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ABSTRACT
Reference-based multiple imputation methods have become popular for handling missing data in random-
ized clinical trials. Rubin’s variance estimator is well known to be biased compared to the reference-based
imputation estimator’s true repeated sampling (frequentist) variance. Somewhat surprisingly given the
increasing popularity of these methods, there has been relatively little debate in the literature as to whether
Rubin’s variance estimator or alternative (smaller) variance estimators targeting the repeated sampling
variance are more appropriate. We review the arguments made on both sides of this debate, and argue
that the repeated sampling variance is more appropriate. We review different approaches for estimating the
frequentist variance, and suggest a recent proposal for combining bootstrapping with multiple imputation
as a widely applicable general solution. At the same time, in light of the consequences of reference-
based assumptions for frequentist variance, we believe further scrutiny of these methods is warranted to
determine whether the strength of their assumptions is generally justifiable.
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1. Introduction

Reference or reference-based imputation approaches have
become popular for handling missing data in randomized trials
(Carpenter, Roger, and Kenward 2013). They have typically
been used as a sensitivity analysis to a primary analysis which
assumes data are missing at random (MAR). Unlike most miss-
ing not at random (MNAR) sensitivity analysis methods, which
often require specification of the value of sensitivity param-
eters, reference-based methods make assumptions which can
be described somewhat more qualitatively by specifying the
distribution of missing data in the active arm by reference to
the distribution in the reference or control arm. In the case of
a continuous outcome which is measured repeatedly over time,
popular reference-based approaches include Jump to reference
(J2R) and copy reference (CR). In J2R, as described in further
detail in Section 2, the imputation distribution is constructed
by assuming for active treatment group patients with missing
data that marginally their visit-specific means before dropout
are equal to the active group means and after dropout are
equal to the reference group (e.g., control group) visit-specific
means. In CR, all means are taken from the reference group.
Thus, broadly speaking, reference-based methods impute post
dropout outcomes for patients in the active group as if they
switched at the point of dropout to the control treatment.

Although reference-based MI has since its inception tended
to be used for sensitivity analyses for missing data, its core
idea has been adopted more recently to handle intercurrent
events for estimation of certain estimands (Mallinckrodt et al.
2019). Moreover, a recent review of trials published in the
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Lancet and New England Journal of Medicine between 2014 and
2019 showed that the use of reference or control based MI is
increasing in clinical trials (Tan et al. 2021).

An important question when using reference-based MI is
how to estimate the variance of the resulting estimator. Conven-
tionally the variance of MI estimators is obtained using Rubin’s
combination rules. However, as observed by Seaman, White,
and Leacy (2014), for reference-based MI Rubin’s variance esti-
mator is biased upward relative to the repeated sampling vari-
ance of the MI estimator. This bias is due to uncongeniality
between the imputation and analysis models (Meng 1994). Sub-
sequently, a number of authors have discussed the merits of
using either Rubin’s variance estimator (Carpenter et al. 2014;
Cro, Carpenter, and Kenward 2019) or the frequentist variance
(Seaman, White, and Leacy 2014; Lu 2014; Tang 2017; White,
Joseph and Best 2020), but no consensus has emerged. As we
describe in more detail in Section 4, the frequentist variance can
be estimated by analytical approaches such as the delta method
(e.g., as described by Tang 2017) or by bootstrapping (e.g., as
described by Gao, Liu, Zeng, Diao, Heyse, and Ibrahim 2017).

In Section 2, we review reference-based MI methods for
continuous endpoints, the definition of congeniality, and why
Rubin’s variance estimator is biased upward relative to the
frequentist variance of the reference-based point estimator of
treatment effect. In Section 3, we review arguments made in
favor of both Rubin’s variance estimator and the frequentist
variance, concluding that if the assumptions made by reference-
based MI are employed, the frequentist variance is the right one.
In Section 4, we review different approaches for estimating the
frequentist variance of reference-based estimators. In Section 5,
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we report the results of a simulation study for a recurrent event
endpoint, and in Section 6 give some discussion.

2. Reference-Based Multiple Imputation and
Congeniality

In this section we review reference-based multiple imputation
methods and the congeniality issue. The approach was originally
proposed in the context of a repeatedly measured continuous
endpoint assuming a multivariate normal model (Carpenter,
Roger, and Kenward 2013). Subsequently, the idea has been
extended to other endpoint types, including recurrent events
(Keene et al. 2014) and survival times (Atkinson et al. 2019).
To help make the following arguments regarding congeniality
concrete yet (relatively) simple, we first review the J2R approach
for a repeatedly measured continuous endpoint, following Car-
penter, Roger, and Kenward (2013).

2.1. J2R Imputation

We assume that i = 1, . . . , n patients are randomized to either
reference (denoted Xi = 0) or active treatment (Xi = 1).
Patients are scheduled to have the outcome measured at times
j = 0, . . . , J. The outcomes intended to be measured are thus
Yi = (Yi0, Yi1, Yi2, . . . , YiJ). Often there may exist additional
baseline covariates which are to be adjusted for, but to simplify
the key points we do not include these.

