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Inferring the transmission direction between linked individuals living with HIV pro-
vides unparalleled power to understand the epidemiology that determines transmission.
Phylogenetic ancestral-state reconstruction approaches infer the transmission direction
by identifying the individual in whom the most recent common ancestor of the virus
populations originated. While these methods vary in accuracy, it is unclear why. To
evaluate the performance of phylogenetic ancestral-state reconstruction to determine
the transmission direction of HIV-1 infection, we inferred the transmission direction
for 112 transmission pairs where transmission direction and detailed additional infor-
mation were available. We then fit a statistical model to evaluate the extent to which
epidemiological, sampling, genetic, and phylogenetic factors influenced the outcome of
the inference. Finally, we repeated the analysis under real-life conditions with only rou-
tinely available data. We found that whether ancestral-state reconstruction correctly
infers the transmission direction depends principally on the phylogeny’s topology.
For example, under real-life conditions, the probability of identifying the correct trans-
mission direction increases from 32%—when a monophyletic–monophyletic or
paraphyletic–polyphyletic tree topology is observed and when the tip closest to the root
does not agree with the state at the root—to 93% when a paraphyletic–monophyletic
topology is observed and when the tip closest to the root agrees with the root state. Our
results suggest that documenting larger differences in relative intrahost diversity
increases our confidence in the transmission direction inference of linked pairs for
population-level studies of HIV. These findings provide a practical starting point to
determine our confidence in transmission direction inference from ancestral-state
reconstruction.

phylogenetic tree topology j Lasso regression j ancestral-state reconstruction j HIV-1 epidemiology j
who acquires infection from whom

Identifying transmission chains via contact tracing is a cornerstone of infectious disease
control. It provides an opportunity to test potential cases, treat infections early, and break
ongoing transmission. In addition, identifying the transmission direction provides essential
knowledge for understanding risk factors of transmission and susceptibility (1–3), house-
hold transmission (4), geographical spread (5–7), and early pathogenesis events (8). This
knowledge, in turn, informs the design and implementation of public health interventions
(9, 10). Yet, inferring transmission direction is challenging. The comparison of symptom
onset time or testing histories of linked individuals allows us to infer the direction. How-
ever, this method is restricted to cases with known contact histories and for whom other
sources of infection can be ruled out, such as sexually transmitted infections occurring
between self-reported sexual partners.
Comparing the ancestral relationship between pathogen genomes sampled from a

putative transmission pair has been proposed as a method to identify the transmission
direction (11, 12). Current approaches using ancestral-state reconstruction via
parsimony-based algorithms, for example, have been used to identify the transmitting
partner (11, 13, 14). Under this framework, the transmitting individual corresponds to
the state at the root (i.e., individual A or B) after minimizing the number of state
changes along the phylogeny necessary to explain the observed state distribution at the
tips. For example, when there is paraphyly (i.e., when all sequences from one partner
form a monophyletic cluster embedded within the pathogen population of the other
partner), the monophyletic clade represents the recipient’s viral population (14).
While simulations suggest that using the topology of a phylogeny reconstructed

from multiple viral sequences sampled from a known transmission pair can correctly
identify the transmission direction, empirical tests of this hypothesis have varied in
accuracy. For example, three studies incorrectly identified the direction of HIV trans-
mission in 0/32 (15), 4/31 (16), and 4/36 couples (17). Therefore, we currently lack a
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method to determine the reliability of ancestral-state recon-
struction inference to identify transmitting partners.
In this study, we evaluated under what conditions ancestral-

state reconstruction correctly identifies the transmitting partner
given that direct HIV transmission has been established between
two individuals. First, we calculated how often ancestral-state
reconstruction recapitulates known transmission history using
112 HIV transmission pairs with detailed information for which
the transmission direction and multiple virus sequences are avail-
able. Next, we fit a statistical model to evaluate how epidemiolog-
ical, sampling, genetic, and phylogenetic factors influence the
accuracy of the inference. Third, we adjusted the statistical model
to predict the likely success of identifying the transmission direc-
tion when only routinely collected data are available. This statisti-
cal approach provides a framework to understand the reliability
of ancestral-state reconstruction to predict transmission direction
across linked pairs, which can aid epidemiological investigations
at the population level without making explicit claims about indi-
vidual transmission events (which have legal and ethical implica-
tions for the individuals involved).

