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ABSTRACT

In recent years, data-driven, deep learning-based models have shown great promise in medical risk prediction.
By leveraging the large-scale electronic health record (EHR) data in the Department of Veterans Affairs (VA),
the largest integrated healthcare system in the United States, we have developed an automated, personalized
risk prediction model to support the clinical decision- making process for localized prostate cancer patients. Our
method combines the representative power of deep learning and the analytical interpretability of parametric
regression models. By utilizing different neural network structures, we can either handle time-dependent or static
input. To have a comprehensive evaluation of model performances, we calculate time-dependent C-statistics
Ctd over short (2-yr), mid (5-yr), and long (10-yr) time horizons using either a composite outcome or prostate
cancer mortality as the target event. The composite outcome combines the Prostate-Specific Antigen (PSA) test,
metastasis, and prostate cancer mortality. Our longitudinal model RDSM achieved Ctd 0.85 (0.85), 0.80 (0.84),
0.76 (0.81), and the cross-sectional model DSM got Ctd 0.85 (0.82), 0.80 (0.82), 0.76 (0.79) for 2-yr, 5-yr and 10-yr
for the composite (mortality) outcome, respectively. In addition to estimating an individual’s survival probability,
our models can also quantify the uncertainty associated with the prediction. The uncertainty scores showed a
consistent correlation with the prediction accuracy. We found PSA and prostate cancer stage information were
the most important indicators in the risk prediction. Our work demonstrates the utility of the data-driven machine
learning model in prostate cancer risk prediction, which can play a critical role in the clinical decision system.

Introduction

Prostate cancer is one of the most prevalent cancers among men in the United States. Approximately 12.5% of
men will be diagnosed with prostate cancer during their lifetime1. In the United States, aggressive prostate cancer
screening leads to early diagnosis and medical intervention. However, treatment can incur severe side effects, e.g.,
incontinence, erectile dysfunction2, 3. It is critical to balance the trade-offs between different treatment options
to maximize the quality of life and minimize unnecessary side effects in those unlikely to benefit from treatment.
Localized disease (T1-4, N0, M0)accounts for 74.3% of prostate cancer diagnosis, and 5-yr survival approaches
100%. On the other hand, prostate cancer still accounts for 5.6% of all cancer-related deaths. A comprehensive risk
estimation model for prostate cancer patients will be of great clinical value.

So far, there have been several related studies utilizing different datasets and survival analysis methods 4–8 for
prostate cancer. The rapid advancement in machine learning techniques, in particular, deep learning (DL), has made
it possible to develop a personalized and automated risk prediction model to assist clinical decision making9. One of
the most significant obstacles in developing such a model is the lack of large-scale and high-quality electronic health
record (EHR) data. As the largest integrated healthcare system in the United States, VA has collected more than 20
years of EHR data on 30 million veterans from multiple regions into the VA Corporate Data Warehouse (CDW). Via



the collaboration between the Department of Veterans Affairs (VA) and the Department of Energy (DOE), we have
access to EHR and cancer registry data on more than 100, 000 veterans diagnosed with localized prostate cancer.
Our goal in this study is to take advantage of the large-scale, longitudinal, national EHR data from the VA and
high-performance computing power from the DOE to develop a risk prediction model for localized prostate cancer
patients using cutting-edge DL methods.

Results
Following the patient selection protocol outlined in Fig. 1, our study cohort comprised 112,276 localized prostate
cancer patients, 7663 (3126) patients had the composite (mortality) outcomes before censoring. The median age
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Figure 1. Patient selection flow chart. After gathering all prostate cancer patients diagnosed between 2001-2017 in
the VA cancer registry, we excluded patients satisfying any of the following criteria: 1) late-stage (metastasized)
prostate cancer at the time of diagnosis. 2) No valid PSA test 1yr before diagnosis. 3) No valid Gleason score
(Unknown or < 6). 4) No biopsy record for diagnosis. 5) Having other types of cancer.

at the time of diagnosis was 65.5 yrs. And most of the patients were either white (66%) or black (28%) (Fig. 2).
Table 1 lists the clinical feature distributions of our entire cohort.

