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Abstract 
Policymakers in Africa need robust estimates of the current and future 
spread of SARS-CoV-2. We used national surveillance PCR test, 
serological survey and mobility data to develop and fit a county-
specific transmission model for Kenya up to the end of September 
2020, which encompasses the first wave of SARS-CoV-2 transmission 
in the country. We estimate that the first wave of the SARS-CoV-2 
pandemic peaked before the end of July 2020 in the major urban 
counties, with 30-50% of residents infected. Our analysis suggests, 
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first, that the reported low COVID-19 disease burden in Kenya cannot 
be explained solely by limited spread of the virus, and second, that a 
30-50% attack rate was not sufficient to avoid a further wave of 
transmission.
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Introduction
The potential risk from severe acute respiratory syndrome  
coronavirus 2 (SARS-CoV-2) to Africa was identified early in 
the global pandemic1. As the epicenter of transmission moved 
from East Asia to West Asia and Europe and then to North  
America, there was speculation as to the likely impact of the 
pandemic on the African continent with its young popula-
tions, high infectious disease burden, undernutrition and fragile 
health infrastructure. However, as health systems and econo-
mies of high-income countries strained, the reported burden of  
COVID-19 cases and associated deaths in Africa remained 
low with the exception of South Africa and Northern Africa2. 
The question is whether this is the result of lower risk due to  
demographic structure (young age3, either cross-reacting  
immunity (e.g. pre-existing SARS-CoV-2 cross-reactive T cells4) 
or dampened immunological over-reaction5, a low reproduction 
number from rapidly imposed interventions (such as school  
closures and lockdowns6), environmental conditions (e.g.  
temperature and humidity7), or under-reporting. The reason 
this remains a conundrum is, at least in part, a paucity of good 
quality data to reveal the probable extent of SARS-CoV-2  
spread in African populations.

Following the first confirmed coronavirus disease 2019  
(COVID-19) case in Kenya on 13th March 2020, the Kenyan 
Government moved rapidly, closing international borders, 
schools, restaurants, bars and nightclubs, banning meetings and 
social gathering, and imposing a dusk to dawn curfew and move-
ment restrictions in the two major city counties, Nairobi and  
Mombasa8. The major concerns from unmitigated spread 
were a limited surge capacity of the Kenyan health system9 
and groups of the Kenyan population identified as potentially 
highly vulnerable to infection, due to socio-economic factors 
such as crowded households or lack of access to handwashing,  
and/or severe disease, due to epidemiological factors such as 
higher rates of obesity and hypertension10. Throughout the 
months of April, May and into June 2020 few people in Kenya 
were reported SARS-CoV-2 test positive by polymerase chain 
reaction (PCR), or severely diseased or dying with COVID-19 
as the established cause11. There followed a relaxation of some  
measures in June and July including controlled opening of  
restaurants and places of worship and the removal of travel 
restrictions into and out of Mombasa and Nairobi counties. As 

of 30th September 2020, there were 45,795 laboratory-confirmed 
positive swab tests out of over 340,000 tests (about 13.5%), 
and 749 deaths with a positive test result in Kenya11. This 
should be compared with the 200–250,000 cases and  
30–40,000 deaths attributable to SARS-CoV-2 for similar 
sized countries in Europe (France, Italy, UK) by the end of  
September12.

The reason for this apparently low level of COVID-19  
disease in Kenya is unknown; one possible explanation is 
that SARS-CoV-2 had not widely spread among the Kenyan  
population by the end of September. However, two pieces of 
information suggest that SARS-CoV-2 had already spread  
extensively by the end of September. First, a regionally-stratified  
seroprevalence study of 3098 Kenyan blood donors sam-
pled between May and June reported a national estimate of 
4.3% (adjusted to reflect the population distribution by age, 
sex and region)13. Sero-prevalence was higher in Nairobi 
(7.6%) and Mombasa (8.3%). These levels of seropositivity are  
comparable to those reported in May in the United Kingdom  
(UK)14, April/May in Spain15, and March/April in some United 
States (US) cities16, where high numbers of PCR-positive cases,  
hospitalizations and deaths have also been reported, in contrast to 
Kenya. Second, we noticed that test-positive PCR cases, and daily 
reported test-positive deaths, were declining first inin Mombasa  
(from early July 2020) and then Nairobi (from early August 
2020); respectively Kenya’s second and first largest cities. In 
Europe, declining case and mortality rates have been closely 
associated with non-pharmaceutical interventions (NPIs)17.  
However, in Kenya this went counter to evidence of increased 
mixing, and hence reproduction potential, arising from Google 
Mobility data for these cities which showed a steady rever-
sion in mobility towards pre-COVID-19 intervention levels 
since early April (Fig. S1). These observations, in turn, lead 
to the conclusion that either a smaller than expected propor-
tion of infected individuals have had severe disease, and/or, that  
there has been under-reporting of severe disease.

To investigate these findings, we developed a simple SEIR  
(susceptible-exposed-infectious-recovered) compartmental mech-
anistic and data-driven transmission model for Kenya, which 
integrates three sources of longitudinal data: national time series 
polymerase chain reaction (PCR) tests, the Kenyan serological  
survey and Google mobility behavioural data. The overall  
modelling approach is similar to Flaxman et al.17; that is we 
use time-to-event lag distributions, and the daily incidence 
time series, and, both models generate the daily incidence 
time series using a simple deterministic transmission model 
with the key unknowns being initial numbers of infected indi-
viduals and R(t). Where we differ in approach from Flaxman  
et al.17 is that, instead of using reported test-positive deaths as 
the most reliable data for inferring underlying transmission 
patterns, we use a combination of PCR test-positive and sero-
logical data. The PCR test-positive data informs the model 
on the epidemic trajectory but does not account for likely  
under-detection of cases. This under-detection of cases is inferred 
from the proportion exposed to SARS-CoV-2 evidenced by 
the seroprevalence estimates, hence scaling the incidence esti-
mation. Finally, the mobility data, as a proxy for the contact 
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rate, determines the contribution of the intervention (which 
acts to alter contact patterns) relative to other factors that alter  
incidence and the effective reproduction number, the most 
important of which is the susceptible proportion of the popula-
tion. Our aim is to derive a coherent picture of the SARS-COV-2  
epidemiology in Kenya in the first wave and reveal the historic 
and future patterns of spread across the country and by 
county. Reported deaths are not used as primary data for infer-
ence, but rather the trend in changing rates of reported deaths  
is used as a validation data set for model predictive accuracy 
(see supporting information for description of model validation). 
Reported deaths may be subject to substantial under-reporting,  
and we assume that the bias in under-reporting is consistent  
over time.

