)

where the within-imputation variance is estimated as

�WM ¼ 1

M

XM
m¼1

WðmÞ

and the between-imputation variance is estimated by

BM ¼ 1

M� 1

XM
m¼1

ðbhm � �hMÞ2 (2)

2.2 Congeniality

We now define congeniality between the imputation model and the analyst’s complete data procedure and show

the implications of congeniality for inference using Rubin’s rules.5,12 The imputation model and the analyst’s

complete data procedure are said to be congenial if there exists a unifying Bayesian model (referred to by IA) for

Zcom which embeds the imputer’s imputation model and the analyst’s complete data procedure, in the sense that

1. For all ~Zcom

bhAð ~ZcomÞ ¼ EIAðhj ~ZcomÞ and WAð ~ZcomÞ ¼ VarIAðhj ~ZcomÞ (3)

where EIA and VarIA denote posterior expectation and variance with respect to the embedding Bayesian model,

respectively.

2. For all ~Zmis

fIð ~ZmisjZobs;VÞ ¼ fIAð ~ZmisjZobsÞ (4)

where fIAð ~ZmisjZobsÞ is the predictive distribution for the missing data given the observed data under the

embedding Bayesian model.
Under congeniality, the posterior mean of h given the observed data under the embedding Bayesian model is

given by

EIAðhjZobsÞ ¼ EIA EIAðhj ~Zmis;ZobsÞjZobs

� �
¼ EIA EIAðhj ~ZcomÞjZobs

� �
¼ EIA bhAð ~ZcomÞjZobs

h i
¼ EI bhAð ~ZcomÞjZobs;V

h i
¼ �h1

(5)

where �h1 ¼ limM!1 �hM. The first equality in equation (5) follows from the law of total expectation, and the

second because ~Zcom ¼ ð ~Zmis;ZobsÞ. The third equality follows from equation (3). The fourth follows from the

equality of imputation distributions as defined in equation (4). The last follows by the law of large numbers since
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the MI estimator is the sample mean of the complete data estimates across repeated draws from the imputation

distribution of the missing data given the observed.
Next, under congeniality the posterior variance of h given Zobs under the embedding Bayesian model is

VarIAðhjZobsÞ ¼ EIA VarIAðhjZobs; ~ZmisÞjZobs

� �
þ VarIA EIAðhjZobs; ~ZmisÞjZobs

� �
¼ EIA VarIAðhj ~ZcomÞjZobs

� �
þ VarIA EIAðhj ~ZcomÞjZobs

� �
¼ EIA WAð ~ZcomÞjZobs

� �
þ VarIA bhAð ~ZcomÞjZobs

h i
¼ EI WAð ~ZcomÞjZobs;V

� �
þ VarI bhAð ~ZcomÞjZobs;V

h i
¼ �W1 þ B1 :¼ T1

where �W1 ¼ limM!1 �WM and B1 ¼ limM!1 BM. Thus, under congeniality, ð�h1;T1Þ are the posterior mean

and variance of h given the observed data under the embedding Bayesian model.
Assuming the embedding Bayesian model is correctly specified, the observed data posterior mean, which under

congeniality is equal to �h1, is a consistent and asymptotically normal estimator of h and the posterior variance

(which under congeniality is equal to T1) is a consistent estimator of its variance.13 Furthermore, under conge-

niality and correct specification of the embedding Bayesian model, the interval with limits �h1�z0:975
ffiffiffiffiffiffiffi
T1

p
will

asymptotically have 95% coverage, where z0:975�1:96 is the 97.5% quantile of the standard normal distribution.
Of course, in practice the number of imputations M is finite. Then, �hM is a size M Monte-Carlo estimate of �h1.

To estimate the repeated sampling variance of �hM, we first write the estimate from imputation m as

bhm ¼ �h1 þ am

where EðamjZobsÞ ¼ 0 and VarðamjZobsÞ ¼ B1. Then, �hM can be expressed as

�hM ¼ �h1 þ 1

M

XM
m¼1

am

Its repeated sampling variance can then be expressed as

Varð�hMÞ ¼ Var �h1 þ 1

M

XM
m¼1

am

 !

