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BACKGROUND Dilated cardiomyopathy (DCM) is a final common manifestation of heterogenous etiologies. Adverse

outcomes highlight the need for disease stratification beyond ejection fraction.

OBJECTIVES The purpose of this study was to identify novel, reproducible subphenotypes of DCM using multipara-

metric data for improved patient stratification.

METHODS Longitudinal, observational UK-derivation (n ¼ 426; median age 54 years; 67% men) and Dutch-validation

(n ¼ 239; median age 56 years; 64% men) cohorts of DCM patients (enrolled 2009-2016) with clinical, genetic, car-

diovascular magnetic resonance, and proteomic assessments. Machine learning with profile regression identified novel

disease subtypes. Penalized multinomial logistic regression was used for validation. Nested Cox models compared novel

groupings to conventional risk measures. Primary composite outcome was cardiovascular death, heart failure, or

arrhythmia events (median follow-up 4 years).

RESULTS In total, 3 novel DCM subtypes were identified: profibrotic metabolic, mild nonfibrotic, and biventricular

impairment. Prognosis differed between subtypes in both the derivation (P < 0.0001) and validation cohorts. The novel

profibrotic metabolic subtype had more diabetes, universal myocardial fibrosis, preserved right ventricular function, and

elevated creatinine. For clinical application, 5 variables were sufficient for classification (left and right ventricular end-

systolic volumes, left atrial volume, myocardial fibrosis, and creatinine). Adding the novel DCM subtype improved the

C-statistic from 0.60 to 0.76. Interleukin-4 receptor-alpha was identified as a novel prognostic biomarker in derivation

(HR: 3.6; 95% CI: 1.9-6.5; P ¼ 0.00002) and validation cohorts (HR: 1.94; 95% CI: 1.3-2.8; P ¼ 0.00005).

CONCLUSIONS Three reproducible, mechanistically distinct DCM subtypes were identified using widely available

clinical and biological data, adding prognostic value to traditional risk models. They may improve patient selection for

novel interventions, thereby enabling precision medicine. (J Am Coll Cardiol 2022;79:2219–2232) © 2022 The Authors.
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CMR = cardiovascular magnetic
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DCM = dilated cardiomyopathy

hsTnI = high sensitivity
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IL4RA = interleukin 4 receptor

alpha

LBBB = left bundle branch

block

LGE = late gadolinium

enhancement

NT-proBNP = N-terminal pro–

B-type natriuretic peptide

NYHA = New York Heart

Association

PCA = principal component

analysis
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D ilated cardiomyopathy (DCM) is
the leading indication for heart
transplantation and a common

cause of heart failure. The diagnosis of DCM
is a downstream, imaging-based, homoge-
nous phenotypic classification based on ab-
normalities in cardiac structure and
function. Yet, it is a disease with heteroge-
neous etiologies (eg, genetic, environ-
mental), clinical manifestations (eg, heart
failure, arrhythmia), comorbidities, and
response to therapeutic interventions.
Despite considerable improvements in dis-
ease classification and characterization,1-3

DCM is associated with an average 5-year
mortality of about 20%.4,5 A key unmet
need in DCM is to define the underlying dis-
ease with greater precision to either target
existing therapies more effectively or to
identify distinct pathophysiological mechanisms
that may be amenable to novel therapies targeted to
the patient subgroups most likely to benefit.

Parallel to this issue, for clinicians there is an
unmet need to understand how to utilize the
growing volume and complexity of clinical data to
guide patient care. These include the increasing
availability of genetic profiling, advanced imaging,
and proteomic data. Novel approaches to data sci-
ence such as machine learning may help, but have
been hindered by studies with poor reproducibility
and no validation.6-9
SEE PAGE 2233
In this study, we applied machine-learning ap-
proaches to multiparametric phenotyping to define
and validate novel prognostically relevant DCM dis-
ease subtypes that could facilitate stratified therapy.
This approach harnesses a breadth of clinical, imag-
ing, proteomic, and genetic data and makes it clini-
cally accessible and relevant to improve disease
characterization and patient stratification. We hy-
pothesized that machine learning approaches would
identify unique groupings—or clusters—of patients
with DCM with characteristic patterns of risk factors,
cardiac manifestations, and outcomes. We further
validated our findings in a separate, distinct patient
population to explore the portability of our findings.
s attest they are in compliance with human studies committe

and Food and Drug Administration guidelines, including patien

thor Center.
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METHODS

STUDY COHORT AND MULTIPARAMETRIC PHENOTYPING.

The derivation cohort comprised 426 patients with a
clinical diagnosis of DCM confirmed by late gadolin-
ium enhancement (LGE) cardiovascular magnetic
resonance (CMR) prospectively enrolled in the Na-
tional Institute for Health Research Royal Brompton
Hospital Cardiovascular Biobank project between
2009 and 2015. The cohort underwent detailed clin-
ical, imaging, genetic, and biomarker phenotyping.
All patients provided written informed consent. The
study was approved by the regional ethics committee
(South Central Research Ethics Committee
19/SC/0257).