For each patient, some measurements may be missing. We
note that depending on the chosen estimand, the actual out-
comes may be observed, but the potential outcomes of interest
under the chosen estimand are missing. We assume that only
monotone missingness occurs, although we note that imple-
mentations of J2R typically handle intermediate missingness
using MAR imputation. Let Di denote the time of the last
observation for patient i. A patient with complete follow-up thus
has Di = J. The MAR assumption says that the probability of
each pattern of missingness occurring depends only on the data
observed under that pattern (Tsiatis 2006), which here means

P(Di = j|Yi0, Yi1, . . . , YiJ , Xi) = P(Di = j|Yi0, Yi1, . . . , Yij, Xi),

that is, that the (marginal) probability of dropping out immedi-
ately after time j does not (statistically) depend on Yj+1, . . . , YJ ,
conditional on the randomized treatment Xi and outcome mea-
surements obtained up to and including time j. Alternatively, as
described by Daniels and Hogan (2008) it can be equivalently
stated as

P(Di = j|Di ≥ j, Yi0, Yi1, . . . , YiJ , Xi)

= P(Di = j|Di ≥ j, Yi0, Yi1, . . . , Yij, Xi),

for j = 1, . . . , J − 1. That is, among those who have not
yet “dropped out” at time j, the probability that they drop out
before time j+1 does not depend on the outcomes Yj+1, . . . , YJ ,
conditional on treatment group and the outcomes measured
through to time j.

Multiple imputation as originally conceived is based on tak-
ing a Bayesian approach, with noninformative priors specified
for the imputation model parameters. In general, to create a sin-
gle imputed dataset in this Bayesian paradigm, step one consists

of taking a draw from the observed data posterior distribution
of the imputation model parameter. This sometimes requires
use of Markov chain Monte Carlo (MCMC) methods. Step two
consists of drawing from the conditional distribution of the
missing data given the observed, with the model parameter set
to the value drawn in step one.

In J2R MI, in the reference arm we assume that Yi =
(Yi0, Yi1, . . . , YiJ) is distributed multivariate normal with a dis-
tinct mean at each follow-up time and an unstructured covari-
ance matrix, and this model is fitted to the observed data
using maximum likelihood, assuming MAR. The same model
is separately fitted to the data in the active arm, with distinct
parameters. To generate an imputed dataset, from each model
a posterior draw is taken of the respective model parameters.
Following Carpenter, Roger, and Kenward (2013), we let μr =
(μr,0, . . . , μr,J)T and unstructured covariance matrix �r denote
the resulting posterior draws of the mean and covariance matrix
in the reference arm, and μa and �a for the corresponding
parameters in the active arm. We then partition the covariance
matrices at time Di as

�r =
[

R11 R12
R21 R22

]

�a =
[

A11 A12
A21 A22

]
.

Consider a patient with observed values Yi0, Yi1, . . . , YiDi
and missing values Yi(Di+1), . . . , YiJ . If they are in the reference
arm, then their missing values are imputed from the conditional
distribution implied by the assumed model under MAR and the
reference arm model parameter posterior draws μr and �r . If
the patient is in the active treatment arm, then they are imputed
using the multivariate normal conditional distribution implied
by assuming that their full data vector has marginal mean equal
to

μ̃i = (μa,0, . . . , μa,Di , μr,Di+1, . . . , μr,J)
T .

and variance covariance equal to

�̃ =
[
�̃11 �̃12
�̃21 �̃22

]
,

where

�̃11 = A11

�̃21 = R21R−1
11 A11

�̃22 = R22 − R21R−1
11 (R11 − A11)R−1

11 R12,

The latter values are those that ensure that the sub-matrix of
�̃ corresponding to the observed measurements matches that
in the active arm and the conditional covariance matrix of the
missing components given the observed matches that in the
reference arm.

The preceding describes the J2R approach. Carpenter, Roger,
and Kenward (2013) also proposed a number of other variants,
including last mean carried forward (LMCF), copy increments
in reference and CR.
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2.2. Uncongeniality of Reference-Based Imputation

Seaman, White, and Leacy (2014) and Lu (2014) both noted that
reference-based imputation approaches were uncongenial with
what would be the standard analysis of the resulting imputed
data, namely a linear regression model of the final time point
outcome, with randomized treatment as covariate (plus other
baseline covariates typically). As such, Rubin’s variance estima-
tor is not unbiased (even asymptotically) for the true repeated
sampling variance of the estimator of treatment effect obtained
after using reference-based MI to impute missing values.

