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Spatial connectivity is an important consideration when modelling
infectious disease data across a geographical region. Connectivity can arise
for many reasons, including shared characteristics between regions and
human or vector movement. Bayesian hierarchical models include structured
random effects to account for spatial connectivity. However, conventional
approaches require the spatial structure to be fully defined prior to model
fitting. By applying penalized smoothing splines to coordinates, we create
two-dimensional smooth surfaces describing the spatial structure of the
data while making minimal assumptions about the structure. The result is
a non-stationary surface which is setting specific. These surfaces can be
incorporated into a hierarchical modelling framework and interpreted
similarly to traditional random effects. Through simulation studies, we
show that the splines can be applied to any symmetric continuous con-
nectivity measure, including measures of human movement, and that the
models can be extended to explore multiple sources of spatial structure in
the data. Using Bayesian inference and simulation, the relative contribution
of each spatial structure can be computed and used to generate hypotheses
about the drivers of disease. These models were found to perform at least as
well as existing modelling frameworks, while allowing for future extensions
and multiple sources of spatial connectivity.
1. Introduction
When modelling infectious disease data across a geographical region, it is
important to account for potential spatial connectivity between areas. For
example, spatial connectivity may arise from human or vector movement con-
tributing to the spread of a vector-borne disease, or unobservable climatic,
behavioural, biological and socio-economic factors shared between areas.
Conventionally, Bayesian hierarchical models aim to account for this spatial
connectivity by including spatially structured random components within the
model [1–3]. Fully Bayesian modelling approaches require the spatial structure
of components to be defined prior to model fitting. However, the spatial struc-
ture of the data may not be fully known. A recent systematic review found that
all Bayesian hierarchical models for mosquito-borne diseases used a distance-
based spatial structure, assuming connectivity between regions only exists
between neighbours or close observations [4].

Spatial autocorrelation in disease count data may be attributable to multiple
sources of connectivity. For example, dengue incidence is associated with climate
variation, vector control interventions and levels of immunity in the population
which are likely to be shared between close regions [5]. However, dengue is
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also influenced by human movement which creates links
between distant regions that a distance-based spatial connec-
tivity assumption would not capture [6,7]. Long-distance
connections are particularly important when studying (re-)-
emerging diseases which are largely driven by connections
between areas experiencing active disease transmission and
disease-free areas [8–10]. In these examples, multiple random
terms would be required within a Bayesian hierarchical
model to capture the different sources of connectivity and
quantify the relative importance of each to the disease trans-
mission process.

In this paper, we present a Bayesian hierarchical modelling
framework that uses penalized smoothing splines as a flexible
method for structuring spatial model components. Smoothing
splines use data to inform spatial components, given smooth-
ing assumptions, rather than requiring the full specification
of the spatial structure prior to model fitting [11,12]. The
result is a non-stationary structure which is setting-specific
and requires minimal user assumptions. This approach
allows multiple spatially structured random components to
be incorporated into the same model and can distinguish
between these structures to quantify their relative contribution
to the overall spatial structure. Although this study focuses on
disease mapping models of count data, we also show that this
method can be used for models of binary data.
2. Modelling approach
2.1. Disease mapping
Disease mapping is an important statistical tool used in
epidemiology to explore spatial variation in disease incidence
rates. Disease mapping models can generate and test hypo-
theses about associations between disease and a variety
of potential explanatory variables, such as environmental
and socio-economic factors [2,13]. Typically, disease counts, yi
(i = 1,…, n), are collected across a study area separated into n
contiguous areas. These counts are combined with an offset
log(ξi) describing the underlying population at risk in each
area i. For instance, yi/ξi is the empirical incidence rate in i
when ξi is population count. Where a disease is rare or areas
within the study are small, estimates of the incidence are
highly uncertain and thus unstable and inflated. To overcome
this issue, Bayesian (hierarchical) modelling approaches have
been developed to allow information from connected regions
to be included in the rate estimation using random effects
(data pooling). Conventionally, these models take the form

yi � p(E(yi), c)

and

log(EðyiÞ) ¼ log(ji)þ aþ Si, ð2:1Þ
where p is a suitable count distribution (e.g. Poisson, negative
binomial), E(yi) is the expected count, α is the intercept or
baseline risk, Si are spatially structured random components
and ψ are hyperparameters of the distribution. The definition
of Si (which describes the spatial structure of E(yi) on the log
scale, after correcting for ξi) depends on the disease of interest
and the assumed spatial structure in the data. A recent
systematic review found that spatial statistical models used
to study mosquito-borne diseases only considered distance-
based connectivity when defining the structure of such spatial
random effects [4]. The most common spatial structure
assumed connectivity between regions if and only if they
share a border using a conditional autoregressive (CAR)model