¼ E Var �h1 þ 1

M

XM
m¼1

amjZobs

 !" #
þ Var E �h1 þ 1

M

XM
m¼1

amjZobs

 !" #

¼ EðB1Þ
M

þ Var �h1
� �

(6)

where we use the fact that �h1 is a constant conditional on Zobs and EðamjZobsÞ ¼ 0. This motivates Rubin’s

variance estimator, since we can estimate EðB1Þ
M by BM=M and Varð�h1Þ by WM þ BM, leading to

TM ¼ ð1þM�1ÞBM þWM.
When the imputation and analysis models are not congenial, or they are but the embedding Bayesian model is

misspecified, depending on the specific situation Rubin’s variance estimator can be biased upwards or down-

wards.5,7,14 We explore a range of examples in which uncongeniality or misspecification can arise in simulation

studies described in Section 4.
Robins and Wang proposed a variance estimator for MI when each dataset is imputed using the maximum

likelihood estimate of a parametric imputation model and the imputations are analysed using a non, semi or fully

parametric model.7 Their variance estimator is consistent without requiring the imputation and analysis models to

be congenial nor even correctly specified. Hughes et al. compared Robins and Wang’s proposal to Rubin’s rules

through a series of simulation studies where the imputation and analysis models were misspecified and/or uncon-

genial with each other.14 They demonstrated that Rubin’s rules inference could be conservative or anti-

conservative, whereas, at least for moderate or large sample sizes, inferences based on Robins and Wang’s
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proposal were valid across their simulation scenarios. Hughes et al. noted however that a major practical obstacle

to the widespread use of Robins and Wang’s method is that its implementation is specific to the particular

imputation and analysis models, and no software currently implements it.

3 Combining bootstrapping and MI

In this section, we review the combinations of bootstrapping and MI which have been recommended for use in the

recent literature and consider their validity under uncongeniality and misspecification.

3.1 Imputation followed by bootstrapping

The first collection of methods we consider are where MI is first applied, and then bootstrapping is applied to each

imputed dataset.

3.1.1 MI boot Rubin

The first combination considered (and recommended) by Schomaker and Heumann9 is standard MI using Rubin’s

rules, but using bootstrapping to estimate the within-imputation complete data variance:

1. Impute the missing values in the observed data M times, creating completed datasets ~Z
ðmÞ
com ¼

ðZobs; ~Z
ðmÞ
misÞ; m ¼ 1; . . .;M. Fit the analysis model to each, giving estimates bhm.

2. For each imputed dataset ~Z
ðmÞ
com, draw B bootstrap samples with replacement.

3. For the bth bootstrap sample of the mth imputed dataset, estimate h using the complete data point estimator,

giving bhm;b.
4. For imputation m, then calculate

dVarbsðbhmÞ ¼ ðB� 1Þ�1
XB
b¼1

ðbhm;b � ~hmÞ2

where ~hm ¼ B�1
XB
b¼1

bhm;b.

5. Rubin’s rules are then applied with bhm (m ¼ 1; . . .;M) as the point estimates and dVarbsðbhmÞ (m ¼ 1; . . .;M) as

the complete data variance estimates.

This approach is what has often been used when no analytical estimator for the complete data variance is

available, or if one is concerned about whether the analysis model is correctly specified. In the latter case, a

sandwich variance estimator has sometimes been used to attempt to provide robustness to misspecification.14

Since this approach is application of Rubin’s rules with an alternative complete data variance estimator, we

expect valid inferences when the imputation and analysis models are congenial and the embedding Bayesian model

is correctly specified. This is supported by the setting 1 simulation results of Schomaker and Heumann.9 Here,

bivariate normal data were simulated, with the analysis model consisting of normal linear regression. The covar-

iate of the analysis model was made MAR, and a bivariate normal imputation model was used. The imputation

and analysis models were congenial, and the embedding bivariate normal model was correctly specified.
Under uncongeniality or misspecification, we should not expect valid inferences in general. This hypothesis is

supported by Schomaker and Heumann’s setting 2 with high missingness simulation results, where we believe the

imputation and analysis models are congenial but the embedding model is misspecified, and where coverage for

one parameter was 91%. The analysis model here was again a normal linear regression and the imputation model

a multivariate normal model for all variables, which are clearly congenial with a multivariate normal model.