Methods

Data Curation. We used publicly available HIV-1 sequence and epidemiologi-
cal data from 112 transmission pairs (36 men who have sex with men and 76
heterosexual pairs) collated and described previously (8). Briefly, we first used
the Los Alamos National Laboratory HIV sequence database (LANLdb) to find indi-
viduals annotated as either “transmitter” or “recipient” partners in a documented
transmission cluster (up to February 2019). Second, we searched the original
papers and used forward and backward citation chasing to find pairs within
larger studies not listed in LANLdb. We then collated publicly available sequence
and epidemiological data from LANLdb, GenBank, and the original studies. We
only included the pairs with the following data: the recipient partner’s infection
time, the sampling times for both partners, and multiple unique sequences per
individual at a single sampling time point. When multiple sampling time points
were available per individual, we analyzed the data closest to the transmission
time. Our analysis defines the transmitting and recipient partners as reported in
the original studies, which for most pairs, correspond to self-reported sexual part-
ners with known previous infection status. All data are provided in Dataset S1.

Ancestral-State Reconstruction. For each pair, we built multiple sequence
alignments using MAFFT (18) and removed the columns from the alignment
where gaps were found in greater than 25% of sequences. Then, we estimated the
best-fit model of nucleotide substitution using ModelFinder (19). We evaluated
nonparametric (FreeRate) (20, 21) vs. parametric (discrete gamma) approaches
(22) to model the rate heterogeneity among nucleotide sites. We chose between
three and five rate categories for the FreeRate models and four categories for the
discrete gamma models. Using the best-fit model of nucleotide substitution, we
then built maximum likelihood (ML) phylogenetic trees with IQ-Tree v2 (23) using
a thorough nearest neighbor interchange search (24). We performed multiple
independent tree searches—to account for the difficulties of inferring reliable phy-
logenies due to the low number of mutations in the sequence data of some trans-
mission pairs—and selected the tree with the highest log likelihood.

Next, we performed ancestral-state reconstruction. First, we labeled the tips of
each tree as sampled from either the transmitter or the recipient partner. Then,
again for each transmission pair, i, we estimated the transmitter’s state probabil-
ity at the root, pi, that maximized the likelihood of observing the state distribu-
tion at the tips using a joint estimation procedure (i.e., calculating the most
likely state for each internal node in the tree while integrating over all the possi-
ble states in the other nodes) assuming equal rates of transition between the
two states. These analyses were conducted using the R package ape (25, 26).
Thus, pi is the probability that ancestral-state reconstruction correctly identifies
the transmitter.

We evaluated the effect of the outgroup choice on the accuracy of probabilis-
tic ancestral-state reconstruction identifying the known transmission direction.
First, we generated a consensus nucleotide sequence for each transmission pair.

This consensus was used to query the NCBI nucleotide database using BLAST
and to identify closely related genetic sequences (27). Next, we excluded results
that were at least 99% identical to our query (as they were likely part of the
transmission cluster) and those corresponding to subsequent sampling time
points of the individuals in the transmission pair. After exclusion, we selected
the hit from BLAST with the smallest expect value. For our first rooting choice,
we generated an alignment for each transmission pair that used this BLAST hit.
Our second rooting choice was the oldest respective subtype-specific reference
sequence from LANLdb. Our third rooting choice was a composite outgroup com-
prising the selected hit from BLAST and all four subtype-specific reference
sequences from LANLdb. Under this final choice, we rooted the phylogenies
using the oldest sequence from the outgroup. For further analysis, we chose the
rooting strategy that most often recapitulated the known direction of the trans-
mission pairs. The outgroup was removed from the tree in downstream analysis
using the R package ape (25).

As a further sensitivity analysis, we also inferred the ancestral states of the ML
trees using the most parsimonious reconstruction of the character’s evolution,
which instead of providing state probabilities, selects the state at the root that
incurs the smallest number of state changes that are needed to observe the state
distribution at the tips. For this, we used the Sankoff algorithm and the R pack-
age phangorn (28–31).