To investigate why reference-based MI leads to uncongenial-
ity, we first review the definition of congeniality (Meng 1994;
Xie and Meng 2017). We let Zcom = {(Xi, Di, Yi0, . . . , YiJ); i =
1, . . . , n} denote the complete data, Zmis denote the missing
component, and Zobs denote the observed component. Let θ

denote the parameter of interest, which here is the difference in
mean outcomes between randomized groups at the final time
point, θ = E(YJ |X = 1) − E(YJ |X = 0). In the context
considered by Meng (1994), the imputer and analyst in general
are distinct entities, whereas in the present context of clinical
trials they are the same person. In the absence of any other
baseline covariates, the analysis model is a linear regression
model for YJ with Y0 and X as covariates. In Meng’s terminology,
the “analyst’s complete data procedure” is the ordinary least
squares estimator of the coefficient of X in this regression, which
we denote θ̂A(Z̃com), where A stands for analyst and Z̃com is
an arbitrary complete dataset. The analyst’s variance estimator,
WA(Z̃com), is the standard model based variance estimator from
linear regression for the coefficient of randomized treatment
group X.

Following Xie and Meng (2017) and Bartlett and Hughes
(2020), the imputation model and the analyst’s complete data
procedure are said to be congenial if there exists a unifying
Bayesian model (referred to by IA) which embeds the imputer’s
imputation model and the analyst’s complete data procedure, in
the sense that

1. For all possible complete datasets Z̃com,

θ̂A(Z̃com) = EIA(θ |Z̃com) and

WA(Z̃com) = varIA(θ |Z̃com) (1)

where EIA and varIA denote posterior expectation and vari-
ance with respect to the embedding Bayesian model;

2. For all possible Z̃mis,

f I(Z̃mis|Zobs) = f IA(Z̃mis|Zobs) (2)

where f I(Z̃mis|Zobs) denotes the predictive distribution
for the missing data used by the imputation model and
f IA(Z̃mis|Zobs) is the predictive distribution for the missing
data given the observed data under the embedding Bayesian
model.

To see more clearly why reference-based MI leads to uncon-
geniality, following Seaman, White, and Leacy (2014) and Car-
penter et al. (2014), we consider an unrealistic but instructive
situation where we omit the baseline measurement Y0 and set
J = 1. Thus now D = 0 indicates that the single outcome
Y is missing and D = 1 indicates Y is observed. With no

baseline measurement, the analyst’s complete data procedure
reduces to calculating the difference in mean of Y between
those randomized to active (X = 1) and those randomized to
reference (X = 0):

θ̂A(Z̃com) =
∑n

i=1 YiXi∑n
i=1 Xi

−
∑n

i=1 Yi(1 − Xi)∑n
i=1 1 − Xi

(3)

The J2R imputation model in this highly simplified case assumes
that

Y|D = 0, X = 0 ∼ N(μr , σ 2
r ),

Y|D = 1, X = 0 ∼ N(μr , σ 2
r ),

Y|D = 0, X = 1 ∼ N(μr , σ 2
r ),

Y|D = 1, X = 1 ∼ N(μa, σ 2
a ), (4)

such that all outcomes have mean μr except those in the active
arm with D = 1, who have mean μa. The J2R imputation
model for the missing data can be embedded in a model for
the complete data with f (Y , D, X) = f (Y|D, X)P(D|X)P(X) in
which f (Y|D, X) is given by the normal models in equation (4)
and P(D = 0|X = x) = πx, x = 0, 1, so that E(D|X =
x) = 1 −πx. We do not specify P(X) (although we know its dis-
tribution from the randomization scheme), but rather perform
inference conditional on X. With this embedding model, the J2R
imputation procedure satisfies the second part (Equation (2)) of
the congeniality definition by construction.

Given an arbitrary complete dataset Z̃com, under the model
embedding J2R imputation the MLE of μr is the mean outcome
combining the reference arm patients with those in the active
arm with D = 0, which can be expressed as:

μ̂com
r =

∑n
i=1 Yi(1 − DiXi)∑n

i=1 1 − DiXi
,

and the MLE of μa is the mean outcome in those with X = 1
and D = 1:

μ̂a =
∑n

i=1 YiDiXi∑n
i=1 DiXi

Lastly, the MLE of πx for x = 0, 1 is simply the sample
proportion with D = 0 in the X = 0 and X = 1 treatment
groups. Then under the embedding model we have that

θ = E(Y|X = 1) − E(Y|X = 0)

= E [E(Y|X = 1, D)|X = 1] − E [E(Y|X = 0, D)|X = 0]
= E [μr + (μa − μr)D|X = 1] − E(μr|X = 0)

= μr + (μa − μr)E(D|X = 1) − μr

= (μa − μr)(1 − π1). (5)

The MLE of θ given complete data under the embedding model
follows from this expression under the invariance property of
MLE. Morever, for large n the posterior mean under the embed-
ding model is (essentially) equal to the MLE, so that for large n
we have

EIA(θ |Z̃com) = (μ̂a − μ̂com
r )(1 − π̂1)

=
(∑n

i=1 YiDiXi∑n
i=1 DiXi

−
∑n

i=1 Yi(1 − DiXi)∑n
i=1 1 − DiXi

)
∑n

i=1 DiXi∑n
i=1 Xi

, (6)
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which, unlike the analyst’s complete data estimator, uses D, and
is not equal to the analyst’s complete data estimator θ̂A(Z̃com).
Indeed, suppose that in the active arm virtually all patients
were missing their outcomes, such that π̂1 ≈ 1. In this case
EIA(θ |Z̃com) ≈ 0, whereas the analyst’s complete data estimator
is not (in general). Thus the first part of the first condition in the
congeniality definition is not satisfied.