However, the embedding multivariate normal model was misspecified since some of the variables were binary.

Despite this misspecification, Schomaker and Heumann stated that the point estimates were approximately unbi-

ased, indicating the poor coverage was not due to bias in the point estimator.
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3.1.2 MI boot pooled percentile

The second approach considered and recommended by Schomaker and Heumann9 is the same as MI boot Rubin,

except that Rubin’s rules are not (directly at least) used:

1. Impute the missing values in the observed data M times, creating completed datasets
~Z
ðmÞ
com ¼ ðZobs; ~Z

ðmÞ
misÞ; m ¼ 1; . . .;M.

2. For each imputed dataset ~Z
ðmÞ
com, draw B bootstrap samples with replacement.

3. For the bth bootstrap sample of the mth imputed dataset, estimate h, giving bhm;b.

4. For point estimation of h, one can either use �hM or ðMBÞ�1
XM

m¼1

XB

b¼1
bhm;b.

5. A ð1� 2aÞ% percentile confidence interval for h is formed by taking the a and 1� a empirical percentiles of the

pooled sample of bhm;b values.

Under congeniality, this approach can be viewed as a route to obtaining a posterior credible interval, and if the

embedding Bayesian model is correctly specified, we expect it to give valid inferences. This is because first draws

are taken from the posterior of the missing data given observed, and second, conditional on these, bootstrapping

and estimating the parameters by their maximum likelihood estimate is in large samples equivalent to taking a

draw from the posterior given the imputed missing data and the observed data.15 Note that here there is no

complete data variance estimator being used, and so the congeniality requirement for the complete data procedure

is only that bhAð ~ZcomÞ ¼ EIAðhj ~ZcomÞ.
To explore this approach further, under congeniality we can express the estimate from the mth imputation and

bth bootstrap as

bhm;b ¼ �h1 þ am þ bmb

where am is as defined previously with EðamjZobsÞ ¼ 0 and VarðamjZobsÞ ¼ Var Eðhj ~ZcomÞjZobs

� �
. Provided the

sample size is large, Eðbmbj ~ZðmÞ
comÞ ¼ 0 and Varðbmbj ~ZðmÞ

comÞ ¼ Varðhj ~ZðmÞ
comÞ, such that

VarðbmbjZobsÞ ¼ E Varðbmbj ~ZðmÞ
comÞjZobs

h i
þ Var Eðbmbj ~ZðmÞ

comÞjZobs

h i
¼ E Varðhj ~ZðmÞ

comÞjZobs

h i
The sample variance of the pooled sample of MB estimates, which we are effectively treating as a size MB

sample from the posterior when constructing the MI boot pooled percentile interval, is

VarMIBootPooled ¼ ðMBÞ�1
XM
m¼1

XB
b¼1

ðbhm;b � �hMBÞ2 (7)

where �hMB ¼ ðMBÞ�1
XM

m¼1

XB

b¼1
bhm;b. Schomaker and Heumann9 considered large values of B (e.g. 200) and

smaller values of M. For large B, standard results for the one-way random intercepts model16 show this is an

unbiased estimator of

ð1�M�1ÞVar Eðhj ~ZcomÞjZobs

� �
þ E Varðhj ~ZcomÞjZobs

� �
Hence, if M is also large, VarMIBootPooled is unbiased for VarðhjZobsÞ, the true posterior variance. If M is not

large however, it is biased downwards for the true posterior variance, and so we would expect confidence intervals

constructed using the MB sample of estimates, e.g. based on percentiles as suggested by Schomaker and

Heumann, to under-cover. This concurs with the findings shown in Figure 1 of Schomaker and Heumann,

who found that the percentile MI boot pooled confidence intervals under-covered somewhat for small M even

under congeniality.9

Under uncongeniality or misspecification, there is no reason to expect this approach to result in valid infer-

ences. Schomaker and Heumann’s setting 2 (where as described previously we believe the imputation and analysis

3538 Statistical Methods in Medical Research 29(12)



models were congenial but the embedding model was misspecified) with high missingness simulation results
support this, with coverages between 89% and 92%.