Phylogenetic Inference of Transmission Direction. In our base case analy-
sis, we classified the inferred direction of transmission as “consistent” with the
known transmission direction if pi > 0.5 or “inconsistent” otherwise. In a sensi-
tivity analysis, we accounted for a third “equivocal” outcome by classifying
the inferred direction of transmission for each transmission pair, i, as consistent
if pi ≥ t, inconsistent if pi ≤ 1 � t, or equivocal otherwise. We used a relaxed
threshold of t = 0.6 and a conservative threshold of t = 0.95 for this ordinal
three-category outcome. For the parsimony-based approach, we classified the
inferred direction of transmission as consistent if the state at the root was the
transmitting partner, inconsistent if the state at the root was the recipient part-
ner, or “both” if both partners were equally parsimonious at the root.

Explaining the Accuracy of Phylogenetic Inference of Transmission
Direction.
Using all data. We evaluated in what circumstances ancestral-state reconstruc-
tion succeeds in identifying the transmitting partner. For this, we built a suite of
logistic regression models to predict the inferred direction of transmission as a
function of the information available from all transmission pairs: that is, for the
base case binary outcome, the probability that the inferred direction of transmis-
sion is consistent with the known transmission direction, while for the three-class
outcome, the probability that the inferred direction of transmission is consistent
or inconsistent with the known transmission direction. We used 13 covariates as
predictor variables that we organized into four classes: epidemiological (E), sam-
pling (S), genetic (G), and phylogenetic (P) (Fig. 1 and Table 1).

We first fitted the model with all 13 covariates from across the four classes
(Table 1, all data) to identify the best set of predictors to infer transmission direc-
tion. Then, as a sensitivity analysis, we fitted an additional 14 models built from
all possible combinations of these four classes: that is, four models with three
classes (ESG, ESP, SGP, and EGP), six models with two classes (EG, ES, SG, SP,
GP, and EP), and four single-class models (E, S, G, and P). This class-based sensi-
tivity analysis allows us to explore the qualitative importance of different infor-
mation sources to infer transmission direction.
Using routinely available data. The previous suite of statistical models
assumes knowledge of the transmitter and recipient’s identity in addition to epi-
demiological information not typically known. We developed a second suite of
models with a reformulated set of eight covariates (Table 1, routinely available
data) to evaluate how to interpret the inferred direction of transmission under
“real-life” conditions with routinely available information.

Model Fitting, Comparison, and Selection. We fitted all statistical models
with Lasso (least absolute shrinkage and selection operator) regression using the
R packages glmnet (32) for the binary models and ordinalNet (33) for the ordinal
models. Using this approach, we reduced overfitting because the Lasso regression
shrinks the coefficients using a tuning parameter; these coefficients can be inter-
preted as evidence against the inclusion of a covariate when they shrink to zero
(34). We estimated the tuning parameter using leave one out cross-validation as
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our dataset is small, and some of our covariate levels are uncommon—that is,
there are insufficient observations to partition the data into training and validation
sets. We computed ROC (receiver operating characteristic) curves to evaluate the
performance of the classification models when varying pi. Then, to compare the
binary models, we calculated the area under the curve (AUC) of the ROCs
using the R package pROC (35). To compare ordinal models, we calculated a
macro-AUC by averaging all results (one vs. the rest) with linear interpolation
between points using the R package multiROC (36). We considered models
with an AUC of less than 5% points apart from the model with the highest
AUC to be equivalently discriminatory. Among these equivalent models, we
then selected the best-fit model as that with fewer covariates (with higher AUC
settling ties).

Predicting the Accuracy of Transmission Direction Inference. To practi-
cally assess the reliability of using ancestral-state reconstruction to predict trans-
mission direction, we calculated the model-predicted accuracy of ancestral-state
reconstruction for both the best-fit binary and the ordinal (t = 0.6) models across
the range of their respective covariates from the original data used to fit the
models. Specifically, we used the original categorical values for the discrete cova-
riates or a range of values evenly distributed between the minimum and maxi-
mum of the original data for the continuous covariates; then, we conducted
one-way and multiway sensitivity analyses for both the best-fit binary and the
ordinal (t = 0.6) models to assess the importance of each model covariate on
the probability that ancestral-state reconstruction predicts the correct direction of
transmission.