Results
Underlying transmission rates in Mombasa and Nairobi 
during the first wave
As at 30th September, a substantial proportion of PCR positive 
tests have been samples from the capital Nairobi (25,182 positive  
tests), while Kenya’s second largest city, Mombasa, has reported 
the next highest number of PCR positive tests (2,056). We 
infer that the underlying rate of new infections peaked on 
May 18th 2020 (CI May 16th - May 21st) in Mombasa and  
July 9th 2020 (CI July 7th - July 10th) in Nairobi, and  
subsequently declined from peak transmission (Figure 1 H, G). 
The model suggests that the PCR test and serology data can be 
explained by the initial presence of <200 infected individuals in  
both Mombasa and Nairobi on 21st February, three weeks 
before the first reported case in Kenya. Thereafter, growth of 
transmission was rapid in both counties. In early March, the 
reproductive ratio was estimated to be 1.94 (CI 1.89-1.98) and  
2.00 (CI 1.97-2.02) in Mombasa and Nairobi, respec-
tively, with associated doubling-time of 4.84 and 4.59 days, 
respectively. After March, the transmission curves flattened  
substantially. This change is consistent with the introduction of  
containment measures by the Kenyan government, and evidence 
of substantial reduction in mobility (see Google Mobility  
data Fig. S1). However, we should note that there was very  
limited PCR testing available in Kenya before April 2020, and 
our estimates of R(t) pre-April 2020 rely on the assumption 
that R(t) dropped by ~45% in late March, in parallel to the drop  
in mobility data (see Methods and supporting data).

From late April, through May and June, and into July the  
evidence suggests movement restrictions became steadily less 
effective. The waning effectiveness of movement restrictions 
results in an inferred increase in R(t) across Kenyan counties 
and an increased rate of epidemic growth (Figure 2). The 
increasing R(t) estimates are broadly in line with predicted 
trends from Google mobility data (supporting information), 
although it should be noted that the R(t) estimates exhibit sec-
ondary fluctuations around the increasing mobility trend  
(Figure 2). In Nairobi and Mombasa we predict that reduc-
tion in susceptibility of the population (Figure 1C,D) caused 
the effective reproductive ratio (R

eff
; the mean number of  

secondary cases accounting for reduced susceptibility) to 
drop significantly below the basic R value from June onwards  

(Figure 2). However, other counties, where the epidemic did 
not establish itself as early as Mombasa and Nairobi, and 
where a substantial majority of the population are likely to still 
be susceptible, now have R(t) estimates which we estimate 
rebounded to the original levels estimated as occurring before  
Kenyan public health measures (Figure 2).

By accounting for the delay of an average of 19 days between 
infection and death (supporting information for details on infec-
tion to death distribution) we find the transmission curve, 
estimated from PCR tests and serology, generates a good  
prediction of the observed trend in daily deaths in Nairobi and 
Mombasa (Figure 1 E, F). We did not use mortality data in trans-
mission model inference, therefore the good fit to the observed 
trend in deaths with a PCR-confirmed test result represents  
an out-of-sample validation of the modelling18. Note, it is the  
distribution of deaths over time, rather than the absolute num-
bers, that we consider to be a good fit. In accord with observa-
tions, we estimate a peak of positive PCR test samples occurred 
at the end of July or early August in Nairobi and earlier,  
mid-June, in Mombasa. The lag between transmission peak  
and positive swab testing peak being explained by both 
the delay between infection and becoming detectable by 
PCR, and the period after an infected individual has ceased 
being actively infectious but remains detectable by PCR19  

(Figure 1 G,H and A,B). As of the end of September 2020 we 
estimate that about 35.4% (CI 29.0%-40.4%) of the Nairobi  
population, and 30.3% (CI 23.6-36.7%) of the Mombasa 
population were serologically positive with SARS-CoV-2,  
(Figure 1 C,D). This estimated level of seropositivity is sub-
stantially higher than has been estimated in some countries 
that have been hit hard by the pandemic14–16. However, they are 
in broad agreement with a study in Niger state, Nigeria, from  
June 202020, as well as seropositivity rates reported from the  
hard-hit city of Manaus, Brazil, in May 202021. Note that these 
estimates of seropositivity at the end of September assume  
both that waning seropositivity would not have had a significant  
effect on serological observations by late September, and 
furthermore that waning immunity leading to re-infection  
remained insignificant by late September.

SARS-CoV-2 attack rates in the first wave in Kenyan 
counties and the estimated crude infection-to-fatality 
ratio
Accounting for the sensitivity of the serological assay, and 
the delay between infection and seroconversion, we estimate 
that the actual exposure of the population to SARS-CoV-2 by  
September 30th was 43.3% (CI 35.3%-49.5%) in Nairobi and 
37.6% (CI 29.2%-45.7%) in Mombasa (Figure 1 C,D). Such levels  
of population exposure are predicted to be associated with 
decreased rates of new cases due to reduced numbers of  
susceptible individuals in these urban populations, although 
this is also influenced by the estimated reproductive number 
and effective population size at risk of exposure (P