We randomly split all the patients into training (80%) and test set (20%) while ensuring the censoring ratio
is consistent. Table 2 shows detailed outcome statistics of training and test sets. Since patients may experience
multiple events before censoring, the number of composite outcomes is less than the sum of three single outcomes.

Table 3 summarizes model performances on the test set at different event horizons of two outcomes. For deep
learning models DSM and RDSM, we used 15% of the randomly selected training data as the validation set and
performed hyper-parameter optimization. The results reported in Table 3 were obtained from the test set using the
models having the lowest loss on the validation set. We adopted a similar strategy for optimizing the two traditional
machine learning models, GBM and RSF, and selected model parameters with the highest Ctd on the validation
set. Whereas for the Cox model, we performed 5-fold cross-validation on the entire training set and reported the
result on the test set using the parameter set having the highest average Ctd in the cross-validation. To maximize the
performance, we performed separate hyper-parameter tuning against two outcomes for each model.

From Table 3, we see that across different time horizons and target outcomes, our proposed deep learning models
consistently outperformed other machine learning models and the Cox model. The cross-sectional model DSM
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Mean PSA(ng/ml) 8.83
Mean age at diagnosis 65.80

PSA counts 7.26
T-Stage 1 70.28%
T-Stage 2 27.96%
T-Stage 3 1.59%
T-Stage 4 0.17%

Gleason Score 6 41.29%
Gleason Score 7 42.32%
Gleason Score 8 9.55%
Gleason Score 9 6.31%
Gleason Score 10 0.53%

Table 1. Clinical feature distributions of the cohort. Here the mean PSA refers the value of the last PSA test prior
to diagnosis. PSA counts is the number of PSA tests up to 10-yrs before diagnosis. The Gleason score is the sum of
primary and secondary score.

Outcome PSA > 50 ng/ ml Metastasis PC mortality Composite Outcome Right-censored

Training set 4199 2410 2494 6130 83690 (93.17%)
Test set 1062 605 632 1533 20923 (93.17%)

Table 2. Event statistics of different outcomes in training and test set.

performed the best for the composite outcome. While for the mortality outcome, the longitudinal model RDSM got
a significantly higher Ctd than the rest of the models.

Uncertainty Quantification
The significance of uncertainty quantification (UQ) is that it yields a meaningful metric about how confident the
model is regarding the prediction. As a bonus of our deep learning approach (See Methods for details), we were
able to calculate v(t | X), the standard deviation of S(t | X) for each prediction. From Table 4 we found that for
both RDSM and DSM, the correlations between the Brier scores and v(t | X) were consistent, i.e., a lower variance
indicated a lower Brier score. This result suggests that v(t | X) is a reliable indicator for UQ, which is of great
importance in real-world clinical decision-making.

Subgroup Analysis
To study how our model perform in different race and age subgroups, we conducted subgroup analysis using the
same train-test protocol as in the full cohort case. Table 5 and 6 show the example results for age subgroup (65-75
yrs) and race subgroup (black), respectively. Results of other subgroups can be found in the supplemental materials.

Compared with Table 3, we see that all models show deteriorating performances across different age groups,
especially for the long-term (10-yr) prediction. A plausible reason is the age specification in each subgroup leads to
the reduced variance in the outcome, which in turn could have a negative impact on the Ctd. Another explanation,
which is more relevant to deep learning models, is the shrinkage of patient numbers in each subgroup ( Fig. 2).
Empirically, deep learning models are susceptible to sample size reduction as they have more parameters to fit than
traditional machine learning and statistical models. But even for the two largest age groups (55-65 and 65-75 yrs,
Table 13 and 5), where the impact of sample size was less severe, the performance gaps were still significant.