3.2 Bootstrap followed by MI

We now consider methods which first bootstrap sample the observed data and then apply MI to each bootstrap
sample. This general approach to combining bootstrap with MI was proposed by Shao and Sitter8 and Little and
Rubin.15

3.2.1 Boot MI percentile

Both Schomaker and Heumann9 and Brand et al.11 recommended calculating bootstrap percentile intervals to the
estimator bhM. This consists of

1. B bootstrap samples of the observed data are taken Z
ðbÞ
obs; b ¼ 1; . . .;B.

2. For each b ¼ 1; . . .B, use MI to impute missing data in Z
ðbÞ
obs M times and estimate h in each imputed dataset,

giving bhb;m.
3. For point estimation of h, one can either use �hM or �hBM ¼ B�1

XB

b¼1
�hb, where �hb ¼ M�1

XM

m¼1
bhb;m.

4. A ð1� 2aÞ% percentile confidence interval for h is then formed by taking the a and 1� a empirical percentiles
of the �hb; b ¼ 1; . . .;B values.

This approach is direct application of the standard percentile-based bootstrap confidence interval to the esti-
mator �hM.8 As such, provided the point estimator is consistent, asymptotically the resulting confidence
intervals should attain nominal coverage irrespective of whether the imputation model and complete data pro-
cedure are congenial or are correctly specified. In Schomaker and Heumann’s setting 2 simulation results,
where as described earlier we believe the imputation model and complete data procedure are congenial but the
embedding model was misspecified, they found coverage rates close to 95%, although for one parameter it was as
low as 90%.

Brand et al. also found that the Boot MI percentile approach worked well in simulations.11 They investigated it
using either M¼ 5 or M¼ 1, and among the different combinations of bootstrapping and MI recommended using
it with M¼ 1. Provided the MI point estimator is consistent, we would expect the resulting confidence intervals to
have correct coverage under uncongeniality or misspecification. However, we expect the intervals to be unneces-
sarily wide with M¼ 1 because as shown by equation (6), with one imputation the estimator is subject to a
relatively large amount of Monte-Carlo error. This is confirmed by the simulation results of Brand et al.11

(Figure 1, panel C), which shows that the bootstrap percentile intervals were wider on average with M¼ 1
compared with M¼ 5. Moreover, their results suggested that coverage with M¼ 1 was slightly above the nominal
95% level, which we investigate further in Section 4.

3.2.2 Boot MI von Hippel

Of the various combinations of bootstrapping and imputation described, assuming the MI point estimator is
consistent, only Boot MI percentile is expected to give confidence intervals that attain nominal coverage (asymp-
totically) under uncongeniality or model misspecification. A practical issue however is that the computational
burden is high. For standard applications of MI, it is not uncommon now for M to be chosen as 100 or
greater, for reasons of statistical efficiency of point estimates and to reduce Monte-Carlo error to an acceptable
amount.17–19 For bootstrap confidence intervals, the number of replications B is generally recommended to be at
least 200 for variance estimation and at least 1000 for percentile-based intervals.20 These considerations would
imply a potentially very large value of BM, which may be computationally expensive or impractical. von Hippel
and Bartlett proposed an alternative point estimator and confidence interval based on Boot MI which is com-

putationally less expensive.10 They proposed using �hBM ¼ B�1
XB

b¼1
�hb where �hb ¼ M�1

XM

m¼1
bhb;m, rather than

�hM, as the point estimator. To construct a confidence interval, von Hippel and Bartlett noted that in large samples

the estimates bhb;m can be expressed as

bhb;m ¼ �h1 þ cb þ dbm (8)
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where

EðcbjZobsÞ ¼ 0

VarðcbjZobsÞ ¼ r21ðZobsÞ
VarðcbÞ ¼ Eðr21ðZobsÞÞ ¼ Varð�h1Þ ¼ r21

EðdbmjZðbÞ
obsÞ ¼ 0

VarðdbmjZðbÞ
obsÞ ¼ r2btwðZðbÞ

obsÞ
VarðdbmjZobsÞ ¼ r2btwðZobsÞ

VarðdbmÞ ¼ Eðr2btwðZobsÞÞ ¼ r2btw

Given this variance components model, we have that

Varð�hBMÞ ¼ 1þ 1

B

� �
r21 þ 1

BM
r2btw (9)