eff
). The effec-

tive population size accounts for the impact of heterogene-
ity in the susceptibility, transmissibility and social interactivity 
in the population (supporting information for more details on  
effective population size in transmission modelling); for  
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Figure  1.  SARS-CoV-2  PCR  positive  swab  tests,  seroprevalence  and  deaths  in  Nairobi  and  Mombasa,  Kenya,  with  model 
forecasting. (A) and (B) Weekly reported positive PCR positive swab tests (green dots) for Nairobi (A) and Mombasa (B), model prediction 
of mean weekly detection during both sampling periods when negative PCR test data was unavailable (blue curve), and available (orange 
curve). (C) and (D) Monthly seropositivity of Kenya National Blood Transfusion Service (KNBTS) blood donors in Nairobi (C) and Mombasa 
(D) (green dots), model predictions for population percentage of seropositivity (green curve), exposure to SARS-CoV-2 (red curve), and 
uninfected (blue curve). (E) and (F) Daily deaths with a positive SARS-CoV-2 test in Nairobi (E) and Mombasa (F) by date of death (black dots), 
and model prediction for daily deaths (black curve). Inset plots in (E) and (F) indicate cumulative reported deaths and model prediction. 
(G) and (H) Model estimates for rate of new infections per day in Nairobi (G) and Mombasa (H). Background shading indicates 95% central 
credible intervals. Dates for all graphs mark the 1st of each month.
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Figure 2. Estimated basic and effective reproductive numbers in Kenya since Feb 21st 2020. The posterior mean reproductive 
number for Nairobi (red curves), Mombasa (green curves), and the inter-quartile range (IQR) over mean reproductive number estimates for 
all other Kenyan counties (blue curve and shading). Shown are both the basic reproductive numbers (expected secondary infections in a 
susceptible population adjusted for mobility changes since the epidemic start; solid curves), and effective reproductive numbers (expected 
secondary infections accounting for depletion of susceptible prevalence in the population; dotted curves). The effective reproductive 
number varied significantly from county to county and is not shown except for Mombasa and Nairobi. Restrictions aimed at reducing 
mobility in risky transmission settings (black dotted lines) are labelled in groups. The chronologically ordered restrictions in each group are: 
1) First PCR-confirmed case in Kenya, suspension of all public gatherings, closure of all schools and universities, and retroactive quarantine 
measures for recent returnees from foreign travel, 2) suspension of all inbound flights for foreign nationals, imposition of a national curfew, 
and regional lockdowns of Kilifi, Kwale, Mombasa and Nairobi counties, and 3) additional no-movement restriction of worst affected areas 
within Mombasa and Nairobi, and, closure of the border with Somalia and Tanzania. There were two relaxation of measures in this time 
frame: the end of no-movement restriction to Mombasa and Nairobi, and, the resumption of international air travel.

Nairobi it was inferred as 81.8% of actual population size (CI  
66.7%-93.2%), for Mombasa 71.9% (CI 56.3%-86.5%). The 
effective population size estimates rest upon inferred variation 
in risk across the population. There remains a possibility of 
future increase in transmission if population mobility continues 
to rise, if population mixing patterns alter leading to changed  
risk heterogeneity or if immunity is short lived, leading to a 
rebound in reported cases. One or more of these factors could lead 
either to lengthening the tail after the first peak in cases/deaths,  
or even to a secondary increase in cases and/or deaths.

The inferred IFR
crude

 values for both Nairobi (IFR
crude

 = 0.019% 
(CI 0.014%-0.024%) and Mombasa (IFR

crude
 = 0.022% (CI 

0.016%-0.027%)) are substantially lower than the age-adjusted 
IFR expected for Kenya under full ascertainment from the age-
specific IFR estimated given by Verity et al. (IFR

verity
 = 0.26%22; 

and supporting information). This is a crude observa-
tional value for the infection to fatality ratio, since we do  
not currently have an estimate of the reporting bias of deaths 
of individuals infected with SARS-CoV-2. Therefore, our 
estimate of IFR

crude
 potentially reflects lower detection in  

Kenya compared to China, as well as any lower mortality risk  
due to fewer comorbidities.

We extended our model-based inference to each of the 47 coun-
ties in Kenya (see dataset S1 for parameter estimates, peak 

time estimates and IFR
crude

 estimates for each county). We find 
that, in addition to the two main Kenyan city counties, more  
than 25–30% of the population in each of the semi-urban coun-
ties neighbouring Nairobi (Kiambu, Kajiado, and Machakos) 
had been infected. However, the infection rate is predicted to 
be either lower than 25% and/or subject to high uncertainty in 
other counties (with high uncertainty defined as a prediction  
standard error of > 10% of county population size; Figure 3).

Due to the lag between infection and the observability of the 
infected person (whether by swab PCR test, serology test, or 
death), we estimate that both daily PCR positive test detec-
tions and daily observed deaths attributed to COVID-19 across  
the two main cities, and semi-urban counties neighbour-
ing Nairobi had a peak in early August 2020 (Figure 3 B,C). 
Hospitalisation rates are not available for all Kenyan hospi-
tals. However, sentinel clinical surveillance of severe acute 
respiratory infection (SARI), with or without a PCR test for  
SARS-CoV-2, at 14 county hospitals suggests an increasing rate 
of adult admissions in June and July 202023. However, SARI 
admissions were lower in the early phase of the Kenyan epi-
demic than observed counts from the same months in 2018 and 
201923 and the apparent rise in SARI admissions could repre-
sent a reversion towards pre-COVID numbers; this observation 
underlines the difficulties in using hospital data to understand  
the penetration of SARS-CoV-2 in Kenya.
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Figure 3. Predicting peak timing of transmission rate by Kenyan county, and forecasting of Kenya-wide PCR positive swab 
tests and reported deaths.  (A) Posterior mean estimates for the attack rate (% of population) in each county. Solid shaded counties 
have a posterior standard deviation in their attack rate estimate of less than 10%, candy-stripe shaded counties have greater uncertainty 
associated with their attack rate estimate. (B) Kenya total positive swab tests collected by day of sample (blue dots) with model prediction 
of daily positive swab test trend (red curve). (C) Kenya total reported deaths with a positive swab test (black dots), with model prediction of 
reported death rates (black curve). Inset plot indicates cumulative reported deaths with model prediction of cumulative deaths. Dates on 
(B) and (C) mark 1st of the month.