DCM was diagnosed based on established CMR
criteria of left ventricular dilation and reduced ejec-
tion fraction with reference to age- and sex-adjusted
nomograms10 in the absence of known coronary ar-
tery disease (presence of subendocardial LGE sug-
gestive of previous myocardial infarction, >50%
stenosis in $1 major epicardial coronary arteries, or
need for previous percutaneous coronary interven-
tion or coronary artery bypass grafting), abnormal
loading conditions (uncontrolled hypertension or
significant primary valvular disease), toxin exposure
(alcohol consumption in excess of 80 g/d for 5 years
meeting criteria for alcoholic cardiomyopathy), sys-
temic disease known to cause DCM, pericardial dis-
ease, congenital heart disease, infiltrative disorders
(eg, sarcoidosis), recent acute presentation of
myocarditis, or significant primary valvular disease.
Diabetes or a history of well-controlled hypertension
were documented as comorbidities. A contraindica-
tion to CMR included the presence of a pacemaker,
defibrillator, pacing wires, metal implants (including
cochlear or spinal implants, hydrocephalus shunts),
vascular clips, or foreign bodies or metal in the eye.
All patients had clinical screening at recruitment to
the study as previously described.11,12 At enrollment,
all study participants underwent the following: 1)
CMR for assessment of cardiac chamber volumes and
function and assessment of fibrosis (1.5-T, Siemens
Sonata or Avanto scanners, Siemens Medical Sys-
tems); 2) analysis of 276 biomarkers putatively linked
to cardiovascular disease on 3 commercially available
immunoassay panels (Proseek Multiplex CVD II, CVD
es and animal welfare regulations of the authors’

t consent where appropriate. For more information,
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TABLE 1 Distribution of Clinical Variables Used for Bayesian Model Clustering in the

Derivation Cohort

Derivation Cohort
(n ¼ 426)

Validation Cohort
(n ¼ 239) P Value

Clustering variables (biomarker and
CMR principal component
loadings not shown)

Age, y 54 (44-64) 56 (46-64) 0.20

Men 287 (67) 154 (64) 0.44

European 378 (89) 231 (97) <0.001

Diabetes 48 (11) 27 (11) 1.00

Hypertension 123 (29) 99 (41) 0.001

Left bundle branch block 120 (28) 58 (24) 0.32

Atrial fibrillation 105 (25) 53 (22) 0.51

Heart rate, beats/min 74 (16) 74 (17) 0.51

Creatinine, mmol/L 79 (68-95) 89 (75-103) <0.001

TTN truncating variant 54 (13) 16 (13) 1.00

CMR variables

Left ventricular ejection
fraction, %

41 (30-51) 35 (24-44) <0.001

Indexed left ventricular end-
diastolic volume, mL/m2

116 (102-142) 123 (101-162) 0.05

Indexed left ventricular end-
systolic volume, mL/m2

68 (51-95) 79 (58-119) <0.001

Indexed left ventricular stroke
volume, mL/m2

48 (39-56) 42 (32-52) <0.001

Indexed left ventricularmass, g/m2 86 (72-103) 71 (57-88) <0.001

Right ventricular ejection
fraction, %

54 (44-62) 48 (38-56) <0.001

Indexed right ventricular end-
diastolic volume, mL/m2

85 (69-101) 83 (67-101) 0.51

Values are median (IQR) or n (%). Comparative data are shown for the validation cohort. The second part of the
table shows the cardiovascular magnetic resonance (CMR) phenotypic variables in the primary and derivation
cohort. Data are compared using the Mann-Whitney test for continuous data and the Fisher test for categorical
data. Principal component loadings of protein biomarkers and CMR phenotypic variables are not shown.
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III, Inflammation; Olink Bioscience; listed in the
Supplemental Appendix); 3) quantification of serum
high-sensitivity troponin I and serum creatinine; and
4) targeted cardiac genetic analysis of DCM genes
from a 169 cardiac gene panel (TruSight Cardio
Sequencing kit, Illumina) (further described in
the Supplemental Appendix). Truncating variants in
the titin gene were curated as previously described.13

Genetic variants were grouped into 4 classes: trun-
cating variants in the titin gene, LMNA, other sarco-
meric variants, or other DCM variant.

The validation cohort comprised 239 individuals
with a clinical diagnosis of DCM confirmed by LGE-
CMR prospectively enrolled in the Maastricht Car-
diomyopathy Registry from the Maastricht University
Medical Center between 2009 and 2016. The cohort
underwent the same clinical, imaging, genetic, and
biomarker phenotyping as the derivation cohort
(Supplemental Appendix). All patients provided
written informed consent. The study was approved
by the local Ethical Review Board of the Maastricht
University Medical Center (METC 12-04-013).

A comparator control cohort for Olink biomarker
analysis comprised 51 healthy individuals. Further
details are provided in the Supplemental Methods.

DATA PREPROCESSING. All available variables for
clustering (clinical, imaging, genetic, proteomic) were
considered. This comprised demographic (age, sex,
and race), clinical (diabetes mellitus, hypertension),
electrocardiographic (resting heart rate, atrial fibril-
lation, left bundle branch block), and 11 CMR vari-
ables (left and right ventricular: ejection fraction,
indexed end-diastolic, end-systolic, and stroke vol-
umes; indexed left ventricular mass; indexed left
atrial volume; and late-gadolinium enhancement
midwall fibrosis), as well as variants in 12 curated
DCM genes (TTN, LMNA, MYH7, TNNT2, VCL, TPM1,
TNNC1, RBM20, DSP, BAG3, SCN5A, and TCAP), and
278 proteomic markers (biomarker panels as outlined
in Supplemental Table 5 plus troponin and creati-
nine). Missing values were imputed with the
SVDImpute function within the imputation package in
R (R Foundation for Statistical Computing) (variables
with missing data are outlined in the Supplemental
Appendix). Principal component analysis (PCA) was
performed as a means of dimensionality reduction for
both biomarker and CMR data separately (PCA was
not performed on demographic or clinical variables).
This approach, rather than a single combined PCA,
was used for several reasons. First, the PCA
comprised 276 biomarker variables, but only 11 CMR
variables. When performing a combined PCA, the
overwhelming majority of the variance reduction
(and therefore contribution to the final model) was
driven by the biomarker components, with the CMR
variables contributing relatively little. Second, 97% of
the CMR variance was accounted for using only 6 PCA
components. In contrast, only 47% of the variance
was explained using 5 biomarker components, and
this was not improved by combining the PCAs; 10
components explained only 55% of the variance in the
combined analysis. Finally, separate PCAs better
allowed us to delineate the radiomic vs biochemical
contributions to the final model. All available
additional clinical variables were used for clustering
and are listed in Table 1. Further details about
the biomarker and CMR PCA are explained in the
Supplemental Methods. PCA loadings for the
biomarker and CMR analysis are shown in
Supplemental Tables 9 and 10.