SijS j=i � N

P
j=i WijSjP
j=i Wij

,
s2
sP

j=i Wij

 !
, ð2:2Þ

where Wij are proximity weights, often defined as Wij = 1 if i
and j share a border, and 0 otherwise. Although the conditional
independence assumption intrinsic to neighbourhood-based
spatial structures allows for efficient Bayesian computation
[14], the nature of spatial connectivity is likely to be more
complex and differ across settings. A smooth function with a
structure defined using the data rather than prior to model
fitting provides a flexible alternative and allows spatial
dependency structures to be specific to each setting.

2.2. Penalized smoothing splines
Smoothing splines, or smooth functions, are used in generalized
additive models to explore nonlinear relationships between a
response variable and one or more covariate(s). Smoothing
splines are constructed as a linear combination of basis
functions, bj (functions applied to the covariate(s) at given inter-
vals, determined by the type of smoothing spline chosen),
multiplied by regression coefficients, βj [11]. For example,

f(x) ¼
XK
j¼1

bjbj(x): ð2:3Þ

Where f is a smooth function (the smoothing spline), x is the cov-
ariate of interest and K is the number of ‘knots’, or turning
points, in the smooth function. The number of knots should
be chosen to be large enough that the smooth function ade-
quately describes the data, but not so large that they overfit or
become ‘overly wiggly’. To achieve this, a smoothing penalty
parameter, λ, is introduced and estimated using the data to
avoid overfittingwhenK is too large (e.g. as λ→∞, f(x) becomes
linear) [12].

Regression coefficients β are estimated using restrictedmaxi-
mum likelihood, which imposes a smoothing penalty on the
coefficients of the form

lbTPb , ð2:4Þ
where λ is the penalty parameter introduced earlier and P is a
penalty matrix computed prior to model fitting (based on the
type of smoothing spline chosen) [11,12]. The penalty parameter,
matrix and basis functions can be estimated efficiently using the
mgcv package [15]. Although the mgcv package uses empirical
methods to estimate the parameters defining smoothing splines,
the results can be interpreted from a Bayesian perspective.

2.3. Bayesian interpretation of penalized smoothing
splines

The assumption that smoothing functions f are more smooth
than wiggly can be considered a prior belief on the values
that the coefficients can take. This prior can be formalized
and incorporated into Bayesian inference by assuming the
regression coefficients β have the prior distribution

b � N 0,
P�

l

� �
, ð2:5Þ

where P−/λ is the covariance matrix [11,12]. However, the pre-
cision matrix Pλ is rank-deficient so is instead replaced by
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P0λ0 + P1λ1, where the first term relates to a penalty on the null
space of the smooth function and the second is the wiggliness
penalty [16]. The interpretation of this is that the penaltymatrix
is separated into penalized components through P1 (relating to
wiggly behaviour) and non-penalized components throughP0.
The splines bj(x) and penalty matrices can be efficiently gener-
ated using the jagam function in the mgcv package [16]. The
definition of smoothing splines as linear combinations of
(known) basis functions and (unknown) coefficients means
that they can be entered into hierarchical models [17] and
implemented using Bayesian inferential methods such as
Markov chain Monte Carlo (MCMC). Under these conditions,
the resulting penalized smoothing splines can be interpreted as
random effects [11,18].