Conclusions and discussion
Our modelling analysis provides a coherent account of the  
SARS-CoV-2 pandemic in Kenya up to end September 2020. 
Limitations include lacking information on the PCR testing 
denominators for the full time frame, the limited serological  

survey and that we have applied a simple dynamic model. In 
mitigation similar results were obtained when excluding all 
negative tests, and the dynamic model is transparently a fit to 
the data where the availability of the latter is a key strength  
of our study.
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Our analysis suggests that 30–50% of the urban popula-
tion were already exposed by the end of September, and that 
the first wave of the Kenya epidemic peaked in the urban and  
semi-urban counties during a period of relatively little restric-
tions or physical distancing. This level of exposure however was 
not sufficient to prevent a second wave which came shortly after  
the first (October to December 2020), which we assume to have 
resulted from heterogeneous spread of the virus, perhaps due to 
variation in population susceptibility, transmissibility or social 
interactivity

Whilst the full picture of the epidemiology in Kenya will not be 
established until cause-specific mortality data become avail-
able (e.g. from resumption of Demographic Surveillance  
System and verbal autopsy activities), our model, fitted to 
three sources of nationwide longitudinal data, suggests that 
the number of symptomatic COVID-19 cases reported and the 
mortality attributed to the SARS-CoV-2 epidemic are substan-
tially lower in Kenya than in Europe and the USA at a simi-
lar stage of the epidemic. This would remain the case even if  
reported deaths accounted for just 1/10th of the true value. How-
ever, there is insufficient data for speculating on the degree 
of under-reporting and previous estimates of 1 in 4 deaths 
occurring in hospital may not be generalizable to the hospital  
access during the COVID-19 pandemic24.

Late 2020 saw the spread of COVID-19 to more rural areas 
of Kenya, with less infrastructure and access to public health 
facilities and a second wave of SARS-CoV-2. This second wave 
needs to be dissected and understood. Policy makers need to  
balance the direct and indirect health and socio-economic  
consequences of any control measures; a balance that 
becomes more precise as we develop a better understanding  
of SARS-CoV-2 dynamics in Kenya.

Methods
Transmission model definition
The dynamics of transmission in each Kenyan county were 
assumed to follow a SEIR transmission model with an effec-
tive population size parameter (P

eff
)25. The SEIR model with 

effective population size is an extension of the homogene-
ous SEIR model26 with the additional flexibility that P

eff
N out of 

a total population size N in each county is at risk of contracting  
SARS-CoV-2. P

eff 
= 1 recovers the homogeneous SEIR model, 

whereas, P
eff 

< 1, recovers the effect of underlying heterogene-
ity in the transmission potential and risk in the population of 
the county on the aggregate dynamics of epidemic. This aspect 
of heterogeneous models of transmission has been widely  
investigated, for example, in the context of comparing vaccination 
coverage thresholds for elimination between uniform and tar-
geted vaccination policies27. In the context of the SARS-CoV-2  
pandemic modelling literature, the possible role of population  
heterogeneity in decoupling estimates of R

0 
from predictions 

of the “herd-immunity” threshold and final attack rate has 
again been identified28,29. In this study, rather than make strong  
assumptions about the mechanism of population heterogene-
ity, e.g. differential susceptibility, differential rates of social 
mobility etc., we have taken a phenomenological approach; 

the effect of heterogeneity in the population was encoded in the  
effective population parameter P

eff
, and this parameter was 

inferred jointly with R
0
. Our a priori belief was that the most 

probable value was P
eff

 = 1. We assumed that P
eff 

was constant  
over the period of inference.

The model dynamics for each Kenyan county were represented  
as a system of ordinary differential equations,

                              

( ) ( )
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( ) .
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                              (1)

With initial conditions (time 0 is the calendar date 21st Feb  
2020 and all rates are per day),

            
0 0

0 0

(0) ,

(0) , (0) , (0) 0, (0) 0.

ef fS P N E I

E E I I R C

= − −

= = = =
           (2)

Where the dynamic variables S(t), E(t), I(t), R(t) were the 
numbers of susceptibles-at-risk, exposed (but not yet infec-
tious), infectious, and, recovered individuals in the county. 
The full number of susceptibles in the county at any time was  
(1 − P

eff
)N + S(t). C(t) was the cumulative numbers of infected  

individuals in the county.

The incubation-to-infectious rate was σ = 1/3.1 per day, and 
the recovery rate was γ = 1/2.4 per day, implying a mean gen-
eration time of 5.5 days (see Supporting information for a 
comparison to the generation distribution inferred by Ferretti 
et al.30). The instantaneous reproductive ratio R

t 
= R

0
β

t  

decomposed into a basic reproductive ratio R
0 

and an effective 
contact rate β

t
, where β

t 
= 1 represents a pre-pandemic baseline  

contact rate in the population.

Transmission model inference
We used a mixed Bayesian and maximum a-posteriori (MAP) 
approach to parameter inference for each of the 47 Kenyan 
counties, based on daily observations of positive and nega-
tive PCR and serology tests in each county. The likelihood of  
individuals being detectable on any given day was based on 
whether they had been infected before that day, and, the number 
of days since their infection. The number of new infections  
on each day n, was denoted ι

n
. For a given set of model parameters 

ι
n 
was generated by solving the ODE system (1), giving,

                                  ( 1) ( ),n C n C nι = + −                                   (3)

for each day n. Given the daily numbers of new infections, the 
number of people in the county on each day n who are detect-
able by PCR testing, denoted (P+)

n
, and serological testing, 
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(S+)
n
, were given by convolving the new infection time series 

with the probability of (respectively) being detectable by a  
PCR or serological test τ days after infection, Q

PCR
(τ) and Q

sero
(τ):

                                 
( ) [ ]( ),

( ) [ ]( ).
PCRn

n sero

P Q n

S Q n

ι

ι

+

+
= ∗

= ∗
                                 (4)

The log-likelihood function for each county has the form,

Where, ln f
PCR

((ObsP+)
n
|(P+)

n
, θ

OM
), and, ln f

sero
((ObsS+)

n
|(S+)

n
, 

θ
OM

), were, respectively, the log-probability of observing 
(ObsP+)

n
 PCR test-positives and (ObsS+)

n 
serological test posi-

tives on days n = 1,..., T given the model prediction of numbers 
of PCR and serological detectable people in the population,  
and the observation model parameters θ

OM
. Day n = 1 cor-

responded to the calendar date 21st February 2020, and, day  
n = T = 223 corresponded to 30th September 2020. 