Another interesting observation was if we focus on the 10-yr time horizon, the C-index for the composite
outcome was relatively stable, while for the PC-mortality, the C-index first decreased with age, then increased for
the oldest age group (>75 yrs).
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Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.850 0.797 0.755
DSM 0.853 0.796 0.758
GBM 0.849 0.795 0.753
RSF 0.850 0.790 0.746
Cox 0.837 0.787 0.743

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.851 0.836 0.805
DSM 0.821 0.824 0.789
GBM 0.799 0.820 0.786
RSF 0.801 0.818 0.779
Cox 0.805 0.817 0.780

Table 3. Ctd for all tested models at near (2-yr), mid (5-yr) and long (10-yr) time horizons. The left (right) table
shows the Ctd for the composite (mortality) outcome. RDSM (DSM) is designed to handle time-dependent
(-independent) data. See Methods section for details.
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40%
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12%

Under 55 55-65 65-75 Over 75

Figure 2. Distribution of race and age at diagnosis. The "Other" in the race includes all the Asian, Pacific Islander,
Native American people, and patients without valid race information.

On the other hand, Ctd remained more stable in different race groups, at least for the longer-term predictions.
For example, RDSM achieved Ctd 0.84 and 0.78 (0.83), 0.78 (0.78) for 5 and 10-yr PC-mortality prediction in the
Black subgroup (Table 6), while for the White subgroup the corresponding numbers are 0.83 and 0.78, respectively
(Table 15). The insensitivity of Ctd regarding race indicates that race is not a useful indicator in predicting the PC
prognosis for our models.

Ablation Study
Although our deep learning-based models got higher Ctd and lower Brier scores compared to benchmark models, the
black-box nature of deep learning hindered the interpretability. To alleviate the problem, we conducted an ablation
study to quantify how each input feature contributes to the risk estimation of DSM and RDSM.

We divided input features into four categories: PSA, age, race, and cancer stages. For the longitudinal model,
we further included the time-interval information. Our ablation approach was to drop each feature group and track
model performances. Though bear in mind that neural networks in our deep learning models involve non-linear
interactions between each input, we should remain cautious in interpreting the results.

Table 7 shows the ablation results for composite and PC-mortality outcomes. We found that race was the least
important feature for both RDSM and DSM. And the second least important feature was the age at diagnosis,
especially for the composite outcome. This result was consistent with the results of the subgroup analysis. We
also found that the cancer stage information (Gleason score and T-stage) was crucial for the model performances,
especially in the longer-term horizon (5 and 10-yr). Both RDSM and DSM experienced huge performance drops
without PSA-related features for the composite outcome. Naively, it was due to our definition of the composite
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Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.017 | 1.6∗10−3 0.040 | 3.8∗10−3 0.076 | 6.7∗10−3

DSM 0.017 | 2.3∗10−3 0.033 | 4.0∗10−3 0.060 | 6.5∗10−3

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.005 | 1.6∗10−4 0.017 | 4.7∗10−4 0.039 | 8.6∗10−4

DSM 0.017 | 5.0∗10−4 0.016 | 1.1∗10−3 0.038 | 2.5∗10−3

Table 4. Brier scores (first number in each entry) and average variances of S(t) (second number in each entry) for
RDSM and DSM at different event horizons for composite (upper panel) and mortality (lower panel) outcome.

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.788 0.760 0.722
DSM 0.803 0.776 0.727
GBM 0.798 0.768 0.725
RSF 0.803 0.766 0.714
Cox 0.788 0.757 0.710

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.790 0.782 0.711
DSM 0.763 0.780 0.715
GBM 0.759 0.776 0.713
RSF 0.740 0.759 0.709
Cox 0.739 0.767 0.708

Table 5. Age Subgroup (age 65-75) analysis for the composite (left) and PC-mortality (right) outcome.

outcome included a specific value of the PSA test (PSA > 50 ng/ ml). Nevertheless, PSA-related features had a
significant influence on the model performances for the morality outcome as well.