This shows that provided B is large, �hBM will have similar efficiency to �h1. The two variance components r21
and r2btw can be estimated by fitting a one-way analysis of variance (ANOVA) to the point estimates bhb;m. Letting
MSW and MSB denote the mean sum of squares within and between bootstraps, the ANOVA estimates of the
two variance components are

br2
1 ¼ MSB�MSW

Mbr2
btw ¼ MSW

or if MSB�MSW < 0, we set br2
1 ¼ 0 and br2

btw equal to the total sample variance of the BM estimates. These can
be substituted into equation (9) to estimate the variance of �hBM with

dVarð�hBMÞ ¼ 1þ 1

B

� �
MSB�MSW

M
þMSW

BM

¼ Bþ 1

BM

� �
MSBþMSW

1

BM
� Bþ 1

BM

� �
¼ Bþ 1

BM

� �
MSB�MSW

M

von Hippel and Bartlett proposed constructing confidence intervals based on Satterthwaite’s degrees of freedom,
which here is given by

b� ¼
Bþ1
BM

� �
MSB� MSW

M

� �2
Bþ1
BMð Þ2MSB2

B�1
þ MSW2

BM2ðM�1Þ

If MSW is small (i.e. when the between-imputation variance is small), this will be close to B – 1. A 100� ð1�
aÞ confidence interval for h can then be constructed as

�hBM�t
1�a=2;b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarð�hBMÞ

q
where t1�a=2;� denotes the 1� a=2 quantile of the t-distribution on � degrees of freedom. von Hippel and Bartlett
advocated use of a large value of B and M¼ 2 to minimise computational cost but retain good statistical
efficiency.
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4 Simulations

In this section, we report two simulation studies to empirically demonstrate the performance of the previously
described combinations of bootstrapping and MI under uncongeniality or model misspecification.

4.1 Regression models under uncongeniality or misspecification

We first compared the previously described bootstrap and MI combination methods in four scenarios of uncon-
geniality or misspecification of the imputation model and complete data procedure using a simulation study based
on one performed by Hughes et al.14 This simulation study was based on fitting models to a dataset of standard
anthropometric measurements of 951 young adults enrolled in the Barry Caerphilly Growth study.21

Briefly, we simulated hypothetical datasets of one binary variable, sex, and four continuous variables, age,
height, weight and natural log of insulin index (hereafter referred to as loginsindex). The data were generated
under the following model

sex�BernoulliðpÞ; age; heightjsex�Nða0 þ a1sex;RÞ;
weight ¼ i0 þ i1sexþ i2ageþ i3heightþ gsexk� errorW;

loginsindex ¼ b0 þ b1sexþ b2ageþ hweightþ gsexx� errorL

(10)

where errorW and errorL are independent errors and gsex ¼ 1 when sex¼ 0 and gsex ¼ g when sex¼ 1. Parameter
values are shown in Supplementary Material Table 1. Different scenarios were created by setting parameters
a1; i1; g and b1 to their null values; zero vector for a1, 0 for i1 and b1 and 1 for g. The values of the remaining
parameters were fixed. Weight measurements were set to be missing completely at random for 60% of the
observations.

The analysis of interest was to estimate h, the effect of weight on loginsindex after adjustment for age and sex.
Both imputation and analysis models were normal linear regression models that assumed homoscedastic errors,
and the imputation model for weight included sex, age, height and loginsindex as covariates unless stated oth-
erwise below. Unless otherwise stated, the distributions of errorW and errorL were normal, weight measurements
were missing in men and women, the assumption of homoscedastic errors was true and the imputation and
analysis models were fitted to the entire sample. The following four scenarios were considered:

• Subgroup analysis scenario. The data were simulated such that the continuous variables were identically dis-
tributed in men and women; i.e. a1 ¼ ð0; 0Þ; i1 ¼ 0; b1 ¼ 0 and g¼ 1. Weight was made missing among men
only. The imputation and analysis models were uncongenial since the analysis model was fitted to men only
whilst the imputation model was fitted to the entire sample ignoring sex (i.e. excluding sex as a predictor). Here,
the analysis model could only be congenial with imputation models that allowed for sex effects.