The underlying transmission prediction depended only on 
parameters relevant to infection (e.g. basic pre-measures repro-
ductive ratio etc), however, the statistical modelling of the 
observation of evidence of these infections varied by type of 
test and availability of negative PCR test data. Together these 
form a likelihood function, which integrates the different  
data sources, since they are all, ultimately, generated by the 
same underlying infection process. The three statistical models  
of observation data were:

•    Serological tests: On each day that serological samples  
were collected, the log-probability of the observed 
number of positive tests (ln f

sero
 ((ObsS+)

n
|(S+)

n
, θ

OM
)) 

was assumed to be that of a Beta-Binomial distribution 
with unbiased sampling of the underlying proportion of 
serologically detectable people in the county ((S+)

n
/N).  

The extra dispersion compared to a Binomial sample 
being due to uncertainty in the underlying sensitivity of  
the serological assay (see supporting information in  
supporting data).

•    PCR swab positive tests when no data on negative 
PCR tests was available: Negative PCR swab tests were 
not available in every county on every day of simula-
tion. When negative swab tests were not available we 
assumed that the log-probability of the daily observed 
PCR test positives was from a Negative-binomial  
distribution:

                   
( )( )

ˆ ˆ( ) ( , ).
nn test

n n

p TR n P

ObsP NegBin

µ

µ µ α α

+

+
=

= =∼
                 (5)

      Where the mean number of daily observed test positives, 
conditional on the model prediction of PCR-detectable  
people in the population, is based on sampling a  
fraction p

test
TR(n).p

test
 was an observation parameter  

that was jointly inferred during inference, and TR(n) was 
a normalized testing rate based on nationally reported 
data (see supporting information in supporting data). α 
was a clustering factor for negative-binomial sampling,  
jointly inferred with other model parameters.

•    PCR swab positive tests when data on negative PCR 
tests was available: When both positive and negative 
PCR test data was available, we assumed that the fraction 

of positive samples reflected a biased observation of the 
underlying true fraction of PCR-detectable individuals 
in the population, e.g. being infected with SARS-CoV-2  
could be expected to influence the odds of some-
one seeking a PCR test. We assumed that the daily 
detection of PCR test positives could be modelled as  
samples from a Beta-Binomial distribution with two 
parameters to infer: 1) The bias of a PCR-detectable  
individual being PCR tested compared to a PCR- 
undetectable individual (χ), and, 2) the effective sample 
size parameter (M

PCR
). M

PCR 
→ ∞ recovered a Binomial 

distribution for the number of positive PCR tests were 
observed among the tests conducted that day, M

PCR 
< ∞ 

allowed the model to infer much greater variance in daily  
proportion of test positives than would be expected from 
a Binomial distribution. On days where negative swab 
tests were available, we connect the observable status  
of epidemic to the data thus,

 
� �

,

( )

( 1)( )

ˆ( ) ( , , ).PCR PCR

n
n

n

n s nn

Pp
P N

ObsP BetaBin N N p p M M

χ
χ

+

+

+

=
− +

= = =∼

  (6)

      Where N
PCR,n

) is the total number of PCR swab sam-
ples collected on day n and p

n
 is the proportion of tests 

performed returning positive expected by the model, 
accounting for bias in the sampling regime. The bias  
parameter χ = 1 recovers an unbiased sample of PCR  
positives from the underlying population.

Supporting information gives further details on the data 
sources and the log-likelihood calculation including a full 
description of all observation model parameters and the func-
tional forms and underlying evidence for Q

PCR
 and Q

sero
.  

The data sources used were: The Kenya Ministry of Health 
National linelist, the Kenya Medical Research Institute  
Wellcome Trust Research Programme (KEMRI-WTRP) sero-
logical surveillance programme and Google mobility data31. The 
full Kenyan SARS-CoV-2 line list contains sensitive personal 
information that could potentially allow the identification of  
individual cases. The analysis performed in this study only 
required an aggregated dataset derived from the Kenyan 
linelist. Other data used in this paper was openly available. All  
data is available in the main text or as underlying data32.

We assumed that β
t 

was piece-wise constant on days, and,  
therefore, could be reconstructed from daily effective contact 
rates (β

n
)

n=1,...,T
. For any fixed estimate of the effective contact  

rate β
t
, we used Hamiltonian Markov-chain Monte Carlo 

(HMC)33 to estimate the posterior distribution for the transmission  
model parameters; that is the initial condition values (E

0
, I

0
) 

and fixed parameters (P
eff

, R
0
) jointly with the observation 

model parameters θ
OM

. Prior distributions for parameters were  
chosen for groups of counties (e.g. largely rural counties had 
different priors to major urban conurbations like Nairobi and 
Mombasa; see supporting information for further details). Start-
ing from an initial estimate that β

t
 followed daily Google mobil-

ity trends31 for the whole period, we sequentially improved 
our β

t
 estimate using the expectation-maximisation (EM)  

algorithm34. The E-step corresponding to posterior distribu-
tion estimation using HMC, and the M-step corresponding to  
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optimising the daily effective contact rate estimates (β
n
)

n=41,...,T
  

using the popular stochastic gradient descent algorithm  
ADAM35. The first 40 days of effective contact rate  
estimates (β

n
)

n=1,...,40 
were assumed to be fixed to their Google 

estimate; this improved identifiability jointly with R
0 

and  
captured the observed sharp drop in mobility in response to  
Kenyan public health measures following the first identified  
case on 13th March 2020. See supporting information for  
further details on the use of Google mobility data and the EM  
algorithm method used in this study.