2.4. Spatial smoothing splines within Bayesian
hierarchical models

In this study, we applied penalized smoothing splines to
coordinates describing the relative ‘connectivity’ of regions
(e.g. coordinates of the centroid of regions). This created two-
dimensional smooth surfaces describing spatial patterns in
the data. Thin plate regression splines are relatively efficient
at estimating smooths over multiple variables and do not
require a surface to be stationary. In addition, thin plate
regression splines have low posterior correlation between
parameters, which improves mixing when using MCMC
methods [19,20]. If a coordinate system does not currently
exist that describes the connectivity in question, this can be
created from a symmetric continuous measure using multi-
dimensional scaling (MDS). MDS translates a continuous
measure of ‘distance’ or connectivity between observations
onto an abstract Cartesian space and returns a set of coordi-
nates [21]. For example, when connectivity is assumed to
arise due to human movement, this could be defined as a con-
tinuous measure such as the number of air travel passengers,
or an estimate from a movement model, such as a gravity
or a radiation model [22,23], which assumes the number of
people moving between areas is a function of population and
distance. Note that MDS requires the measure of connectivity
to be symmetric, for example, the number of people travelling
to an area is assumed to be equal to the number returning.

Smooth surfaces were defined using splines and included
in Bayesian hierarchical models of count data using the pro-
cedures detailed above. Models were implemented using
NIMBLE [24,25], a flexible program that implements Baye-
sian models created in the BUGS language using MCMC
methods within R [26]. The flexibility of this framework
means that multiple spatially smooth surfaces can be
included in the same model with different connectivity
assumptions (e.g. distance-based and human movement).
Interpreting the smooth surfaces over the various connec-
tivity measures as random means the relative contribution
of each spatial structure can be quantified by calculating
the proportion of the overall variance of the random terms
that is captured by each spatial term.
3. Simulation study 1: a single source of spatial
structure

In this section,we present a simulation study inwhichwe apply
Bayesian spatialmodels todatagenerated fromadistance-based
spatial structure. We compare model performance between the
penalized regression spline approach and a neighbourhood-
based CAR model. A further simulation study assuming a
single source of human movement-based connectivity is
presented in the electronic supplementary material.
3.1. Data generation
Fictitious disease count data were generated from a Poisson
distribution for each of the 1013 municipalities in South
Brazil, the region used in the case study (§5), from model
(2.1). The log of the population divided by 100 000, log(ξi),
was included as an offset (electronic supplementary material,
figure S1). The population of each municipality was taken
from the Brazilian census and described in §5.1. The intercept
term α was set to zero, while the term Si was defined by

Si ¼
ffiffiffiffi
f

p
� sm(xi, zi)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� f)

p
� 1i, ð3:1Þ

where ϕ is a mixing parameter, taking values between 0 and
1, which measures the contribution of each term (if we inter-
pret sm(xi, zi) as random and independent of εi) to the overall
variance of Si, and 1i � N(0, 1). sm(xi, zi) is a continuous func-
tion applied to connectivity coordinates (xi, zi) to emulate a
spatially structured surface (figure 1b, taken from [27]):

sm(x,z) ¼ psxsz(1:2e�ðx�0:2Þ2=s2
x�(z�0:3)2=s2

z

þ 0:8e�(x�0:7)2=s2
x�(z�0:8)2=s2

z ) ð3:2Þ
and

sx ¼ 0:3, sz ¼ 0:4:

To create a distance-based spatial structure, the smooth
function sm was applied to coordinates of the centroid of
municipalities which were scaled to take values between 0
and 1. The function sm(xi, zi) was centred at 0 by subtracting
the overall mean from each value. Eleven simulated datasets
were produced using equation (3.1), setting values of ϕ
between 0 and 1 at intervals of 0.1 (figure 1).
3.2. Modelling approach
Two Poisson models containing spatially structured and
unstructured random components were applied to each
simulated dataset