Regional Analysis
One of the most important criteria to assess a model’s generalizability is independent external validation. Unfortu-
nately, we had no such data at our disposal. Instead, we devised a proxy method to approximate independent external
validation. According to the definition of the United States Census Bureau, we first divided all VA facilities into 4
main regions, i.e., Northeast, Midwest, South, and West. Each region accounted for 13%, 22%, 44%, and 19% of
our cohorts1, respectively. Then we trained our model using data from 3 regions and reserved the patients from the
left-out region as the validation group. Table 8 shows the validation results using patients from the Northeast region.
Supplemental materials contain the results for the other three regions. Compared with Table 3, where patients from
different regions were mixed, we found that all models generalized well geographically.

One noticeable exception occurred in the Midwest region (Table 10), where all models performed significantly
worse than other regions for the 2-yr composite outcome predictions. We found the average PSA values were slightly
higher (9.3 vs. 8.9 ng/ml) than the rest of the regions. While other important features (Gleason score, Clinical T)
were quite similar. The PSA difference is unlikely to be solely responsible for the anomalous results. We will leave
the detailed investigation to the future work.

Discussion
In this study, we developed and tested different survival models to predict localized prostate cancer prognosis in
2, 5, and 10-yr time horizons, using routinely available EHR data from the largest integrated healthcare system in
the US. In addition to the conventional PC-mortality outcome, we also considered a composite outcome, which
encompasses the PSA values, metastasis, and PC-mortality. Overall, in terms of the time-dependent concordance

1We treated patients from other US territories as a single group and put them into the training data. They represented 2% of our total
population.
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Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.839 0.782 0.739
DSM 0.844 0.782 0.738
GBM 0.847 0.790 0.743
RSF 0.851 0.792 0.740
Cox 0.839 0.769 0.730

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.867 0.841 0.781
DSM 0.875 0.851 0.797
GBM 0.845 0.834 0.790
RSF 0.843 0.835 0.797
Cox 0.874 0.846 0.808

Table 6. Race Subgroup (black) analysis for the composite (left) and PC-mortality (right) outcome.

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.850 0.797 0.755

RDSM w/o interval 0.840 0.793 0.755
RDSM w/o race 0.848 0.787 0.750
RDSM w/o age 0.845 0.789 0.744

RDSM w/o stage 0.837 0.764 0.718
RDSM w/o psa 0.743 0.730 0.716

DSM 0.853 0.796 0.758
DSM w/o race 0.850 0.794 0.755
DSM w/o age 0.842 0.785 0.739

DSM w/o stage 0.831 0.762 0.718
DSM w/o psa 0.736 0.731 0.717

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.851 0.836 0.805

RDSM w/o interval 0.827 0.839 0.796
RDSM w/o race 0.831 0.834 0.793
RDSM w/o age 0.816 0.826 0.788

RDSM w/o stage 0.795 0.789 0.760
RDSM w/o psa 0.790 0.797 0.762

DSM 0.821 0.824 0.789
DSM w/o race 0.812 0.820 0.785
DSM w/o age 0.798 0.815 0.776

DSM w/o stage 0.793 0.777 0.747
DSM w/o psa 0.780 0.790 0.754

Table 7. Ablation study results for the composite (left) and PC-mortality (right) outcome. For reference, we also
include results with all data on the top row of the table.

index Ctd, two deep learning models RDSM and DSM, outperformed traditional machine learning models and
the Cox model with a moderate margin (Table 3). We also noticed that DSM and RDSM were much faster than
RSF and GBM in training and inference. In the short term scenario (2-yr), all models yielded higher Ctd for the
composite outcome than the PC-mortality outcome. We attribute this result to the low PC-mortality rate within the
first 2-yr of diagnosis, resulting in a more skewed outcome distribution. For the longer period (5 and 10-yr), all
models experienced considerable performance drop for the composite outcome. And the Ctd became lower than the
corresponding PC-mortality prediction. The results suggest that our composite outcome, while being more clinically
relevant for the short-term prognosis management, poses greater challenges for the long-term prediction.