Despite the fact that the analyst’s complete data estimator
does not in general match the complete data posterior mean
under the embedding model, the J2R MI estimator for θ which
uses the analyst’s complete data estimator is equivalent (with an
infinite number of imputations) to the Bayesian posterior mean
under the embedding model. To see this, following Seaman,
White, and Leacy (2014) and Carpenter et al. (2014), consider
the MLE/posterior mean of θ given the observed data under
the model embedding J2R imputation. The only change moving
from the complete data to the observed data is that the MLE of
μr is now based only on reference arm patients with D = 1, so
that

EIA(θ |Zobs) = (μ̂a − μ̂obs
r )(1 − π̂1). (7)

As the number of imputations goes to infinity, and provided n
is sufficiently large for the priors to have essentially no impact,
under J2R MI the active group mean converges to (1 − π̂1)μ̂a +
π̂1μ̂

obs
r , whereas the control group mean converges to μ̂obs

r .
Thus the J2R MI estimator of θ converges to (as the number of
imputations tends to infinity)

(1 − π̂1)μ̂a + π̂1μ̂
obs
r − μ̂obs

r = (μ̂a − μ̂obs
r )(1 − π̂1)

= EIA(θ |Zobs). (8)

Turning to the variance, we must check whether the ana-
lyst’s complete data variance WA(Z̃com) matches the posterior
variance given complete data under the embedding model. The
analyst’s complete data variance estimator could either assume
equal variances for Y in the two groups (i.e., the standard t-
test) or could use the variance estimator which relaxes this
assumption, by estimating the variance separately in each group.
Like Carpenter et al. (2014), we will assume the analyst does the
latter, so that

WA(Z̃com) = v̂ar(Y|X = 1)

na
+ v̂ar(Y|X = 0)

nr
, (9)

where na and nr denote the number randomized to active
and control, and v̂ar(Y|X = 1) and v̂ar(Y|X = 0) are the
sample variances in each treatment group. Assuming the J2R
assumptions (Equation (4)), we have var(Y|X = 0) = σ 2

r . For
var(Y|X = 1), we can use the law of total variance to give that

var(Y|X = 1) = var [E(Y|X = 1, D)|X = 1]
+ E [var(Y|X = 1, D)|X = 1]

= var [μr + (μa − μr)D|X = 1]
+ E

[
σ 2

a D + σ 2
r (1 − D)|X = 1

]
= (μa − μr)

2π1(1 − π1) + σ 2
a (1 − π1) + σ 2

r π1.
(10)

For the complete data posterior variance under the embedding
model, again suppose n is large so that this matches the MLE

estimated variance based on the observed information matrix.
Some algebra shows that this is equal to

varIA(θ |Z̃com) = (1 − π̂1)[
σ̂ 2

r (1 − π̂1)

nr + naπ̂1
+ σ̂ 2

a
na

+ (μ̂com
r − μ̂a)2π̂1

na

]
,

(11)

where σ̂ 2
a is the estimated variance of Y from those with X = 1

and D = 1 and σ̂ 2
r is the estimated variance from the remaining

patients (i.e., X = 0, or X = 1 and D = 0). Equations (9)
and (11) are not the same, as required for the second part of
the first condition in the definition of congeniality. For example,
consider again the case that almost all patients in the active arm
have missing data, such that π̂1 ≈ 1. Then from Equation (6) the
complete data posterior mean is approximately zero and from
Equation (11) its estimated variance is also approximately zero.
In contrast, if π1 ≈ 1, from equation (10) Var(Y|X = 1) ≈ σ 2

r ,
and the analyst’s complete data variance estimator of Equation
(9) will (on average) estimate σ 2

r (n−1
a + n−1

r ), that is, greater
than zero. Thus the second part of the first condition in the
congeniality definition is also not satisfied.

Rubin’s rules variance estimator is based on decomposing the
posterior variance of θ under the embedding model as

varIA(θ |Zobs) = EIA
[

varIA(θ |Z̃com)|Zobs
]

+ varIA
[

EIA(θ |Z̃com)|Zobs
]

Rubin’s rules approximates the first part, the within-imputation
variance, by substituting WA(Z̃com) for varIA(θ |Z̃com). Since
as we have seen WA(Z̃com) is too large, this component will
be biased upward. Rubin’s rules approximates the second part,
the between-imputation variance, by subtituting θ̂A(Z̃com) for
EIA(θ |Z̃com). Consider again the case where π̂1 ≈ 1. As we have
noted previously, from Equation (6), in this case EIA(θ |Z̃com) ≈
0, and so varIA

[
EIA(θ |Z̃com)|Zobs

]
≈ 0. In contrast, the value

of θ̂A(Z̃com) will vary across imputations, so that the estimated
between-imputation variance will be larger than zero.