yi � Poisson(E(yi))
log(E(yi)) ¼ log(ji)þ aþ ui þ vi ð3:3Þ

log(E(yi)) ¼ log(ji)þ aþ 1
t

ffiffiffiffi
f

p
� u�i þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
� v�i

� �
: ð3:4Þ

In model (3.3), ui is a spatially structured term, constructed
using a thin plate regression spline on the coordinates of the
centroid of each municipality, and vi is a spatially unstructured
term, assumed to follow a zero-mean normal distribution,
representing heterogeneity between regions. This spatially
smooth model was compared with a more conventional
random effect approach based on the BYM2 model (model
(3.4)), which is often used to capture spatial structure in disease
mapping [3,28,29]. In model (3.4), u*i are spatially structured
random effects assuming a CAR model with a binary neigh-
bourhood matrix (see equation (2.2)), v*i are unstructured
normal random effects, and ϕ is amixing parameter,measuring
the contribution of each random effect to themarginal variance
(1=t2) of the overall random effect [3,28]. Here, ϕ = 1 represents
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Figure 1. Simulated disease counts (left) and spatial random effects (right) under a distance-based structure using different spatial structure combinations. The
number of cases simulated from a Poisson model and the underlying spatial structure where the data has (a) no spatial structure (ϕ = 0), (b) a distance-based
structure only (ϕ = 1) and (c) equal contribution of both structures (ϕ = 0.5).
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a purely spatial model, equivalent to an intrinsic CAR model
[30], and ϕ = 0 indicates no spatial structure in the data.
Spatially smooth models were fitted usingMCMC simulations
in R via the NIMBLE package [24]. Although the BYM2 model
can be formulated and fitted usingMCMC simulations [31], we
found that most contemporary disease mapping studies use
integrated nested Laplace approximations (INLA) for model
fitting [32]. INLA is an approximate Bayesian inference
approach which provides a more efficient alternative to
MCMC and avoids issues with convergence [14,29]. We com-
pared the spatially smooth model with a BYM2 model fitted
using INLA to ensure we were comparing our results to the
conventional approach. However, to ensure any differences
were not a result of inferential methods, the BYM2 random
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Figure 2. The mean and 95% credible interval of estimated ϕ values extracted from models including a smoothing spline (black) and BYM2 (blue) compared with
the known value (dashed line). Estimated ϕ values for the smoothing spline model were calculated using the proportion of the random effect variance explained by
the spatially structured term and were extracted from INLA output for the BYM2 model.
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effect model was also fitted using MCMC simulations in
NIMBLE and compared with the spatially smooth model.
Results of this comparison are presented in the electronic sup-
plementary material.

Model comparison was based on mean absolute error
(MAE) and Watanabe–Akaike information criterion (WAIC),
an information criterion used to assess the predictive accuracy
of Bayesian models [33]. Lower values of MAE and WAIC are
preferred. The relative contribution of the spatially structured
term, ui, to the overall random terms in the spatially smooth
model was defined as the proportion of the overall random
term variance explained by u (var(u)/var(u + v)). This was esti-
mated using samples from the posterior distribution of u and v.
We compared estimates of the ϕ hyperparameter from INLA,
the relative contribution of ui with the random effect variance
from NIMBLE, and the known proportion of spatial variance
used in the simulation. All analyses were carried out using R
v. 4.1.1 [26]. The code used to simulate data and perform
analyses is available here: https://doi.org/10.5281/zenodo.
7054457 [34].
3.3. Results
We found that the spatial spline model estimates were closer to
the true value of ϕ than the BYM2 model for most simulations
(figure 2 and table 1), and that INLA’s estimates of this parameter
werenot always consistentwith the true value. This indicates that
the spatial spline models were able to identify and quantify the
relative contribution of this spatial structure within the data as
well as (if not better than) INLA’s BYM2 models.

MAEs and WAIC values show that model performance
was similar between the smoothing spline and BYM2 models
(table 1). The WAIC showed the smoothing spline model
performed slightly better on all simulated datasets apart
from one, although the MAE preferred the BYM2 models.
When these approaches were compared with the BYM2
model fitted usingMCMC (electronic supplementary material,
S1), we found that some of these differences appear to be a
result of fitting the model using INLA rather than model for-
mulation itself. However, the objective of this comparison
was not to show that the proposed smooth model outperforms
these approaches, rather that it performs as well as the current
standard. These results illustrate that the smoothing splinewas
able to detect spatial connectivity between neighbouring
regions while being flexible enough to capture alternative
structures. The 95% credible interval (CI) of the intercept coef-
ficient estimate contained the true value 0 for all models for
both approaches (electronic supplementary material, figure
S2).
4. Simulation study 2: two sources of spatial
structure