After inference of transmission parameters, the model 
implied a prediction of the expected number of daily deaths 
due to COVID, E(X+)

n
, based on an overall population  

infection-to-fatality ratio (IFR), and, the delay distribution  
between infection and death, p

ID
,

                            ( ) [ ]( ).+
IDnX IFR p nι= ∗E                              (6)

In this study, we assume that the IFR is constant for each 
county over the period of inference, which allows us to con-
struct a Bayesian estimator of the crude IFR, IFR

crude
, by fitting 

to the observed daily numbers of test-positive deaths, (ObsX+)
n  

(see supporting information for details and background 
data informing p

ID
). Because the observed test-positive 

deaths were not used in inferring model parameters, we treat 
the log-predictive density of deaths from the model as an  
out-of-sample validation metric for the model. However, we 
emphasise that the out-of-sample comparison is to the trend 
of daily deaths, because this is invariant to the IFR

crude
 esti-

mator, which is itself sensitive to under-reporting of COVID 
deaths. Supporting information gives full details on the  
Bayesian model validation used in this study.

This study was approved by the Kenya Medical Research  
Institute Scientific and Ethics Review Unit (KEMRI-SERU) 
with approval numbers KEMRI/SERU/CGMR-C/203/4085 and  
KEMRI/SERU/CGMR-C/203/3426 for the modelling and  
serosurvey studies respectively.

Data availability
Underlying data
Zenodo: Revealing the extent of the first wave of the  
COVID-19 pandemic in Kenya based on serological and  

PCR-test data. https://doi.org/10.5281/zenodo.470524432 This 
project contains the following underlying data:

•    Data S4 (The number of positive, and negative where  
available, PCR-confirmed swab tests for each county by  
date of sample collection (21st Feb to 30th September)).

•    Data S5. (The number of positive and negative  
sero-logical results for each county by date of sample  
collection (21st Feb to 6th August)). This is from the  
Kenyan Ministry of Health National linelist.

•    Data S6. (The number of deaths with a PCR-confirmed 
swab test for each county by recorded date of death  
(21st Feb to 30th September)).

•    Data S7. (Summary data of Kenyan epidemic, including 
reported total number of test performed in Kenya.

•    supp material.docx (A more detailed description of the 
data)

Software availability
The analysis code was written in Julia language version 1.4.

•    The code base underlying the analysis is accessible at 
the open github repository https://github.com/ojal/Ken-
yaSerology. For the analysis presented here we devel-
oped a module in the Julia programming language 
called KenyaSerology. Tutorial notebooks for running  
KenyaSerology and analysing the underlying data are  
available in the repository.

•    Archived source code at time of publication: https://doi.
org/10.5281/zenodo.470524432

•    License: GNU General Public License v3.0 
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September 2020, which encompasses the first wave of SARS-CoV-2 transmission in the country. 
Authors estimated that the first wave of the SARS-CoV-2 pandemic peaked before the end of July 
2020 in the major urban counties, with 30-50% of residents infected. 
 
This is an important study and likely has implications for other neighbouring countries in Africa as 
well. Data on COVID-19 from the African continent are very limited. I encourage indexing of this 
revised submission and I just had two minor comments:

Abstract final phrase - "further wave of transmission" do you mean specifically a further 
wave of transmission with an antigenically-different strain such as a new variant which can 
escape the population immunity that has built up? Or you mean that the first wave was 
controlled before population immunity reached a herd immunity threshold? Even so, if the 
same strain circulates again, one wouldn't expect a large wave because of the existing 
immunity from the first wave. Waning immunity in medium-term could also play a role in 
allowing subsequent epidemics. 
 

○

Conclusions - I don't find the Manaus estimate of 75% particularly compelling due to 
methodological issues in that study. There should be other locations with less extreme first-
year serological data?

○
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We thank the reviewer for useful review and comments. 
 
Point 1 “Abstract final phrase - "further wave of transmission" do you mean specifically a further 
wave of transmission with an antigenically-different strain such as a new variant which can 
escape the population immunity that has built up? Or you mean that the first wave was 
controlled before population immunity reached a herd immunity threshold? Even so, if the same 
strain circulates again, one wouldn't expect a large wave because of the existing immunity from 
the first wave. Waning immunity in medium-term could also play a role in allowing subsequent 
epidemics.” 
  
We were not, at this early stage in the pandemic, suggesting a further wave from a new 
variant. Instead, we inferred some heterogeneity in population susceptibility, 
transmissibility or social interactivity, encapsulated by the phenomenological term, the 
effective population size at risk of exposure (Peff). This population heterogeneity put a 
break on virus spread in the first wave but made possible a second wave that moved into 
less infected sections of the population.  This was unmeasured and not well understood at 
the time. However, in our subsequent paper (DOI: 10.1126/science.abk0414 ) we were able 
to explicitly account for this heterogeneity as differences in mobility of lower (high 
transmission in wave 1) and higher (low transmission in wave 1) socio-economic classes, 
particularly in the urban setting. 
 
No change has been made to the manuscript. 
 
Point  2. "Conclusions - I don't find the Manaus estimate of 75% particularly compelling due to 
methodological issues in that study. There should be other locations with less extreme first-year 
serological data?" 
  
We agree with the reviewer and revise the section of text referring to the estimate of 75% 
(see appended). We do already make other comparisons from serosurveys from that period 
from other settings including Spain, England, United States and Niger.  
  
The revised text is 'Our analysis suggests that 30–50% of the urban population were already 
exposed by the end of September, and that the first wave of the Kenya epidemic peaked in 
the urban and semi-urban counties during a period of relatively little restrictions or physical 
distancing. This level of exposure however was not sufficient to prevent a second wave 
which came shortly after the first (October to December 2020), which we assume to have 
resulted from heterogeneous spread of the virus, perhaps due to variation in population 
susceptibility, transmissibility or social interactivity.'  
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In ‘Revealing the extent of the first wave of the COVID-19 pandemic in Kenya based on serological 
and PCR-test data’ the authors use a range of statistical and mechanistic approaches to investigate 
the first wave of the pandemic in Kenya using both serological and PCR-test data. Overall, the 
authors have done an excellent job at integrating appropriate methods with available data sets to 
provide a useful investigation into transmission patterns in Kenya. Given the dearth of analyses 
from Sub-Saharan Africa countries, this manuscript is a welcome addition. Overall, I have few 
comments, the majority of which are minor and outlined below. 
 