• Heteroscedastic errors. The data were simulated such that the variance of weight and loginsindex differed
between men and women, by setting g¼ 2. The imputation and analysis models were congenial (with the
embedding model a bivariate model for weight and loginsindex conditional on the other variables) but incor-
rectly specified because they wrongly assumed homoscedastic errors.

• Omitted interaction. As in all scenarios, the data were simulated such that the effect of weight on loginsindex
was the same for men and women. However, in this scenario, the analysis model included an interaction term
between weight and sex whilst this interaction was, correctly, omitted from the imputation model. The impu-
tation and analysis models were uncongenial since congeniality would require the imputation model to include
the interaction between weight and sex.

• Moderate non-normality. Error distributions errorW and errorL were simulated from the log-normal distribution
expfNð0; 1=42Þg. The imputation and analysis models were again congenial (with the embedding model, a
bivariate model for weight and loginsindex conditional on the other variables), but misspecified because they
wrongly assumed normal error distributions.

For each scenario, we generated 1000 independent simulated datasets, where the sample size was 1000 obser-
vations and the probability of observing weight was 0.4, except for the subgroup analysis scenario where the
probability of observing weight was 1 among women and 0.4 among men. We conducted MI Rubin using 10
imputations, and methods MI boot Rubin, MI boot pooled percentile and boot MI percentile with 10 imputations
and 200 bootstraps, and von Hippel’s boot MI with two imputations and 200 bootstraps. Additionally, we applied

Bartlett and Hughes 3541



boot MI percentile with one imputation and 200 bootstraps. Based on 1000 simulations, the Monte-Carlo stan-

dard error for the true coverage probability of 95% is �ð0:95ð1� 0:95Þ=1000Þ ¼ 0:69%, implying that the esti-

mated coverage probability should lie within the range 0.936–0.964 (with 95% probability).22

For all methods, the point estimates of h were either unbiased or the amount of systematic bias was trivial (e.g.

at most –0.000289; results available on request).
Tables 1 and 2 show the median of the confidence interval (CI) widths and CI coverage for the six methods

under comparison. For the subgroup analysis scenario (Table 1), MI Rubin and both MI then bootstrapping

methods resulted in confidence interval over-coverage. Narrower confidence intervals and nominal coverage were

achieved with the boot MI percentile method with 10 imputations and boot MI von Hippel. Boot MI percentile

with single imputation resulted in wide confidence intervals and over-coverage. This concurs with what was found

in the simulations reported by Brand et al. In the Supplementary Appendix, we give a sketch argument for why

the Boot MI percentile intervals with M¼ 1 (or indeed small M more generally) will over-cover. Interestingly, this

over-coverage does not similarly affect normal based (as opposed to percentile) Boot MI intervals with M¼ 1

(simulation results not shown).
For the heteroscedastic errors scenario (Table 1), MI Rubin and both MI then bootstrapping methods resulted

in confidence interval under-coverage. Again, the boot MI percentile method with 10 imputations and boot MI

von Hippel were the best performing methods with close to nominal coverage. The results for the omitted inter-

action scenario (Table 2) followed a similar pattern noted for the subgroup analysis scenario. For the moderate

non-normality scenario (Table 2), MI boot pooled percentile had slight confidence interval under-coverage and

boot MI percentile with single imputation over-covered. The remaining methods had close to nominal coverage

with similar median CI widths.

Table 1. Median confidence interval width and coverage for the subgroup analysis (uncongenial) and heteroscedastic errors (mis-
specification) scenarios.

Subgroup analysis Heteroscedastic errors

Median Median

M B CI width CI cov. CI width CI cov.

MI Rubin 10 0.0142 98.2 0.0126 91.3

MI boot Rubin 10 200 0.0143 98.1 0.0129 92.1

MI boot pooled percentile 10 200 0.0131 97.7 0.0117 89.2

Boot MI percentile 10 200 0.0109 94.9 0.0144 95.0

Boot MI percentile 1 200 0.0139 98.4 0.0167 97.7

von Hippel 2 200 0.0108 95.0 0.0144 94.1

CI, confidence interval; CI cov., confidence interval coverage; MI, multiple imputation.