For the PC-mortality outcome, our best model RDSM achieved the C-index 0.807 at the 10-yr time horizon,
which is comparable to other contemporary studies5, 7, 8, 10 using multi-variable approaches with similar input
variables. Although we should address that our results were not validated with external independent data. To
compensate for this limitation, we conducted a regional analysis by dividing the population into geographically
distinct areas and using the left-out region as the test set. With one exception for the Midwest region, all models
demonstrated reasonable generalizability. We will leave a detailed investigation for future work.

We further performed analysis on subgroups stratified by age and race. We found that the performance variances
among different age groups were higher than in race groups, suggesting that age is a more important predictor than
race. We conducted a thorough ablation study and identified that prostate cancer stage information and PSA-related
features were the most important features for both composite and PC-mortality outcomes. We noticed that the
impact of prostate cancer stages (Gleason score and Clinical T) increased over time, while PSA-related features
mattered the short-term (2-yr) predictions the most. The ablation study also justifies the inclusion of PSA values
in our definition of the composite outcome. Another interesting observation from the ablation study was that the
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Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.862 0.824 0.765
DSM 0.856 0.822 0.765
GBM 0.856 0.822 0.761
RSF 0.853 0.818 0.756
Cox 0.858 0.819 0.753

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.881 0.863 0.807
DSM 0.870 0.844 0.799
GBM 0.847 0.843 0.792
RSF 0.850 0.841 0.789
Cox 0.855 0.844 0.790

Table 8. Validation results for the composite (left) and PC-mortality (right) outcome using the Northeast cohort.

longitudinal model RDSM didn’t benefit much from the time interval information. We conjecture it is because the
neural network architecture of RDSM, Recurrent Neural Network (RNN), is a discrete sequential model, which can
be inefficient to learn continuous and irregularly spaced temporal signals without further modification11.

One difference in our study with some previous work5, 6 is that we didn’t include treatment methods, e.g.,
hormone therapy and radiotherapy, as input variables in our models. Our focus is to provide an initial risk estimation
before giving any treatment.

Traditional statistical survival analysis can be roughly divided into three categories: non-parametric, semi-
parametric, and parametric12. The semi-parametric Cox model, and its variants, have been widely adopted in
the clinical survival analysis. The proportional hazards assumption of the Cox model can oftentimes be violated,
especially when the event horizon is long. On the other hand, the parametric method, by assuming the survival
times follow a particular distribution, is efficient and easy to interpret. However, its performance will suffer if the
underlying distribution deviates significantly from the prior distribution. To overcome the limitation, we employed
an ensemble approach by combining a large number of parametric regression models, where their combination
weights and distribution parameters are learned via deep neural networks. The combination of neural network
models and the analytical parametric approach enhances the model performance while preserving interpretability. As
a natural extension of ensemble learning, our deep learning models can provide reliable uncertainty quantification.
We showed that weighted variance of the predicted survival probability S(t) consistently correlated with the Brier
score (Table 4). The reliable UQ will help clinicians make better-informed decisions.

The major strength of our study is that we made use of a large cohort of localized prostate cancer patients
from the VA national medical system. And we tested the various survival models as the benchmark. Our deep
learning models demonstrated sufficient discriminating power plus the capability of uncertainty quantification.
The main limitation of our study was the lack of independent external validation. Thus we couldn’t uncover the
potential difference between veterans and the general population which might impact the performance of real-world
applications.

To conclude, our novel deep learning approach, equipped with uncertainty quantification, can provide ac-
curate individualized risk estimation for localized prostate cancer patients. Our study may further motivate the
implementation of an AI-assisted clinical decision system for prostate cancer prognosis management.

Methods

Population Selection and Data Processing
We used the AJCC TNM staging system13 to select localized prostate cancer patients. TNM denotes the extent of
the primary tumor (T), whether cancer has spread to nearby lymph nodes (N) and distant parts of the body (M). For
prostate cancer, the TNM staging system also considers the PSA level at the time of diagnosis and the Gleason score,
which measures how likely the cancer is to grow and spread. By definition, for all stage I and II patients, the primary
tumor is localized at the time of diagnosis.