The authors have analyzed transmission patterns across all counties in Kenya, yet only show those 
for the two most populous (Nairobi and Mombasa) and a country-level result. While this is 
reasonable for the main text, I believe that adding in results by county to the supplementary 
information would help the interpretation of the country-level results. Particularly given likely 
differences in testing and reporting by county, a better understanding of the overall estimates of 
model predictions and Rt estimates by county would be incredibly valuable. For example, the 
authors provide the percentage infected by county in Figure 3, however these values are different 
to interpret in context, particularly without seeing the data and estimates by county. 
 
In Figure 1 (C,D) the model prediction CIs are incredibly narrow, which seems surprising. Does this 
occur across the country? Or is this mainly due to the higher quality data in both Nairobi and 
Mombasa? 
 
In Figure 2, it would be helpful (perhaps in the supplement or in this main figure) to provide 
context on when restrictions were lifted in addition to when they were put in place. Further, it is 
interesting that the IQR for the Rt estimates early in the pandemic seem exceptionally narrow. 
Additional elaborations on these points (is it likely due to overfitting? Some factors associated with 
the model fitting? Etc.) should be included. In addition, the Rt estimates for Mombasa in 
August/September seem substantially different than the rest of the country. Can the authors 
provide additional context? And do they see similar patterns across the coastal counties during 
this time? 
 
The authors do an excellent job appropriately combining different data sets, which is well 
explained in the supplementary information. Some of these details would be incredibly helpful to 
move to the main text, in particular additional detail on how the authors treat the serological 
versus PCR data (and when there were both negative and positive PCR results) and how these two 
pieces of evidence are integrated. 
 
Finally, in the supplement the authors use the phrase ‘Chinese epidemic’, but a small point that it 
may be more appropriate to say ‘epidemic in China’.
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Competing Interests: No competing interests were disclosed.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 03 Feb 2022
James Nokes, KEMRI-Wellcome Trust Reseach Programme, Kenya 

In ‘Revealing the extent of the first wave of the COVID-19 pandemic in Kenya based on 
serological and PCR-test data’ the authors use a range of statistical and mechanistic 
approaches to investigate the first wave of the pandemic in Kenya using both serological 
and PCR-test data. Overall, the authors have done an excellent job at integrating 
appropriate methods with available data sets to provide a useful investigation into 
transmission patterns in Kenya. Given the dearth of analyses from Sub-Saharan Africa 
countries, this manuscript is a welcome addition. Overall, I have few comments, the 
majority of which are minor and outlined below. 
 
Thank you for your kind comments on this piece of research. 
 
The authors have analyzed transmission patterns across all counties in Kenya, yet only show 
those for the two most populous (Nairobi and Mombasa) and a country-level result. While 
this is reasonable for the main text, I believe that adding in results by county to the 
supplementary information would help the interpretation of the country-level results. 
Particularly given likely differences in testing and reporting by county, a better 
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understanding of the overall estimates of model predictions and Rt estimates by county 
would be incredibly valuable. For example, the authors provide the percentage infected by 
county in Figure 3, however these values are different to interpret in context, particularly 
without seeing the data and estimates by county. 
 
This is a very good point. In our original analysis we plotted model prediction intervals 
against actual data by county as part of model diagnostic. We have now improved our 
diagnostic visualisations to match the format of the main manuscript plots for Nairobi 
and Mombasa, and generated county-specific plots for model-based 
prediction/credible intervals for (i) PCR swab test positives, (ii) population exposure, 
(iii) deaths, (iv) R(t) against data (where available). All 188 plots (4 x 47 counties) are 
available in the data and code repository associated with this paper 
https://github.com/ojal/KenyaSerology . 
 
In Figure 1 (C,D) the model prediction CIs are incredibly narrow, which seems surprising. 
Does this occur across the country? Or is this mainly due to the higher quality data in both 
Nairobi and Mombasa? 
 
This is correct, the reasonably high model certainty about seroprevalence in Nairobi 
and Mombasa was because of higher data quality in the main cities in Kenya. Other 
counties had much wider Cis for model predicted seroprevalence, in Figure 3 we 
attempted to visualise this by candy-striping the county shading for counties with a 
posterior standard deviation in model prediction of population exposure of greater 
than 10%; that is the counties where a >10% deviation from the posterior mean 
estimate of population exposure would not be highly unexpected. We have now added 
population exposure plots for every county, including credible intervals for the 
population seropositivity. 
 
In Figure 2, it would be helpful (perhaps in the supplement or in this main figure) to provide 
context on when restrictions were lifted in addition to when they were put in place. 
 
Over the time scale this paper is concerned with (February – October 2020) there were 
only two significant relaxations, however, this included lifting the movement 
restrictions on travel out of Nairobi and Mombasa (6th July 2020), and, therefore, was 
an oversight to not include in Figure 2. We have now revised Figure 2 to include the 
timing of relaxation of targeted movement restrictions and the reopening of 
international flight into Kenya (1st August 2020). These have been added to a revised 
Figure 2 and mentioned in the caption of figure 2. 
 
Further, it is interesting that the IQR for the Rt estimates early in the pandemic seem 
exceptionally narrow. Additional elaborations on these points (is it likely due to overfitting? 
Some factors associated with the model fitting? Etc.) should be included. 
 
The early tight estimate for Rt reflected (i) fairly tight estimates that Rt ~ 1.1-1.2 in 
most counties in late April 2020, and (ii) our assumption that for the first 40 days of 
the simulation (20th Feb 2020 – 31st March 2020) Rt was proportional to Google data 
derived estimates of mixing in indoor settings outside the home. In the early stages of 
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the epidemic in Kenya there was very limited testing capacity for detection of SARS-
CoV-2 transmission in the community (first positive test result was on 12th March 
2020). This means that we were forced to make an assumption about the effective 
relative contact rates, because we could not infer them from epidemiological data. 
The Google data suggested a fairly uniform 40-45% decrease in mixing in inside 
settings (e.g., the workplace, etc) outside the home by mid-April 2020, by which time 
Rt ~ 1.1 - 1.2 in most counties. Because of our modelling assumption, this confidence in 
Rt in April-May 2020 was translated into confidence in Rt ~ 1.8 – 2.0 during an 
unobserved epidemic in February 2020. 
 