PROFILE REGRESSION MIXTURE MODELS FOR

PATIENT GROUPING. The PReMiuM R Package was
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used to perform profile regression mixture modeling
for patient grouping (further explained in the
Supplemental Methods). The inputs described in the
data preprocessing section were used, and a cate-
gorical response variable (New York Heart Association
[NYHA] functional class I, II, or III/IV) was entered as
an outcome. A range of seeds were used to assess the
robustness of the results. In contrast to prior work
evaluating phenomapping in heart failure,14 this
semisupervised approach was selected to minimize
the high variability previously observed with model-
based clustering assignments depending on the
choice of input features. NYHA functional class was
used to create clinically relevant groupings instead of
groupings that were driven by a less clinically
meaningful feature. As a comparator, unsupervised
clustering was employed using the same input data
(results outlined in Supplemental Table 1), demon-
strating a high variability in groupings depending on
the clustering algorithm chosen and without different
survival profiles.

MAPPING OF VALIDATION COHORT TO PHENOTYPIC

GROUPS USING MULTINOMIAL LOGISTIC REGRESSION.

The purpose of the validation set was to demonstrate
the utility of the clusters. In an effort to validate
phenotypic groups identified in the derivation set, a
model was developed to assign patients in the vali-
dation cohort to the 3 phenotypic groups identified in
the derivation cohort using a minimal number of
input variables. The glmnet package in R was used,
and a multinomial logistic regression model was
fitted with an L1 penalty, using all shared clinical and
biomarker variables as potential inputs. The resulting
model was 97% accurate on the derivation cohort as
evaluated through 10-fold cross-validation and used
only 5 variables: indexed left ventricular end-systolic
volume, indexed right ventricular end-systolic vol-
ume, indexed left atrial volume, midwall myocardial
fibrosis detected on late gadolinium enhancement
imaging (LGE), and serum creatinine. We used the
corresponding inputs from the validation cohort and
mapped patients to the 3 phenotypic groups.

SURVIVAL ANALYSIS ACROSS THE PHENOTYPIC

GROUPS. The primary endpoint in the derivation
and validation cohorts was a composite of cardio-
vascular mortality, major arrhythmic events, and
major heart failure events (explained in detail in the
Supplemental Methods). All primary endpoint events
were adjudicated by an independent committee of 3
senior cardiologists (M.F., J.J., R.B.) with expertise in
electrophysiology, heart failure management, or
clinical trial adjudication who were blinded to imag-
ing and biomarker data. All patients had follow-up
data. The median follow-up duration was 4.0 years
(IQR: 2.1-5.8 years) in the derivation cohort and 3.1
years (IQR: 1.7-5.0 years) in the validation cohort. The
log-rank test was used to examine the survival of the
3 phenotypic groups in derivation and validation
cohorts, and the cph function within the rms package
in R15 was utilized to perform survival analysis using
a Cox Proportional Hazards model. Nested models—
ie, including or not including the phenotypic cluster
assignments—were compared using a likelihood
ratio test.

ANALYSIS OF BIOMARKER VARIABLE IMPORTANCE

IN THE RANDOM FOREST ALGORITHM. A random
survival forest model with all biomarker features
treated as individual features (ie, not combined
within principal components) was created. To assess
the importance of individual features, variable
importance and minimal tree depth was computed
using the gg_vimp and gg_md functions, respectively,
in the ggRandomForest package.16 Cox proportional
hazard modelling was used to evaluate a novel
prognostic biomarker.

All statistical analyses were conducted in the R
environment (version 3.3.1). An overview of the
analysis pipeline is provided in Figure 1.

RESULTS

COHORT DEMOGRAPHICS. The UK derivation cohort
consisted of 426 patients with confirmed DCM. Most
were European (n ¼ 378; 89%), 287 were men (67%),
and most were in NYHA functional class I/II (n ¼ 339;
80%) at the time of recruitment. Median age at
recruitment was 54 years (IQR: 44-64 years). Cardiac
morphology and function are shown in Table 1. There
was moderate-severe left ventricular impairment
with a median left ventricular ejection fraction of
41%. Midwall myocardial fibrosis was present in 137
patients (32%), 120 (28%) had left bundle branch
block (LBBB), 123 (29%) had controlled hypertension,
and 48 (11%) had diabetes mellitus.