Given the importance of the PSA test for prostate cancer, we collected all the PSA test results, up to 10 years
before diagnosis for each patient. Other clinical input features include the Gleason score (range from 6-10), and the
clinical prostate tumor stage, i.e., T-stage in the TNM staging system. Finally, the patient’s age and race information
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were also included. To sum up, the input data for our longitudinal model RDSM consisted of time-ordered PSA
tests, age at each PSA test, and the time distance between each test and the time of diagnosis, plus the Gleason score,
T-stage and the race. Whereas for time-independent models, we replaced the PSA tests with their summary statistics,
which included the number of PSA tests, maximum, minimum, average, last, and penultimate PSA values before
diagnosis, and a binary indicator showing whether the last PSA test elevated compared with the penultimate test.

Definition of Patient Outcomes and Evaluation Metrics
The relatively long survival time and low mortality rate of localized prostate cancer pose a great challenge in risk
estimation. To get a more accurate disease prognosis evaluation over a shorter and practical time scale, we define a
composite outcome:

• Prostate-Specific Antigen (PSA) > 50 ng/ml

• Metastatic diseases

• Prostate cancer mortality

as our event of interest. The event time is the earliest date of any of these three events. The censoring time is 1 year
after the last PSA test. In the cases that patients died of other causes before censoring, the censoring time is the time
of death instead.

To get a better insight into the model performances over time, we calculate the time-dependent concordance-index
Ctd(t)14:

Ctd(t) = P
(
F̂ (t | xi)> F̂ (t | x j) | δi = 1,Ti < Tj,Ti ≤ t

)
(1)

at some truncation time t. Here F̂ (t | xi) is the cumulative distribution function (CDF) at time t, given input feature
X. To account for the high censoring ratio, we adjust Ctd(t) with the inverse probability of censoring weights15.
Additionally, we test our models against the more conventional outcome, namely, prostate cancer mortality. In this
study, we set the truncation time to be 2, 5, and 10 yrs after diagnosis.

Depending on whether the input X is time-dependent, we employed two different deep learning models, Deep
Survival Machine (DSM)16 and Recurrent Deep Survival Machine (RDSM)17. As a benchmark, we also considered
two popular machine learning models, Random Survival Forest (RSF)18 and Gradient Boosting Machine (GBM)
19, and the classical Cox model20–23. And we implemented all three benchmark models using the scikit-survival
package24.

Ctd(t)14 is a good metric in gauging the model performance. However, by definition, it involves pairwise
comparisons between different individuals. For the sake of UQ, it is more appropriate to evaluate the prediction
accuracy using the Brier score25, which is defined as:

BS(t) =
1
n

n

∑
i=1

I (yi ≤ t ∧δi = 1)
(0−S (t | xi))

2

Ĝ(yi)
+ I (yi > t)

(1−S (t | xi))
2

Ĝ(t)
(2)

where S (t | xi) is the predicted survival function with input x, I(·) is the indicator function, and 1/Ĝ is an inverse
probability of censoring weight, estimated by the Kaplan-Meier estimator. By the definition in Eq. (2), Brier score
measures the distance between the predicted survival probability with the true survival status, weighted by the
censoring weights.

Model Overview
Parametric models assume that the survival times or the logarithm of the survival times of the population follow a
particular distribution. For example, the Weibull distribution, which is one of the most used distributions for the
survival analysis, is characterized by the shape parameter k and the scale parameter λ . The corresponding hazard
function takes the form h(t) = λktk−1, which means that the risk can change over time depending on the value of k.

8/13



Compared with the semi-parametric Cox model, the parametric model is free of the proportional hazards assumption,
which may not be realistic in our case, as the time to event is long and risk can vary over time.