We have added this sentence to the opening paragraph of the Underlying transmission 
rates in Mombasa and Nairobi during the first wave section: 
 
“However, we should note that there was very limited PCR testing available in Kenya before April 
2020, and our estimates of R(t) pre-April 2020 rely on the assumption that R(t) dropped by ~45% 
in late March, in parallel to the drop in mobility data (see Methods and supporting data).” 
 
In addition, the Rt estimates for Mombasa in August/September seem substantially 
different than the rest of the country. Can the authors provide additional context? And do 
they see similar patterns across the coastal counties during this time? 
 
This is an interesting observation. Upon inspection, other counties in coastal province 
(Kilifi, Lamu, Tana River and Taita Taveta, but not the Tanzanian border county Kwale) 
also have a spike in Rt estimates in late August/early September 2020 (see county 
specific plots). A possibility is that this is connected to the relaxation of movement 
into Mombasa, however, there is a delay of greater than 4 weeks between that 
relaxation and the Rt increase.  
 
The authors do an excellent job appropriately combining different data sets, which is well 
explained in the supplementary information. Some of these details would be incredibly 
helpful to move to the main text, in particular additional detail on how the authors treat the 
serological versus PCR data (and when there were both negative and positive PCR results) 
and how these two pieces of evidence are integrated. 
 
Thank you very much, the aim was not to overwhelm a non-specialist audience, whilst 
providing full details within the supporting information. We have now added a further 
paragraph in the Methods section which we hope makes our methodology clearer to 
the reader. 
 
“The underlying transmission prediction depended only on parameters relevant to infection 
(e.g. basic pre-measures reproductive ratio etc), however, the statistical modelling of the 
observation of evidence of these infections varied by type of test and availability of negative 
PCR test data. Together these form a likelihood function, which integrates the different data 
sources, since they are all, ultimately, generated by the same underlying infection process. 
The three statistical models of observation data were:

Serological tests: On each day that serological samples were collected, the log-
probability of the observed number of positive tests (ln f sero (( ObsS +) n |( S +) n , θ OM 

○
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)) was assumed to be that of a Beta-Binomial distribution with unbiased sampling of 
the underlying proportion of serologically detectable people in the county ( ( S +) n /N). 
The extra dispersion compared to a Binomial sample being due to uncertainty in the 
underlying sensitivity of the serological assay (see supporting information in 
supporting data).
PCR swab positive tests when no data on negative PCR tests was available: 
Negative PCR swab tests were not available in every county on every day of 
simulation. When negative swab tests were not available we assumed that the log-
probability of the daily observed PCR test positives was from a Negative-binomial 
distribution: 
 
μn = ptestTR(n)(P+)n 
(ObsP+)n � NegBin(μ^=μn,α^ = α) (5)

○

Where the mean number of daily observed test positives, conditional on the model 
prediction of PCR-detectable people in the population, is based on sampling a fraction ptest
TR(n).ptest was an observation parameter that was jointly inferred during inference, and 
TR(n) was a normalized testing rate based on nationally reported data (see supporting 
information in supporting data). α was a clustering factor for negative-binomial sampling, 
jointly inferred with other model parameters.

PCR swab positive tests when data on negative PCR tests was available: When 
both positive and negative PCR test data was available, we assumed that the fraction 
of positive samples reflected a biased observation of the underlying true fraction of 
PCR-detectable individuals in the population, e.g. being infected with SARS-CoV-2 
could be expected to influence the odds of someone seeking a PCR test. We assumed 
that the daily detection of PCR test positives could be modelled as samples from a 
Beta-Binomial distribution with two parameters to infer: 1) The bias of a PCR-
detectable individual being PCR tested compared to a PCR-undetectable individual (χ), 
and, 2) the effective sample size parameter (MPCR). MPCR→ ∞ recovered a Binomial 
distribution for the number of positive PCR tests were observed among the tests 
conducted that day, MPCR < ∞ allowed the model to infer much greater variance in 
daily proportion of test positives than would be expected from a Binomial 
distribution. On days where negative swab tests were available, we connect the 
observable status of epidemic to the data thus, 
 
pn=χ(P+)n / (χ-1)(P+)n + N  
(ObsP+)n � BetaBin((Ns)^ = NPCR,n, p^=pn,M^ = MPCR). (6)

○

Where NPCR,n is the total number of PCR swab samples collected on day n and pn is the 
proportion of tests performed returning positive expected by the model, accounting for 
bias in the sampling regime. The bias parameter χ=1 recovers an unbiased sample of PCR 
positives from the underlying population.“ 
 
Finally, in the supplement the authors use the phrase ‘Chinese epidemic’, but a small point 
that it may be more appropriate to say ‘epidemic in China’. 
 
Noted, and we have changed our language in the supporting information.  
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The ideas presented in the paper are plausible, resulting to a model, although a simple SEIR 
model, that is robust and adequately reproduces the observed trajectory of infections.  
 
It was captivating to see the authors express the force of infection in terms of the case data time 
series (which is as a result of "successful" contact between susceptible and infected individuals). 
This is arguably the only way a compartmental model can reliably reproduce the waves of 
infections observed in data. Also the notion of, only a proportion of the population is at risk, is a 
quite realistic. 
 
There are a few typos, as indicated below:

On page 3, column 2, in line 10 write as...declining, first in... 
 

○

On page 3, column 1, in line 20 write as ...SARS-CoV-2. 
 

○

On page 3, column 1, in third paragraph at line 5 write as ...already...○
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We thank the reviewer for these comments. The typographical errors noted have been 
corrected in the revised manuscript.  
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