In conclusion, the observed data posterior mean of θ under
the embedding model essentially matches the J2R MI estimator
of θ . Rubin’s rules variance estimator is however larger than
the observed data posterior variance under the embedding
model. Assuming the embedding model is correct, the latter
will (asymptotically) estimate the true frequentist variance of the
point estimator correctly, and thus we conclude Rubin’s variance
estimator is biased upward compared to the true frequentist
variance of the point estimator.

Regarding other variants of reference-based MI, positive bias
in Rubin’s variance estimator for a CR-type approach was shown
through simulation by Lu (2014) and Tang (2017) derived ana-
lytical expressions for the frequentist bias in Rubin’s variance
estimator for J2R and CR MI. Gao, Liu, Zeng, Diao, Heyse, and
Ibrahim (2017) showed by simulation upward bias in Rubin’s
variance estimator in the case of repeated binary outcomes. We
note that, as shown for example by Robins and Wang (2000),
there are other settings where Rubin’s variance estimator can be
biased downwards compared to the repeated sampling variance
of the MI estimator.
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3. What is the Right Variance for Reference-Based
Multiple Imputation?

As described in the previous section, for reference-based MI,
Rubin’s variance estimator is biased relative to the true repeated
sampling variance of the point estimator of the treatment effect.
How large the estimated variance of the treatment effect esti-
mator should be is obviously important, since it affects the
advertized precision of the estimated treatment effect and con-
sequently Type I error and power to detect an effect. As expected
given the upward (frequentist) bias in Rubin’s variance esti-
mator, simulation studies have shown that use of reference-
based MI with Rubin’s rules leads to conservative Type I error
control under the null and the potential for substantial power
loss (compared to using the frequentist variance) under the
alternative (Gao, Liu, Zeng, Diao, Heyse, and Ibrahim 2017; Lu
2014; Tang 2017).

Carpenter et al. (2014) argued that the frequentist repeated
sampling variance is inappropriate in the context of using
reference-based MI as a sensitivity analysis to a primary analysis
which handles the missing data under a “baseline” assumption,
for example, MAR. They proposed a principle that for missing
data sensitivity analyses, the variance should be no lower (on
average) than the complete data variance estimator, and they
showed that reference-based MI with the frequentist variance
violates this principle.

Cro, Carpenter, and Kenward (2019) developed this princi-
ple further, considering a trial in which missing data are first
handled using a “primary” set of assumptions about missingness
and second handled using an alternative “sensitivity” set of
assumptions. They defined an information anchored sensitivity
analysis (e.g., an analysis using J2R) as one in which the relative
loss in information about θ caused by missing data is the same
as the loss in the primary analysis. Cro, Carpenter, and Kenward
(2019) argued that in the context of trials, information anchored
sensitivity analyses seem appropriate because, relative to the pri-
mary analysis assumptions, they are neither adding nor remov-
ing information. They showed that reference-based MI such
as J2R are approximately information anchored when Rubin’s
variance estimator is used for inferences, whereas the repeated
sampling variance is information positive—information is being
added relative to an MAR-based analysis.

In contrast, others have argued that the repeated sampling
variance may be more appropriate. White, Joseph and Best
(2020) and Gao, Liu, Zeng, Diao, Heyse, and Ibrahim (2017)
pointed out that using reference-based MI with Rubin’s rules
leads to Type 1 error rates which are too small under the null and
a loss of power under the alternative, and as such when used for
the primary analysis, the frequentist variance may be preferable.

Consider the use of reference-based MI as a primary analysis
estimator of treatment effect. Cro, Carpenter, and Kenward
(2019) quite reasonably point out that it seems very counterin-
tuitive to use a method which apparently is able to make more
precise inferences the more data is lost. As we have seen how-
ever, this is a logical consequence of the strength of the assump-
tion made by reference-based MI methods. If such behavior is
viewed as undesirable, and we believe that in many settings it
may be, then we believe the correct response is to conclude
that the assumptions made by the reference-based approach

are inappropriate, rather than to assign blame to a variance
estimator. Indeed, the uncongeniality issue here is caused by
the fact we are happy to make a (strong) assumption in the
imputation model but not in the analysis. If we truly believe in
the assumption or at least want to perform an analysis supposing
it is true, then we should use it throughout our analysis (i.e., at
both imputation and analysis stages). If we do not believe in it,
or feel it is too strong, then we should not use it.

Turning next to the use of reference-based MI for sensitivity
analyses, we agree with Cro, Carpenter, and Kenward (2019)
that ensuring that sensitivity analyses do not inject or take away
information (precision) relative to a primary set of missing data
assumptions seems like a reasonable principle to adhere to.
However, when considering this statement we believe it is criti-
cal to be careful about the precise meaning of ‘information’. Cro,
Carpenter, and Kenward (2019) implicitly take the view that
information corresponds to estimates of the variance of point
estimators, rather than the true repeated sampling variance of
the point estimators. Relative to an MAR analysis, reference-
based MI estimators such as J2R do inject information when
information is judged in terms of the true repeated sampling
variance of the estimator. Using reference-based MI with Rubin’s
rules to estimate the variance in our view amounts to pretending
reference-based assumptions about missing data are informa-
tion anchored to an MAR analysis, when in actual fact they are
information positive.