However, for the large-scale EHR data collected over a long period and across different locations, a single
distribution function may be insufficient to characterize the whole population without introducing biases toward
some specific sub-groups. Besides, we argue that a single distribution function contains too few parameters to
utilize the rich information embedded in the large heterogeneous dataset. Thus, to increase the model capacity and
reduce the potential bias, we adapt a deep learning-augmented ensemble approach, which was first introduced in
Ref.16, 17. The key idea is to model the conditional survival function S(t | X) , P(T > t | X) as an ensemble of
parametric distributions, while parameters of each distribution function and mixing weights are all learned from a
neural network. This ensemble approach can help lower the variance and increase the out-of-sample performance.
And the expressive power of deep learning models allows us to make more efficient use of patients’ data.
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Figure 3. Model overview. The neural network is responsible for learning the feature representation Φθ (X) given
the input X. The parameters of all k distributions βk, and their mixing weights wk, are learned jointly during the
training.

To begin with, we choose a distribution function P(t,β ), preferably the Log-Normal or Weibull distribution,
because their closed form of CDF can simplify the gradient descent optimization. Here we use β to denote all the
relevant parameters of the distribution function. Then we initialize k such distributions with some random prior
parameters β̃k. The input features xi of patient i, are passed through the neural network Φθ to find the representation
Φθ (xi).

More precisely, we have

βk = β̃k +Φθ (xi) (3)

The mixture weights wk are also learned jointly via the optimization procedure outlined below. Depending on
whether the input data is time-dependent or not, Φθ can be either a Recurrent Neural Network (RNN) or a Multi-
Layer Perceptron (MLP). And we call them RDSM (Recurrent Deep Survival Machine) and DSM (Deep Survival
Machine), respectively16, 17. In practice, we choose either LSTM26 or GRU27 as the concrete realization of the
RNN module in the RDSM model. The training proceeds by calculating the maximum likelihood estimator, which
amounts to minimizing the following loss function:

Lcombined = ELBOU(Θ)+α ·ELBOC(Θ) (4)

where the first term denotes the uncensored loss,

ELBOU =
|D |

∑
i=1

(
E

Z∼(·|xi,w)
[lnP(T = ti | Z,βk,)]

)
, (5)

and the second term is for the censored loss,

ELBOC =
|D |

∑
i=1

(
E

Z∼(·|xi,w)
[lnP(T > ti | Z,βk)]

)
. (6)
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Here α ∈ [0,1] is a discount factor and we treat it as a hyperparameter, and w denotes the mixture weight. To
mitigate the long-tail bias, we add L2 regularization for βk during the training. The final survival probability S(t|X)
is the weighted average over k distributions:

S(t | X) = ∑
w

wkPk(T > t | X ,βk) (7)
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Supplemental Material
The supplemental material contains results of all regional and subgroup analysis. It is worth mentioning that we use
the same parameters as the general case to ensure a fair comparison. We expect that if we perform hyper-parameter
tuning in each case, we could see moderate performance increases for all models. However, the training of two
traditional machine learning models, GBM and RSF, takes significantly larger computational resources than the rest.
For example, training a RSF model on the whole training set (101,048 patients) takes more than 24h to finish, while
two deep learning models (RDSM and DSM) only require a few minutes.

Regional Study Results
Table 9, 10 and 11 show the validation results using patients from South, Midwest and West regions.

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.824 0.788 0.742
DSM 0.836 0.795 0.750
GBM 0.838 0.796 0.752
RSF 0.840 0.796 0.750
Cox 0.833 0.791 0.745

Event Horizon 2-yr 5-yr 10-yr

Model
RDSM 0.813 0.805 0.772
DSM 0.823 0.815 0.779
GBM 0.827 0.812 0.777
RSF 0.828 0.812 0.773
Cox 0.817 0.809 0.774

Table 9. Validation results for the composite (left) and PC-mortality (right) outcome using the South cohort.

Subgroup Analysis Results
The stratification of different age and race subgroups can be found in Fig. 2 of the main text. Table 12, 13, 14 show
the result for three different age groups. Table 15 and 16 show the results for the white and the other race groups.
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