Table 2. Median confidence interval width and coverage for the omitted interaction (uncongenial) and moderate non-normality
(misspecification) scenarios.

Omitted interaction Moderate non-normality

Median Median

M B CI width CI cov. CI width CI cov.

MI Rubin 10 0.0146 97.3 0.0119 94.6

MI boot Rubin 10 200 0.0146 97.2 0.0120 94.7

MI boot pooled percentile 10 200 0.0135 95.4 0.0108 93.1

Boot MI percentile 10 200 0.0128 94.2 0.0118 95.4

Boot MI percentile 1 200 0.0159 98.0 0.0143 98.1

von Hippel 2 200 0.0127 94.0 0.0117 95.1

CI, confidence interval; CI cov., confidence interval coverage; MI, multiple imputation.
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4.2 Reference-based imputation in clinical trials

Our second simulation study setting is so-called control or reference-based MI for missing data in randomised

trials. Missing data due to study dropout are common in clinical trials, and there is often concern that missing

data do not satisfy the MAR assumption. Often dropout in trials coincides with patients’ treatments changing. An

increasingly popular approach to imputing missing data in trials is using so-called reference or control-based MI

approaches.23 These involve constructing the imputation distribution for the active treatment arm using a com-

bination of information from the active and control arms, which results in uncongeniality between imputation and

analysis models. This uncongeniality results in intervals constructed using Rubin’s variance estimator to over-

cover.24,25 Cro et al. have suggested that although Rubin’s variance estimator is biased for the repeated sampling

variance of the estimator, it consistently estimates a sensible variance in the context of MAR sensitivity analyses.26

We do not enter this debate here, but merely investigate the previously described bootstrap and MI combinations

in regards to their ability to produce confidence intervals with the correct repeated sampling coverage. In the

setting of reference-based MI, Quan et al. applied (we believe) Boot MI to estimate standard errors of �hM and

found it worked well.27

We simulated 10,000 datasets of size n¼ 500 with 250 randomised to control (Z¼ 0) and 250 (Z¼ 1) rando-

mised to active treatment. Baseline X and outcome Y were then generated from a bivariate normal model

X
Y

� �
�N

2
2þ 0:2Z

� �
;

0:4 0:2
0:2 0:4

� �� �

The analysis model was normal linear regression of Y on X and Z, with the coefficient of treatment Z of

primary interest. Values in Y were made missing completely at random with probability 0.5. For each dataset, first

the missing values in Y were imputed using a normal linear regression model with X and Z as covariates assuming

MAR, such that the imputation and analysis models were congenial and correctly specified. Second, they were

imputed using the jump to reference method (see Carpenter et al.23 for details), such that the two models were

uncongenial but again correctly specified (assuming the jump to reference assumption is correct). The same

combinations of bootstrapping and MI were used as in the first simulation study, but we ran simulations using

both B¼ 200 and B¼ 1000.
Table 3 shows the median confidence interval width and coverage for each of the combinations of boot-

strapping and MI previously described with B¼ 1000 bootstraps for the bootstrap methods (results using

B¼ 200 were qualitatively the same). Based on 10,000 simulations, the Monte-Carlo standard error for the

true coverage probability of 95% is �ð0:95ð1� 0:95Þ=10;000Þ ¼ 0:43%. As expected, intervals constructed using

Rubin’s rules have correct coverage under congeniality. Under jump to reference imputation, where the

imputer assumes more than the analyst,24 Rubin’s variance estimator was biased upwards and intervals

over-cover. Intervals constructed using MI boot Rubin performed well under MAR (congeniality) but like

standard Rubin’s rules over-cover under uncongeniality as anticipated. MI boot pooled percentile under-

covered somewhat under congeniality, which following the earlier explanation is due to the relatively small

Table 3. Median confidence interval width and coverage under MAR (congenial and correctly specified), jump to reference
(uncongenial and correctly specified) imputation from 10,000 simulations.

MAR (congenial) Jump to reference (uncongenial)

Median Median

M B Time (s) CI width CI cov. CI width CI cov.