In summary, we believe that under a frequentist inference
paradigm, information (precision) should be judged in terms
of the true repeated sampling variance of estimators. If one
wishes to perform information anchored sensitivity analyses,
then we believe the correct solution is to construct missing data
assumptions which differ to those made by the primary analysis
but which genuinely neither add nor remove information,
with information being judged in terms of the estimator’s true
repeated sampling variance. Cro, Carpenter, and Kenward
(2019) propose one possible route to this—adding additional
random noise to the reference-based MI estimator so that its
true repeated sampling variance matches the primary analysis
method’s variance. A drawback of this approach is that it would
then seem difficult to readily communicate the totality of
the missing data assumptions made by such a “added noise”
reference-based MI estimator. We thus believe further research
is warranted to develop sensitivity analysis methods which
are information anchored in the sense described above but
which like reference-based methods can be relatively easily
communicated.

4. Estimating the Repeated Sampling Variance

In this section we review methods for estimating the frequentist
variance of reference-based MI estimators, considering their
relative advantages and disadvantages.

4.1. Analytical Variance Estimators

A number of authors have developed analytical variance estima-
tors for reference-based estimators for various endpoint types.
For a continuous endpoint (Lu 2014) developed a maximum
likelihood estimator with delta method variance under a CR
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assumption. Tang (2015) derived equivalent matrix versions
of Lu’s (2014) CR estimator and accompanying delta method
variance estimator. Tang (2017) derived analytical variance esti-
mators for J2R and CR methods. Gao, Liu, Zeng, Diao, Heyse,
and Ibrahim (2017) applied the general theory developed by
Robins and Wang (2000) to derive analytical variance estimators
for reference-based MI in the setting of repeated binary data.
In all the preceding articles, the analytical variance estimators
show good Type 1 error control under the null in simulations,
and improved power under the alternative compared to using
Rubin’s rules.

Analytical variance estimators have the major advantage of
being computationally fast. Their drawback however is that they
must be derived specifically for each case and implemented in
software. Moreover, as noted by Gao, Liu, Zeng, Diao, Heyse,
and Ibrahim (2017), there are situations where it may be difficult
to derive such variance estimators, for example when interme-
diate missing values are imputed assuming MAR in a first stage
followed by use of reference-based imputation, or perhaps when
different imputation strategies are used for different types of
intercurrent event.

4.2. Congenial Bayesian Approach

An alternative approach is to perform (congenial) Bayesian
inference for the treatment effect under a model which embeds
the reference-based assumptions. This approach was developed
by Lu (2014) and Liu and Pang (2016). Since it is relatively
straightforward to obtain posterior draws of the MAR MMRM
models using existing software, provided one can express the
treatment effect (under the assumed reference-based assump-
tion) as a function of the model parameters (Equation (5) being
an example), one can obtain posterior draws of the treatment
effect under this assumption by simply applying this function
to the posterior draws of the MMRM model parameters. For
large n this approach results in accurate frequentist inferences,
provided the assumed model is correct. We emphasize that here
congeniality is not an issue here because one constructs the
expression for the treatment effect under the assumed reference-
based assumpion—there is no uncongenial analyst complete
data estimator as there is with the reference-based MI approach.

A possible drawback with this approach however is that, like
analytical variance estimators, expressing the treatment effect
as a function of the MMRM model parameters may become
complex and setup specific, for example if one wanted to make a
variety of different imputation assumptions to handle different
types of intercurrent events.

4.3. Bootstrap Variance Estimators

As noted previously, analytical variance estimators and the con-
genial Bayesian approach require problem specific derivations
and implementations. An alternative which avoids this, at the
expense of computational cost, is to use bootstrapping. Gao,
Liu, Zeng, Diao, Heyse, and Ibrahim (2017) proposed applying
nonparametric bootstrapping to reference-based MI estimators
in the context of repeated binary endpoints. Simulations showed
it gave Type I error control close to the nominal level under
the null and superior power to using Rubin’s rules under the

alternative. Gaot, Liu, Zeng, Xu, Lin, Diao, Golm, Heyse, and
Ibrahim (2017) and Diao et al. (2020) similarly used the same
bootstrapping approach for reference-based MI estimators for
recurrent event data, while Quan et al. (2018) examined its
use for reference-based MI with continuous endpoints. Zhang,
Golm, and Liu (2020) examined the performance of bootstrap-
ping when used with a return to baseline type MI approach. We
emphasize that under uncongeniality it is critical for the boot-
strapping to be applied first, followed by multiple imputation.
Approaches based on first multiply imputing missing data and
then bootstrapping are not generally valid under uncongeniality
(Bartlett and Hughes 2020). Also, it is important to note that
consistency of bootstrap variance estimators relies on the sta-
tistical functional in view being smooth in suitable sense (Shao
and Tu 1995). While these conditions have not been verified
for reference-based MI estimators, there is extensive empirical
evidence supporting that the nonparametric bootstrap variance
estimator can deliver accurate frequentist inference when used
with reference-based MI methods.