In this section, we present another simulation study in which
we apply Bayesian spatial models to data generated with two
sources of spatial connectivity: distance-based and human
movement-based.
4.1. Data generation
An extension of the spatial term, Si, in equation (3.1) was
used to generate data with spatial connectivity arising from
two different sources

Si ¼
ffiffiffiffiffiffi
f1

p
� sm(ai, bi)þ

ffiffiffiffiffiffi
f2

p
� sm(ci, di)þ

ffiffiffiffiffiffi
f3

p
� 1i ð4:1Þ

https://doi.org/10.5281/zenodo.7054457
https://doi.org/10.5281/zenodo.7054457


Table 1. Model comparison statistics and mean estimates of the mixing parameter, ϕ, from the smoothing spline and INLA BYM2 models. Mean absolute error
(MAE) and WAIC calculated for the spatial spline and BYM2 models for each simulated dataset. The lowest MAE and WAIC, and the ϕ estimate closest to the
value used in each simulation are highlighted in italics.

ϕ

smoothing spline model INLA BYM2 model

MAE WAIC ϕ estimate MAE WAIC ϕ estimate

0 1.51 996.94 0.041 1.04 1005.79 0.072

0.1 1.54 1030.64 0.121 1.11 1034.29 0.279

0.2 1.33 932.42 0.26 1.04 931.79 0.486

0.3 1.27 909.42 0.253 0.93 912.5 0.572

0.4 1.39 961.67 0.375 1.08 976.12 0.625

0.5 1.54 935.09 0.601 1.21 954.34 0.668

0.6 1.5 881.09 0.512 1.13 973.61 0.757

0.7 1.45 931.85 0.641 1.17 989.24 0.89

0.8 1.63 947.51 0.808 1.37 983.96 0.951

0.9 1.59 876.37 0.918 1.37 922.29 0.963

1 1.48 875.42 0.797 1.25 924.14 0.948

yi si
30 4

0
–4
–8

10

0

(a) (b)

Figure 3. Simulated data containing two sources of spatial structure. Simulated disease counts, yi (a) and spatial random terms, si (b), for South Brazil generated
using equation (4.1), where ϕ1 = 0.4, ϕ2 = 0.5 and ϕ3 = 0.1.
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and

f1 þ f2 þ f3 ¼ 1:

Where sm is a smooth function (equation (3.2)), applied to
coordinates describing distance-based connectivity (ai, bi),
and human movement-based connectivity (ci, di). The coordi-
nates of the centroid of municipalities were scaled to take
values between 0 and 1 and used to describe distance-
based connectivity (ai, bi). As a coordinate system describing
connectivity arising from human movement does not exist,
we applied MDS to an estimate of the number of people
moving between municipalities, generated using a movement
model described in the electronic supplementary material, to
create coordinates ci and di (electronic supplementary
material, figure S3).

In this example, we used three scaling parameters, ϕ1, ϕ2
and ϕ3, to describe the relative contribution of each random
term to the marginal variance. We held ϕ3 constant at 0.1,
with ϕ1 and ϕ2 taking values between 0 and 0.9 at intervals
of 0.1, creating 10 simulated datasets (figure 3).
4.2. Modelling approach
We applied a Poisson spatial model to each simulated dataset
which contained three random terms

yi � Poisson(E(yi))
log(E(yi)) ¼ log(ji)þ aþ u1,i þ u2,i þ vi: ð4:2Þ

Where u1,i is constructed using a thin plate regression spline
applied to coordinates of the centroids of municipalities, and
u2,i is structured using a thin plate regression spline applied
to humanmovement-based connectivity coordinates described
previously. vi is assumed to have no spatial structure and
represents unobserved heterogeneity between municipalities.
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We compared the proportion of the marginal variance
explained by each random term and compared these with the
known ϕ values used in data generation.