The Dutch validation cohort consisted of 239 pa-
tients with confirmed DCM. Most were European
(n ¼ 231; 97%), 154 were men (64%), and most were in
NYHA functional class I/II (n ¼ 174; 72.8%) at
recruitment. The median age at recruitment was 55
years (IQR: 47-64 years). Cardiac morphology and
function are shown in Table 1. There was slightly
more ventricular impairment in the validation cohort
with a median left ventricular ejection fraction of
35%. Midwall myocardial fibrosis was present in 91
patients (38%), 58 (24%) had LBBB, 99 (41%) had
controlled hypertension, and 27 (11%) had diabetes
mellitus. The commonest genetic finding was a

https://doi.org/10.1016/j.jacc.2022.03.375
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FIGURE 1 An Overview of the Study Analysis Pipeline
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Machine learning approaches were applied to multiparametric data (clinical, imaging, genetics, biomarkers) from a prospectively recruited UK derivation cohort of

patients with dilated cardiomyopathy (DCM) and identified 3 novel reproducible subtypes of disease: mild nonfibrotic, profibrotic metabolic, and biventricular

impairment. Multinomial logistic regression was used to create a model to place patients in the independent Dutch validation cohort into corresponding subtypes.

Composite survival differed between novel subtypes in both the derivation and validation cohorts. CMR ¼ cardiovascular magnetic resonance;

ECG ¼ electrocardiogram; LAVi ¼ indexed left atrial volume; LGE ¼ late gadolinium enhancement; LVESVi ¼ indexed left ventricular end-systolic volume; NL ¼ the

Netherlands; PCA ¼ principal component analysis; RVESVi ¼ indexed right ventricular end systolic volume; UK ¼ United Kingdom.
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truncating variant in Titin, found in 13% of patients
in both the derivation and validation cohorts
(Table 1).
DEFINING DCM SUBTYPES IN THE DERIVATION

COHORT. Following data preprocessing, 400 study
participants remained in the derivation cohort. We
clustered these 400 individuals in the derivation
cohort using a total of 21 variables comprising
6 CMR-PCA vectors, 5 biomarker-PCA vectors, and 10
clinical variables comprising age, sex, race, diabetes,
hypertension, LBBB, atrial fibrillation, creatinine,
heart rate and the presence of a Titin truncating
variant (Table 1), with NYHA functional class as an
outcome variable. The optimal number of DCM clus-
ters was three, a value robust to multiple runs of
profile regression mixture modeling. These 3 clusters,
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henceforth referred to as phenotypic groups (PGs),
comprised 63% (n ¼ 249), 31% (n ¼ 124), and 7%
(n ¼ 27) of the cohort, respectively (Table 2).

IDENTIFYING A NOVEL PROFIBROTIC METABOLIC

DCM SUBTYPE. About 90% of individuals in each
cluster were European. Age was similar across clus-
ters (Table 2). There was no difference in the median
interval since DCM diagnosis (median: Group 1 0.11
[IQR: 0-0.45], Group 2 0.14 [IQR: 0-0.71], Group 3 0.04
[IQR: 0-1.4]; P ¼ 0.77) among groups (Table 2). Key
differences between groups are also highlighted in
the Supplemental Appendix (Supplemental Table 2,
Supplemental Figure 1). There were a number of dif-
ferences between the groups in terms of fibrosis,
metabolic state, and arrhythmia.

PG1 individuals were notable for the highest pro-
portion of women (41%). They had the mildest cardiac
phenotype with the least impaired left ventricular
ejection fraction, most preserved right ventricular
function, and nondilated atria. Members in this group
did not have myocardial fibrosis. They had the lowest
prevalence of atrial fibrillation, the lowest plasma
concentrations of N-terminal pro–B-type natriuretic
peptide (NT-proBNP) and high sensitivity troponin-I
(hsTnI), and the lowest serum creatinine.

PG2 was a novel profibrotic metabolic subtype of
DCM. Individuals in PG2 had the highest rates of
diabetes mellitus (20% of patients vs 9% and 4% in
PG1 and PG3, respectively; P ¼ 0.002). Strikingly, all
had midwall myocardial fibrosis. Regarding
arrhythmia, 5% of patients had experienced clinically
significant ventricular tachycardia compared with 0%
in other groups (Table 2). With respect to cardiac
structure and function, individuals in PG2 had inter-
mediate values between PG1 and PG3 for several left
ventricular measurements (left ventricular ejection
fraction, and end-diastolic and -systolic volumes) but
similar right ventricular structure and function to
PG1. Those in PG2 also had a higher body surface area
compared with the other groups.

PG3 members had the most severe cardiac pheno-
type, essentially representing the opposite extreme
to PG1, with biventricular adverse remodeling
(enlarged left ventricle, right ventricle, and left
atrium), worst NYHA functional class, and highest
serum levels of NT-proBNP, hsTnI, and creatinine
(Table 2).

There was no difference in a genetic etiology to
DCM between the groups including titin truncating
variants, LMNA variants, or other DCM genetic vari-
ants. In addition, the groups did not differ in terms of
a family history of DCM or a family history of sudden
cardiac death.
In an effort to understand the impact of using
NYHA functional class in profile regression (which
might have generated groupings that only differed by
NYHA functional class) we found PG1 and PG2 had a
very similar distribution of NYHA functional class, in
contrast to PG3, thus lending further support to the
identification of 3 novel subtypes of DCM, indepen-
dent of NYHA functional class.