A major practical drawback to using the bootstrap is its large
computational cost. Whereas standard MI is often performed
using a relatively small number of imputations, bootstrapping
requires a much larger number of bootstraps to give accurate
inferences. Moreover, in most implementations of MI, draws
from the observed data posterior distribution of the model
parameters are required in order to make the imputations
“proper” and for Rubin’s variance estimator to be valid. For
certain models this may require running computationally inten-
sive methods such as Markov Chain Monte-Carlo (MCMC),
which also necessitate consideration of how many iterations to
run the chains for to achieve stationarity and independence of
draws. However, if bootstrap is used for inference, this can all
be avoided since bootstrapping does not rely on Rubin’s rule: it
suffices to generate each imputed dataset conditional on efficient
estimates (e.g., MLE) of the imputation model parameters, as
proposed by von Hippel and Bartlett (2021). To implement this
one needs to make a generally minor modification to existing
software, by skipping the step in the algorithm that performs
the posterior draw.

One might be tempted to reduce computational cost fur-
ther by reducing the number of imputations performed on
each bootstrap sample. This however increases the Monte-Carlo
noise in the treatment effect estimator, leading to a somewhat
less precise effect estimate and wider confidence intervals than
are necessary (Bartlett and Hughes 2020). An alternative boot-
strap approach which overcomes this issue was proposed by
von Hippel and Bartlett (2021). Their approach performs a
small (e.g., two) number of imputations of each bootstrap. The
point estimator is taken as the average of estimates across all
bootstraps and imputations. To estimate the variance of this esti-
mator, they fit a simple random intercepts model to estimate the
between bootstrap and within-bootstrap (between imputation)
variances. Bartlett and Hughes (2020) demonstrated through
simulation that the approach of von Hippel and Bartlett (2021)
provided efficient frequentist valid inferences under unconge-
niality yet is substantially quicker to run compared to apply-
ing standard nonparametric bootstrapping to an MI estimator
which uses a large number of imputations.



STATISTICS IN BIOPHARMACEUTICAL RESEARCH 7

5. Simulations

In this section, we report the results of simulations to demon-
strate the performance of Rubin’s rules and the von Hippel
bootstrap approach to reference-based imputation methods. We
consider the case of recurrent event data. Trials of one-year
duration were simulated with 250 patients in each treatment
group. Event counts were simulated using a negative binomial
model with the R package dejaVu. Under the null hypothesis
event rates were specified as 0.01 (on the days time scale) in
both treatment groups, while under the alternative hypothesis
the event rate was 0.01 in the control arm and 0.005 in the active
arm. A dispersion parameter of 0.25 was used for all scenar-
ios. Dropout completely at random was simulated with each
patient’s dropout time a draw from an exponential distribution
either with rate 0.00025 (leading to 91% of patients completing
follow-up) or 0.0025 (leading to 40% of patients completing
follow-up).

For those patients who dropped out, the event count in the
missing part of their follow-up was imputed either using J2R
or CR assumptions as described by Keene et al. (2014). For
MI with Rubin’s rules ten imputations were generated. Each
imputed dataset was generated conditional on a draw from the
approximate posterior distribution of the model parameters. For
the von Hippel bootstrap approach, two imputations were gen-
erated for each bootstrap sample (200 bootstraps), conditional
on the maximum likelihood estimates of the fitted model to the
corresponding bootstrap sample, as described by von Hippel
and Bartlett (2021). In both cases, a negative binomial regression
model was fitted to each of the imputed datasets, with treatment
as covariate. R code used for the simulations is available at
https://github.com/jwb133/refBasedVar.

Table 1 shows the average log rate ratio estimates for each
method under the null hypothesis, the empirical standard error
(SE) (deviation) of these estimates (“Emp. SE”) and the average
of the method’s estimated SE (‘Est. SE’). The final column indi-
cates the ratio of the SEs. Results are based on 5000 simulations.
In the low dropout scenario, both Rubin’s rules and bootstrap
SEs had small bias relative to the empirical SE. However, for the
large dropout scenario, Rubin’s rules SE was biased upward, for
both J2R and CR, compared to the empirical SE. In contrast, the
bootstrap SEs remained essentially unbiased. In such a scenario,
use of the Rubin’s rules SEs would lead to Type 1 being controlled
a level lower than the nominal level.

Table 1. Simulation results from 5000 simulations under the null hypothesis.