4.3. Results
We found that the models were able to accurately estimate
the intercept coefficient value of 0 across most simulated
datasets (electronic supplementary material, figure S4). Esti-
mates of the relative contribution of each random term to
the overall spatial structure were close to ϕ values used in
simulations and were able to detect the increasing contri-
butions of distance-based and human movement-based
terms as the true value increased (figure 4).
Figure 5. Average dengue incidence rate (DIR), 2001–2020 in South Brazil.
The mean annual dengue incidence rate per 100 000 residents in South Brazil
from 2001 to 2020. Data are shown on a log scale.

R.Soc.Interface
19:20220440
5. Case study
This case study uses the Bayesian spatially smooth models
introduced in previous sections to map the spatial patterns
of dengue incidence in South Brazil between 2001 and 2020.

5.1. Data description
We obtained annual notified dengue cases for each of South
Brazil’s 1013 municipalities between 2001 and 2020 from
Brazil’sNotifiableDiseases Information System, freely available
via the Health Information Department, DATASUS (https://
datasus.saude.gov.br/informacoes-de-saude-tabnet/). To
explore the pattern of disease over the whole period, we
took the average annual number of cases over the period
and rounded this to the nearest whole number. The annual
population for each municipality was obtained from the
Brazilian Institute of Statistics and Geography (IBGE) via
DATASUS (http://tabnet.datasus.gov.br/cgi/deftohtm.exe?
ibge/cnv/poptbr.def) over the same period and aggregated
in the same way. We used the population divided by 100 000
as an offset tomodel the dengue incidence rate (DIR), ameasure
used by the Brazilian Ministry of Health to monitor dengue
outbreaks. South Brazil was previously thought to be protected
fromdengue due to its temperate climate, with winter tempera-
tures too low for the primary vector, Aedes aegypti, to breed
and transmit the disease. However, recent studies have shown
that the northern part of the South region now experiences out-
breaks, thought to be due to increasing temperatures (figure 5,
[35]). The data show a clear distance-based spatial pattern in
this region. However, studies of other temperate regions of
South America, such as Argentina, have hypothesized that
increased outbreaks in cooler regions may be a result of
human movement into previously protected cities [7,36]. Data
used in this case study are available from https://doi.org/10.
5281/zenodo.7054457 [34].

5.2. Modelling approach
We applied a negative binomial model to the average annual
dengue cases, using the log of the population divided by
100 000 as an offset to explore the DIR in South Brazil.
A negative binomial distribution was assumed to account
for possible overdispersion in the dengue case count [5].
Model (4.2) was applied to the data, spatial random terms
were structured by applying thin plate regression splines
to the coordinates of the centroids of municipalities
(u1,i, assuming distance-based connectivity), and human
movement-based connectivity coordinates described in §4
and the electronic supplementary material (u2,i).

5.3. Results
The model found that human movement did not account for
much of the spatial structure of the data in this region (ϕ2 =
0.003, 95% CI: 0, 0.012), and most of the variation could be
attributed to the distance-based random term (ϕ1 =0.85, 95%
CI: 0.823, 0.876, figure 6). The human movement data used
to create these random effects were only able to capture
movement between cities in South Brazil. However, out-
breaks in temperate regions such as this are likely to be
triggered by the movement of people from endemic regions
elsewhere in Brazil into the South [7].

Estimates of each random term and the combined total
were extracted and plotted to generate hypotheses about
these patterns (figure 7). Most of the spatial structure came
from the distance-based random term, which shows the high-
est risk was in the northwest and that the risk decreased
to the south. This area of increased risk is the same region
which was found to have an increase in the number of
months per year with temperatures suitable for dengue trans-
mission since 2010 in a previous study [35]. This model could
be extended to include temperature and other variables
known to influence dengue risk.
6. Discussion
In this paper, we have shown that penalized smoothing
splines present a flexible alternative to CAR-based structures
of spatial random effects that allow multiple sources of
spatial connectivity to be considered within the same
model. Smoothing splines allow the spatial structure to be
derived from data as part of the model fitting process, produ-
cing a non-stationary spatial surface specific to the data being
considered. This smooth surface can be extracted and plotted