SURVIVAL ANALYSIS: PGs AND OUTCOME. Prog-
nosis worsened from PG1 to PG2 to PG3 in the deri-
vation cohort (Figure 2); P < 0.0001. We compared
outcomes between individual PGs using an unad-
justed Cox model. All 3 PGs differed from one
another: Cluster 1 vs 2 P ¼ 0.011, Cluster 1 vs 3 P <

0.001; Cluster 2 vs 3 P ¼ 0.003. To evaluate whether
phenotypic groups added prognostic value for sur-
vival beyond conventional measures, a series of nes-
ted Cox proportional hazards models were fitted,
evaluating changes in model likelihood upon addition
of phenotypic groups (Supplemental Appendix,
Supplemental Table 3). Addition of a PG term
improved the fit of a broad range of multiple models
composed of traditional risk factors, suggesting that
the phenotypic groups add prognostic value beyond
clinical, imaging, and proteomic markers (eg, age,
race, sex, left ventricular size and function, family
history of sudden death, NT-proBNP, and right ven-
tricular function). Furthermore, the phenogroups
provided prognostic information above and beyond
the MAGGIC traditional heart failure prognostic score,
increasing the C statistic from 0.60 to 0.76
(Supplemental Tables 3 and 4).

VALIDATION OF NOVEL PHENOTYPIC GROUPS IN

INDEPENDENT COHORT. Patients in the validation
cohort were assigned to phenotypic groups identified
in the derivation cohort using a minimal number of
input variables (5 variables: indexed left ventricular
end-systolic volume, right ventricular end-systolic
volume, indexed left atrial volume, LGE, and serum
creatinine). A model using only these 5 parameters
showed clinical utility: in the independent Dutch
validation cohort of 239 DCM patients, the novel
phenotypic groups were also associated with prog-
nosis (P ¼ 0.027) (Figure 3), resembling the overall
prognosis seen in the derivation cohort. This shows
the feasibility, potential clinical utility, and validity
of the derived phenogroups.

IDENTIFYING IL4RA AS A NOVEL PROGNOSTIC DCM

BIOMARKER. Overall, 60 of the 276 biomarkers
differed significantly between the novel phenogroups
(Supplemental Appendix, Supplemental Table 6).
Random survival forests algorithm was used to
investigate the importance of these protein
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TABLE 2 Comparison of Phenotypic Variables Across Patient Groups in the Derivation Cohort

Group 1
(n ¼ 249)

Mild, Nonfibrotic

Group 2
(n ¼ 124)

Profibrotic Metabolic

Group 3
(n ¼ 27)

Biventricular Impairment P Value

Age, y 52 (44-63) 56 (46-66) 55 (46-66) 0.08

European 88 90 89 0.84

Men 59 85 82 <0.00001

Hypertension 25 35 40 0.04

Body surface area 2.0 (1.8- 2.1) 2.1 (1.9-2.2) 1.9 (1.8-2.0) 0.01

Diabetes mellitus 9 20 4 0.002

Atrial fibrillation 23 27 33 0.24

Ventricular tachycardia (sustained) before enrollment 0.4 5 0 0.007

Nonsustained ventricular tachycardia before enrollment 9 12 22 0.11

Excess alcohol consumption 14 18 22 0.19

Left bundle branch block 28 23 44 0.11

Heart rate, beats/min 74 (62-85) 73 (63-80) 81 (70-92) 0.045

Family history of dilated cardiomyopathy 18 13 19 0.43

Family history of sudden cardiac death 19 12 7 0.11

TTNtv 13 13 11 0.96

LMNA 0.4 0.8 0 0.81

Other sarcomeric/any DCM genetic variant 2 0.8 0 0.67

NYHA functional class <0.00001

I 122 (49) 53 (43) 5 (19)

II 95 (38) 55 (44) 9 (33)

III/IV 32 (13) 16 (13) 13 (48)

Midwall myocardial fibrosis/LGE 0 100 22 <0.00001

Creatinine, mmol/L 81 (68-100) 99 (81-120) 100 (83-130) <0.00001

Beta-blocker 68 81 70 0.03

ACE inhibitor 74 90 89 0.002

Aldosterone blocker 26 48 56 <0.00001

Diuretic 35 54 82 <0.00001

Left ventricular ejection fraction, % 45 (35-52) 37 (28-47) 21 (18-28) <0.00001

Right ventricular ejection fraction, % 55 (46-62) 54 (43-62) 30 (25-44) <0.00001

Indexed left atrial volume, mL/m2 53 (43-66) 59 (47-74) 93 (71-130) <0.00001

Indexed left ventricular end-diastolic volume, mL/m2 110 (100-130) 120 (110-150) 200 (160-220) <0.00001

Indexed left ventricular end-systolic volume, mL/m2 61 (50-82) 75 (57-110) 150 (120-170) <0.00001

Indexed left ventricular stroke volume, mL/m2 49 (41-57) 47 (38-56) 42 (28-51) 0.03

Indexed left ventricular mass, g/m2 83 (68-97) 97 (79-110) 110 (85-120) <0.00001

Indexed right ventricular end diastolic volume, mL/m2 83 (69-99) 84 (68-100) 120 (88-140) 0.00011

Indexed right ventricular end systolic volume, mL/m2 39 (29-50) 38 (28-51) 82 (48-100) <0.00001

Indexed right ventricular stroke volume, mL/m2 45 (37-53) 44 (35-55) 37 (31-44) 0.011

High-sensitivity troponin-I, ng/mL 2.8 (1.1-6.6) 8.9 (4-15) 14 (7-25) <0.00001

NT-proBNP, NPX 1.9 (0.89-3.2) 2.8 (1.4-3.9) 4.4 (3.7-5.7) <0.00001

IL4RA, NPX 2.6 (2.3-2.9) 2.7 (2.4-2.9) 2.9 (2.6-3.4) 0.0004

Interval since diagnosis, y 0.11 (0-0.45) 0.14 (0-0.71) 0.04 (0-1.4) 0.77

Values are median (IQR), %, or n (%). Only biomarkers that were significantly different between dilated cardiomyopathy subtypes are shown. NPX is the arbitrary unit for Olink
biomarker assays. It is a log2 scale; therefore, a 1 NPX difference means a doubling of protein concentration. Groups are compared using the Kruskal-Wallis test for nonnormal
continuous variables and Fisher test for categorical variables.