Method Est. log RR Emp. SE Est. SE SE ratio

Low dropout
Rubin J2R 0.000 0.044 0.047 1.058
Bootstrap J2R 0.000 0.044 0.045 1.012
Rubin CR 0.000 0.045 0.047 1.047
Bootstrap CR 0.000 0.045 0.045 1.011
High dropout
Rubin J2R −0.001 0.036 0.052 1.454
Bootstrap J2R 0.000 0.035 0.035 1.005
Rubin CR −0.001 0.039 0.052 1.331
Bootstrap CR −0.001 0.039 0.039 1.005

NOTE: Mean estimated log rate ratio (Est. log RR), empirical standard error (Emp.
SE), mean estimated standard error (Est. SE) and ratio of mean estimated SE to
empirical SE (SE ratio).

Table 2. Simulation results from 5000 simulations under the alternative hypothesis.

Method Est. log RR Emp. SE Est. SE SE ratio

Low dropout
Rubin J2R −0.650 0.049 0.053 1.089
Bootstrap J2R −0.650 0.049 0.049 0.998
Rubin CR −0.659 0.050 0.053 1.068
Bootstrap CR −0.659 0.050 0.050 0.997
High dropout
Rubin J2R −0.398 0.034 0.060 1.754
Bootstrap J2R −0.398 0.033 0.032 0.982
Rubin CR −0.447 0.039 0.060 1.516
Bootstrap CR −0.446 0.038 0.038 0.982

NOTE: Mean estimated log rate ratio (Est. log RR), empirical standard error (Emp.
SE), mean estimated standard error (Est. SE) and ratio of mean estimated SE to
empirical SE (SE) ratio).

Table 2 shows the results under the alternative scenario. In
the low dropout scenario, the J2R and CR estimated effects
were close to the effect that would be seen under MAR (i.e., a
log rate ratio of log(0.5) = −0.69). Under the high dropout
scenario, the treatment effect was diluted considerably toward
the null, with CR less conservative than J2R, as has been seen
previously by others. Again both Rubin’s rules and bootstrap
gave approximately unbiased SEs in the low dropout scenario,
while again Rubin’s rules SEs were biased upward substantially
and the bootstrap SEs were unbiased. In this scenario use of the
bootstrap SEs would lead to materially increased power to detect
a treatment effect.

6. Discussion

It has been known for almost 10 years that Rubin’s variance
estimator is biased upward relative to the true repeated sampling
variance of reference-based estimators of treatment effects in
randomized trials, but there remains no settled view on what is
the right variance to use. Given the increasing use of reference-
based MI in trials, this is not particularly satisfactory. We have
argued that the frequentist variance is the correct variance for
reference-based estimators. If the behavior of the frequentist
variance does not seem appropriate to the analyst, for example,
because it decreases as the amount of missing data in the active
arm increases, then our view is that this means the analyst does
not really belief the assumptions made by the reference-based
approach.

In the context of performing missing data sensitivity analy-
ses, the proposed principle that sensitivity analyses should be
information neutral, or anchored, seems eminently sensible.
However, we believe that provided we are operating under the
frequentist paradigm, information here must be judged in terms
of repeated sampling variance. In our view, using reference-
based MI with Rubin’s variance estimator amounts to using
a point estimator that is not information anchored but then
using a variance estimator that falsely suggests it is information
anchored. Further research is warranted to develop new sensi-
tivity analyses which retain the attractive features of a reference-
based type approach, where assumptions are structured qual-
itatively, rather than quantitatively, but which are information
anchored in the frequentist variance sense.

Historically, reference-based estimators have tended to be
mostly used as sensitivity analyses to a primary analysis which

https://github.com/jwb133/refBasedVar
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adopts the MAR assumption. However, such methods, and
combinations of them are being increasingly used to develop
estimators which might be used as the primary analysis method
of trials (e.g., Darken et al. 2020). In this context, it is clearly
important to assess whether the strong assumptions potentially
made by the missing data assumptions of such approaches
are justifiable, particularly in light of what they imply for the
repeated sampling variance of the treatment effect estimator.

We have suggested that a particular way of combining boot-
strapping with MI can be used to obtain estimates of frequentist
variance of reference-based MI estimators. Because Rubin’s rules
are no longer used, the imputation process does not need to be
“proper,” and imputation can instead be performed conditional
on maximum likelihood estimates. As described by von Hip-
pel and Bartlett (2021), to implement this in software should
in most cases require relatively small changes, since the part
that performs the draw from the posterior distribution (e.g.,
via MCMC sampling) can simply be skipped. In R, J2R MI is
implemented for continuous endpoints using this approach in
the mlmi package, while the RefBasedMI package (https://
github.com/UCL/RefbasedMI), currently under development,
has an option that allows the user to impute conditional on the
MLE for a much wider range of reference-based assumptions
for continuous endpoints. The R package dejaVu implements
reference-based MI for recurrent event data, as proposed by
Keene et al. (2014), and also includes an option to impute condi-
tional on the maximum likelihood estimates. The calculations to
implement the bootstrap/MI approach proposed by von Hippel
and Bartlett (2021) are relatively simple, but for R users they are
implemented in the bootImpute package.
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