https://datasus.saude.gov.br/informacoes-de-saude-tabnet/
https://datasus.saude.gov.br/informacoes-de-saude-tabnet/
http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/poptbr.def
http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/poptbr.def
https://doi.org/10.5281/zenodo.7054457
https://doi.org/10.5281/zenodo.7054457
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to generate hypotheses about the reasons for this spatial
connectivity which may help identify potential drivers of
disease. Although many disease mapping studies assume a
distance-based structure of connectivity, the smooth spline
approach used here can be applied to any symmetric continu-
ous measure of connectivity, including human movement.
Another benefit of the smoothing spline approach is that
the model structure can be extended to include multiple
sources of spatial connectivity and can produce parameters
quantifying the relative contribution of each structure to the
underlying variance of the data. Although this study has
focused on disease mapping models of count data, we have
shown this method is compatible with other models, such
as logistic models for binary data (see the electronic
supplementary material).

Formulating models in NIMBLE (or other similar coding
languages) and implementing them using MCMC methods
allows for flexibility and complexity in the model structure.
However, these models are more likely to face issues with
convergence than approximate methods such as INLA [14].
MCMC methods may also take longer than INLA to fit
models if convergence is an issue, although this is not
always the case when using NIMBLE [37].

One of the main benefits of using penalized smoothing
splines over CAR-based priors is that they can be applied
to any symmetric continuous measure of connectivity. How-
ever, the most appropriate measure may not always be clear
or available. For example, human movement-based con-
nectivity can be captured using data to describe regular,
short-distant movement such as commuting within a city,
or long-distance, long-term movement such as migration,
which requires different assumptions [9]. Mobile phone
data have potential to describe short-term movements at
small spatial scales but may be difficult to obtain, and care
must be taken in some settings where bias may arise [38].
Movement models, such as gravity and radiation models,
assume that the number of people moving between
areas can be described as a function of population and
distance [22]. Movement models provide an alternative
when data is unavailable or inappropriate and have been
shown to replicate patterns of movement in large cities and
European countries [23,39]. However, care must be taken
when parametrizing these models, particularly in rural set-
tings [40]. Although distance is recognized as an important
driver of human movement [22], our simulation studies
showed that this approach can distinguish between the rela-
tive contribution of both sources of connectivity to the
overall spatial structure (see §4 and electronic supplementary
material, S4).

One limitation of this method is that the measure of con-
nectivity must be symmetric to produce a spatially smooth
surface. This is often not realistic when considering human
movement, as the number of people moving from smaller
to larger cities is often different to those moving in the oppo-
site direction [41]. In the examples presented in this study, we
assumed that the number of people travelling between muni-
cipalities is equal to the number of people returning. Also, the
models presented in this study only consider a single time
point (or data summarized over a given time period); how-
ever, disease risk is likely to vary over time and models
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may be required to account for inter-annual or seasonal vari-
ation. Data presented in the South Brazil study have been
used elsewhere to show the expansion of dengue outbreaks
into the region and the changes in spatial structure over the
past 20 years [35,42]. The models presented here can be
extended to include temporal covariates or random terms to
account for seasonal and annual trends, and changing spatial
connectivity surfaces to reflect changing patterns of move-
ment. Tensor smooth functions, a type of smoothing spline
which allows interaction between variables measured on
different scales [27], may be incorporated to explore the inter-
actions between time and connectivity. These structures can
be explored to understand changing dynamics of diseases
and generate hypotheses about drivers of change or highlight
areas at risk. Covariates such as climate indicators can also be
included into the models and random term estimates com-
pared to highlight the relative variability in the disease risk
explained by these covariates.

Penalized smoothing splines present a flexible alternative
to conventional random effect structures when constructing
Bayesian hierarchical models. They require minimal user
assumptions beyond smoothness and can be applied to any
symmetric continuous measure of connectivity. By taking a
Bayesian view of these smoothing splines, we can incorporate
multiple sources of spatial connectivity into a complex
modelling framework efficiently and quantify their relative
contribution to the overall spatial structure of the data. This
is particularly useful in infectious disease epidemiology
where the drivers of transmission may be complicated and
not fully understood.

Data accessibility. All data used in this study are open access and avail-
able freely on the internet; see the methods section for more details.
Data and code used to produce this analysis is available from Zenodo
(https://doi.org/10.5281/zenodo.7054457) [34].

The data are provided in the electronic supplementary material
[43].
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