ACE ¼ angiotensin-converting enzyme; DCM ¼ dilated cardiomyopathy; IL4RA¼ interleukin 4 receptor alpha; LGE ¼ late gadolinium enhancement; NPX ¼ normalized protein
expression value; NT-proBNP ¼ N-terminal pro–B-type natriuretic peptide; NYHA ¼ New York Heart Association; TTNtv ¼ truncating variant in titin gene.
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biomarkers for prediction of survival. The top pre-
dictive feature was serum concentration of
interleukin-4 receptor alpha (IL4RA) (Supplemental
Figure 2). IL4RA is a transmembrane receptor for
interleukins-4 and -13 that is expressed on both
innate and adaptive immune cells. It is associated
with inflammatory and fibrotic pathways.17 IL4RA
levels increased from group 1 to group 3 (Table 2).
IL4RA was strongly associated with outcome in both
the derivation (HR for primary endpoint: 3.6; 95% CI:
1.9-6.5; P ¼ 0.00002) and validation cohorts (HR:
1.94; 95% CI: 1.3-2.8; P ¼ 0.00005). This suggests that
IL4RA is a novel prognostic marker for DCM. In
adjusted analyses, IL4RA remained of prognostic
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FIGURE 2 UK Derivation Cohort: Outcome for the 3 Novel Disease Subtypes
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Phenotypic group 2 (PG2) is a novel distinct profibrotic metabolic subtype of DCM. PG2 patients had the highest rates of diabetes mellitus; all had midwall

myocardial fibrosis, and they had experienced more ventricular tachycardia compared with the other groups. PG2 patients had intermediate values be-

tween PG1 and PG3 for several left ventricular measurements (left ventricular ejection fraction and end-diastolic and end-systolic volumes) but similar right

ventricular structure and function to PG1. Composite survival consists of major arrhythmic events, major heart failure events, or cardiovascular mortality.

Outcome varied by these novel DCM disease subtypes. P value is computed by the log-rank test.
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utility in addition to clinical factors that predicted
outcome in this cohort (indexed left atrial volume,
left ventricular ejection fraction, late gadolinium
enhancement midwall fibrosis on CMR, and a history
of nonsustained ventricular tachycardia), as well as in
addition to conventional prognostic biomarkers
NT-proBNP and hsTnI (Figure 4). Overall, plasma
concentrations of IL4RA were elevated in the DCM
cohort compared with controls (DCM NPX median
2.63 [IQR: 2.38-2.93], control NPX median 2.55 [IQR:
2.31-2.72]; P ¼ 0.037) (outlined further in
Supplemental Methods and Supplemental Table 7).

DISCUSSION

DCM is a phenotypically homogenous condition with
a highly heterogenous etiology that is not currently
used to guide management. In this multicenter in-
ternational study using multiparametric phenomap-
ping, a machine learning approach was used to
identify patterns of mechanistically distinct DCM
subgroups from familiar clinical and biological data
(Central Illustration). Three distinct subgroups of
DCM were identified: 1) a mild, nonfibrotic subtype;
2) a novel profibrotic metabolic subtype; and 3) a
biventricular impairment subtype. These subtypes
were informative for patient stratification and prog-
nosis beyond traditional markers and were repro-
ducible in an independent validation cohort. This
complex multiparametric data could be captured in a
validation model of 5 parameters that could be easily
clinically applicable. These findings may facilitate
more targeted approaches to an increasingly diverse
repertoire of heart failure therapies and provide an
opportunity to identify and better protect DCM pa-
tient subgroups at increased risk of mortality and
morbidity. The identified subgroups could not be
determined with current methods of disease classi-
fication. That these novel subgroups were informa-
tive for prognosis beyond conventional risk models
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FIGURE 3 Dutch Validation Cohort: Outcome for the 3 Disease Subtypes
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The novel disease subtypes in the validation cohort also vary by adverse event risk. Composite survival consists of major arrhythmic events, major heart failure events,

or cardiovascular mortality. P value is computed by the log-rank test.
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highlights the value of this type of approach. This is
the first study to demonstrate the potential value of
machine learning approaches for cardiomyopathy
classification over current approaches.

The novel DCM subtypes identified in this study
may be applied in addition to current risk models to
improve risk stratification. The addition of the novel
subtype term improved the fit of a broad range of
prognostic models composed of traditional risk fac-
tors showing that the phenotypic groups add prog-
nostic value beyond clinical, imaging, and proteomic
markers. In addition, they offer mechanistic insights
into DCM, which may underlie differential response
to heart failure therapy. Our approach opens the
scope to assess whether subtypes of DCM can be
matched to specific therapies as a key direction for
future research. Strategies to improve patient selec-
tion for newer therapies are important to target
benefit, improve compliance, and reduce exposure to
side effects, and are also important from a cost-
benefit perspective.