MI Rubin 10 0.05 0.286 95.08 0.251 99.78

MI boot Rubin 10 1000 13.6 0.286 95.04 0.251 99.78

MI boot pooled percentile 10 1000 13.7 0.260 93.07 0.237 99.63

Boot MI percentile 10 1000 36.8 0.278 95.56 0.157 96.06

Boot MI percentile 1 1000 3.9 0.332 98.47 0.211 99.40

von Hippel 2 1000 7.6 0.272 95.29 0.151 95.26

Times shown indicate median execution time for each method on one dataset. MAR, missing at random; CI, confidence interval; CI cov., confidence

interval coverage; MI, multiple imputation.
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choice of M. Under uncongeniality, these intervals over-cover, since again their justification relies on

congeniality.
Both Boot MI percentile M¼ 10 and the Boot MI von Hippel approach with B¼ 1000 and M¼ 2 gave

intervals with approximately correct coverage under both congeniality and uncongeniality. As in the first simu-

lation study, the Boot MI percentile intervals with B¼ 1000 and M¼ 1 over-covered, even under congeniality.
The median times to run each method on a single simulated data show unsurprisingly that all the bootstrap

methods take much longer to run than standard Rubin’s rules without bootstrapping. Among the bootstrap

methods, Boot MI percentile with M¼ 1 was the quickest, but as noted previously this over-covers and gives

unnecessarily wide intervals, even under congeniality and correct model specification. Comparing the two meth-

ods which give intervals with correct coverage even under uncongeniality or misspecification (Boot MI percentile

M¼ 10 and von Hippel), von Hippel’s approach is around five times faster.

5 Discussion

We have reviewed a number of proposals for combining MI with bootstrapping, in particular with regards to their

statistical validity when imputation and analysis procedures are uncongenial or misspecified. When the imputa-

tion and analysis procedures are congenial, and the embedding model is correctly specified, Rubin’s rules (without

bootstrapping), MI boot Rubin, Boot MI percentile (provided M is not small) and von Hippel’s approach all give

confidence intervals with approximately nominal coverage and similar median widths. The MI boot pooled

percentile method has coverage below nominal level, whilst Boot MI percentile with M¼ 1, as recommended

by Brand et al.,11 gives intervals which over-cover and which are unnecessarily wide.
When the imputation and analysis procedures are uncongenial and/or misspecified, only the Boot MI percentile

(with moderateM) and von Hippel approaches give intervals with nominal coverage (provided the point estimator

is consistent). All of the other methods either under- or over-cover, depending on the particular situation. As such,

we recommend the Boot MI percentile (with M moderately large) or von Hippel approaches when uncongeniality

or misspecification is of concern. An advantage of the von Hippel approach is that it is far less computationally

costly. It does however, like Rubin’s rules, assume that the MI estimator is normally distributed. The Boot MI

von Hippel approach is implemented in the R package bootImpute and is available from CRAN.28 As far as we

are aware, the only alternative approaches for valid inferences under uncongeniality or misspecification require

complex problem specific calculations which are not conducive to general use,7,25 and in this context the Boot MI

von Hippel approach seems very attractive.
As mentioned in the Introduction, Rubin originally envisaged the imputer and analyst as distinct individuals,

with the imputer releasing a single set of multiply imputed datasets to different analysts. A strength of the

bootstrap followed by MI approach is that this division of roles is still feasible – the imputer bootstraps and

then multiply imputes the observed data, releasing a set of imputations clustered by bootstrap. These can then be

analysed by different analysts, and inferences can be obtained using either the boot MI percentile or Boot MI von

Hippel approaches.
Combining bootstrapping with MI has some disadvantages compared to inference using Rubin’s rules.

Compared to regular MI with Rubin’s rules, it is considerably more computationally intensive (Table 3) – this

is the price paid for being able (in certain situations) to obtain valid inferences under uncongeniality or mis-

specification. Problems with model (imputation or analysis) convergence are probably more likely to occur due to

the large number of bootstraps required. The non-parametric resampling scheme used by bootstrapping relies on

an assumption that the data are independent and identically distributed, and further research is warranted to

explore the use of other types of bootstrap resampling schemes in conjunction with MI.
Codes for the first simulation study (R) and the second simulation study (Stata) are available from https://gith

ub.com/jwb133/bootImputePaper.
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