The identification of a profibrotic metabolic DCM
subtype is a key finding of this study. The phe-
nogroups may help to differentiate patients with
DCM, particularly in relation to comorbidities that are
currently under-recognized in DCM clinical care, in
contrast to the management of patients with heart
failure and preserved ejection fraction. The profi-
brotic metabolic subtype 2 was distinct, with univer-
sal midwall myocardial fibrosis, a much higher
proportion of diabetes, impaired renal function, and
relatively preserved right ventricular function, and
was more likely to have a prior history of ventricular
tachycardia. These findings were not related to age or
genetic differences across groups. Subtypes 1 (mild,
nonfibrotic group) and 3 (biventricular impairment



FIGURE 4 IL4RA Is a Novel Dilated Cardiomyopathy Prognostic Biomarker
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proBNP ¼ N-terminal pro-B-type natriuretic peptide.
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group) may represent 2 poles of severity within DCM,
although they too have distinct clinical characteris-
tics. Subtype 3 was characterized by biventricular
impairment but strikingly much less fibrosis
compared with the profibrotic metabolic subtype 2.
The mild, nonfibrotic subtype 1 was characterized by
more asymptomatic milder disease, absence of
myocardial fibrosis, right ventricular involvement, or
atrial enlargement, and less biomarker derangement.
The differential characteristics of myocardial fibrosis
and prognosis between the subtypes is striking and
highlights the potential of these groupings for clinical
impact.

It is well established that midwall myocardial
fibrosis is a strong prognostic indicator in DCM,4,18

and it would be reasonable to expect that the pro-
portion of patients with midwall myocardial fibrosis
would be highest in subtype 3, the group with
marked biventricular impairment, higher plasma
concentrations of biomarkers associated with an
adverse prognosis (troponin, NT-proBNP), and
greater symptom burden. However, only 22% of
subtype 3 (biventricular impairment) patients had
midwall myocardial fibrosis compared with 100% of
subtype 2 (profibrotic metabolic), which could not
have been predicted based on disease severity or
standard baseline parameters alone. Our approach
separated individuals with myocardial fibrosis into 2
distinct groups, with differing cardiac structure and
function, clinical characteristics, and crucially, also
prognosis. Despite universal myocardial fibrosis, the
prognosis was more favorable in the profibrotic
metabolic subtype 2 compared with the biventricular
impairment subtype 3. Further work is needed to
understand why prognosis differs so markedly be-
tween these disease subtypes. Appropriate medical
therapy may mitigate the potentially adverse prog-
nosis associated with myocardial fibrosis, because
patients in the profibrotic metabolic subtype were
more likely to be taking beta-blockers, but this re-
quires further study.

An important question remains as to whether the
resultant phenotypic groups represent distinct
biology or simply different stages of disease. There
was no statistically significant difference in interval
since diagnosis among subtypes, and all 3 groups had
a median time since diagnosis of <2 months. As out-
lined in the previous text, the 3 subtypes were not
easily distinguished by phenotypic severity alone, eg,
universal myocardial fibrosis in subtype 2 despite less
reduction in left ventricular ejection fraction
compared with subtype 3. Therefore, the groupings
are less likely to reflect different disease stages. Given
the biomarker differences across the groups, we pro-
pose that the novel groupings represent biologically
distinct groups, and future work should focus on
exploring the nature of biological differences be-
tween these groups.

In this study, the presence of genetic DCM did not
stratify between groups and did not seem to affect



CENTRAL ILLUSTRATION Machine Learning Approaches to Dilated Cardiomyopathy Identify 3 Novel
Disease Subtypes

Tayal U, et al. J Am Coll Cardiol. 2022;79(22):2219–2232.

Machine learning approaches applied to a prospectively recruited UK derivation cohort of patients with dilated cardiomyopathy identified 3 novel reproducible disease

subtypes: mild nonfibrotic, profibrotic-metabolic, and biventricular impairment. Prognosis varied among groups and was reproduced in the independent Dutch

validation cohort. The novel profibrotic-metabolic subtype had a high rate of diabetes, universal myocardial fibrosis, elevated creatinine, and preserved right ventricular

function. For clinical application, 5 variables were sufficient for classification. CMR ¼ cardiovascular magnetic resonance; LAVi ¼ indexed left atrial volume; LGE ¼ late

gadolinium enhancement; LV ¼ left ventricular; LVESVi ¼ indexed left ventricular end-systolic volume; RV ¼ right ventricular; RVESVi ¼ indexed right ventricular end

systolic volume.
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prognosis. Titin gene truncating variants, which are
not known to confer additional prognostic risk,11,19,20

were the most common genetic abnormality. There
were few patients with variants in arrhythmogenic
DCM genes that are known to affect outcome
adversely. It could also reflect the importance of the
end phenotype, instead of genetic etiology. This
clustering algorithm was derived and externally vali-
dated in patients on appropriate guideline-directed
medical therapy. Therefore, the disease subtypes may
also reflect treatment response in that subtype 1 is a
cohort that improves in response to therapy, subtype 2
is a metabolic, profibrotic phenotype that could be
targeted with specific therapies to improve outcomes
after guideline therapy, and subtype 3 is a high-risk
advanced phenotype that may need evaluation
for advanced heart failure therapies. Our findings
were validated in an independent cohort who were
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not recruited via CMR and who had on average a more
impaired cardiac phenotype. Although there are dif-
ferences between cohorts, the clinical utility of the
findings of this study are reflected in identifying
similar clusters in an external cohort. Management
strategies were similar in both the derivation and
validation cohorts; yet, subtype 3 in the validation
cohort experienced late-onset adverse events that
were not seen in the discovery cohort. This
difference in morbidity outcome warrants further
investigation, and future work could also evaluate the
progression of the model over time in the same
patients.

The practical utility of machine learning–generated
patient groupings has been difficult to demonstrate,
in part because the number of inputs is often too large
to find in a replication cohort. To more rapidly
translate the findings of this analysis to easily classify
individuals with DCM, an approach using multino-
mial logistic regression was developed whereby a set
of only 5 features was required (left ventricular end-
systolic volume, right ventricular end-systolic vol-
ume, left atrial volume, midwall myocardial fibrosis,
and serum creatinine). This is an important and novel
insight, demonstrating that, beyond discovery
approaches, acquisition of complex multi-omics
data may not necessarily improve patient stratifica-
tion in DCM.

Differences across the novel groupings were eval-
uated to identify which clinical or biomarker features
were most important for DCM outcome. Although
other biomarkers and cytokines such as troponin, NT-
proBNP, and IL-6 had prognostic value, the top pre-
dictive feature of outcomes was serum concentration
of interleukin-4 receptor alpha (IL4RA). IL4RA is a
transmembrane receptor for interleukins-4 and -13
that is expressed on both innate and adaptive im-
mune cells. It is associated with inflammatory and
fibrotic pathways.10 IL4-glucocorticoid signaling is
finely balanced between stress and immune re-
sponses to regulate myocyte proliferation.21 IL4RA
levels for subtypes 1 and 2 were similar compared
with subtype 3, suggesting that it may be a marker of
severity, such as a compensated vs noncompensated
state, not fibrosis. The role of IL-4 in the development
of heart disease is complex, and it has been shown to
have both beneficial and adverse effects in preclinical
studies.10 However, it has not previously been asso-
ciated with outcomes for heart failure or
cardiomyopathy.

STUDY LIMITATIONS. This study comprised 665 par-
ticipants with DCM who had detailed phenotyping
with CMR, genetic analysis, and proteomic study
together with complete outcome data, making it one
of the most comprehensive and unique data sets of
affected individuals. There are, however, a number of
potential limitations to this work. This was a pre-
dominantly ambulatory cohort of patients with DCM
recruited during investigation by CMR, although most
were in a worse NYHA functional class at the time of
initial presentation before therapy initiation. Our
phenomapping classification may not apply to spe-
cific subsets of DCM, such as those with very mild
disease who may not be referred for specialist inves-
tigation or those who are so severe that it prohibits
CMR. Our cohort consists of patients seen in our large
cardiomyopathy service as well as patients referred to
the CMR service for a scan. Within our own institu-
tion, patients will undergo a CMR scan as part of their
routine standard of care and also before device im-
plantation. In addition, our network of referring
hospitals tends to refer patients early on for a CMR
scan to look for evidence of myocardial fibrosis and
any active inflammation. As such, some patients will
have a new diagnosis made in our center, whereas
others will have a new diagnosis made elsewhere and
then referred either for detailed phenotypic charac-
terization by CMR or for specialist evaluation. How-
ever, most patients in this study were enrolled close
to the time of DCM diagnosis—which is reflected in
the very short median time since diagnosis in all 3
groups. An important consideration and potential
confounder is whether the phenotypes identified are
distinct or, for instance, represent patients in
different stages of their disease process or on medi-
cation for different time periods. Our study design
was cross-sectional, and future longitudinal studies
are planned to address this. In particular, they will
aim to address the progression of the model over time
in the same patients and to determine whether pa-
tients move between subtypes over time. Further-
more, in this study, we did not systematically collect
medication duration and class usage over time—this
could potentially affect outcomes and should also be
addressed in future work.

Although the results of this study are generalizable
to other DCM cohorts, an important extension of this
work will be to evaluate whether the cardiac volume
measurements from echocardiography can be used to
classify patients in a similar way and to evaluate the
importance of late gadolinium enhancement in the
model. Advanced CMR features such as T1/T2 map-
ping were not routinely acquired in all patients in this
study. Whether these additional features could
improve patient classification remains to be
evaluated.



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Although

myocardial fibrosis is associated with adverse outcomes in pa-

tients with DCM, other factors further modify risk, and more

precise phenotyping could have important therapeutic

implications.

TRANSLATIONAL OUTLOOK: Adequately powered studies

are needed to evaluate these stratified approaches to the

increasingly diverse therapeutic array for patients with DCM.
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Patients were predominantly of European descent.
Further work on more diverse cohorts should inves-
tigate the effect of ethnicity on phenogroup stratifi-
cation. We elected not to include medications in the
baseline model, because they reflect treatment de-
cisions that are subject to factors other than the dis-
ease itself, such as provider bias, patient tolerance,
patient preference, and renal function.22,23 Moreover,
many patients were studied within days or weeks of
diagnosis at a time when their treatment was rapidly
changing. In addition, this study describes medium-
term outcomes. Longer-term follow-up is planned to
determine the ongoing prognostic implications of
these novel subtypes.

CONCLUSIONS

Machine learning approaches using complex multi-
omics data in DCM robustly and reproducibly
improved disease characterization and patient strat-
ification. Reproducible subtypes of DCM were iden-
tified and were associated with distinct
characteristics and clinical outcomes, which may
reflect different underlying pathologies. In the drive
toward personalized medicine, the subtypes identi-
fied in this study may facilitate more targeted ap-
proaches to an increasingly diverse repertoire of heart
failure therapies.
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