Results

Data. The 112 transmission pairs exhibited wide variation across
all the epidemiological, sampling, genetic, and phylogenetic char-
acteristics evaluated (SI Appendix, Fig. 1). Specifically, most of
the transmitters were in the chronic stage at the time of transmis-
sion (101/112 pairs), and most of the transmitters were reported
as heterosexual (36/112). The sample size was low (i.e., fewer
than 10 sequences in the least sampled individual within the

pair) in 56/112 pairs, while the median sample size difference
was 5.5 unique sequences (interquartile range [IQR] = 1.00 to
12.00), and the median sum of the absolute time to sampling of
both partners relative to transmission time was 173 d (IQR = 84
to 411 d).

The median sequence alignment length was 1,516 base pairs
(IQR = 825 to 2,556); a total of 103/112 of the pairs had
sequences that spanned the env region, while 9/112 spanned
the gag region. The median difference of intrahost nucleotide
diversity was 0.013 substitutions per site (IQR = 0.005 to
0.028), while 84/112 recipients’ infections were more probably
seeded by a single variant.

The most frequent topology class was paraphyletic–monophyletic
(PM; 63/112) followed by paraphyletic–polyphyletic (PP; 29/112)
and monophyletic–monophyletic (MM; 20/112), while the median
difference in phylogenetic diversity was 0.050 substitutions per
site (IQR = 0.011 to 0.118), the median difference in minimum
root to tip distances was 0.007 substitutions per site (IQR =
0.002 to 0.018), and the median of the minimum interhost
patristic distance was 0.010 substitutions per site (IQR = 0.003
to 0.020). In terms of the most basal tip identity, the tip closest
to the root (i.e., the one separated by the least number of internal
nodes) belonged to the transmitter partner in 93/112 pairs, the
tip closest to the root belonged to the recipient partner in 9/112
pairs, and tips from both partners were equally close to the root
in 10/112 pairs.

The sample size difference, the intrahost nucleotide diversity
difference, and the phylogenetic diversity difference were highly
positively correlated, and they were highly inversely correlated
with the root to tip difference (SI Appendix, Fig. 2).

Phylogenetically Inferred Direction of Transmission. We found
that probabilistic ancestral-state reconstruction on phylogenetic trees

Partner 1 Partner 2

Monophyletic-Monophyletic
(MM)

Paraphyletic-Monophyletic
(PM)

Paraphyletic-Polyphyletic
(PP)

Topology class

Phylogenetic diversityMinimum root-to-tip distance

Identity of the most basal tip

Partner 1 Agreement

Shortest patristic distance

Fig. 1. Phylogenetic covariates. Illustration of the different metrics that are used to define the covariates from the phylogenetic information class. The
topology classes are PP, PM, and MM. The identity of the most basal tip is the individual with the tip that minimizes the number of internal nodes along the
paths between the root and the tips (the alternative definition for inside the square corresponds to the agreement of the individual with the most basal tip
with the individual with the higher probability at the root). The minimum root to tip distance is the shortest path from the root to the tips of an individual
(calculated for each partner). Phylogenetic diversity indicates using the unique evolutionary history measure that is the sum of the branch lengths that are
not shared across the subtree of an individual and that give rise to every single tip of the individual (calculated for each partner), as described in the docu-
mentation of the R package Caper (31). The shortest patristic distance is the shortest path connecting a tip from both individuals.
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tends to infer the transmission direction correctly regardless of the
outgroup choice. When using a composite outgroup (i.e., compris-
ing a related sequence and all four subtype-specific reference
sequences from LANLdb), probabilistic ancestral-state reconstruc-
tion correctly identified the known transmission direction in 84%
(94/112) of the pairs (Fig. 2 and SI Appendix, Table 1). This per-
centage was reduced to 81% (91/112) when the outgroup was a
single related genetic sequence and to 80% (89/112) when the
outgroup was the oldest respective subtype-specific reference
sequence from LANLdb. Given these findings, we used the com-
posite outgroup in further analyses.
There were significant differences in the topology class by out-

come (Pearson’s χ2 P < 0.001). When the transmission direction
was correctly inferred, the PM topology class predominated

(65%, 61/94) followed by the PP topology class (23%, 22/94);
in contrast, when the transmission direction was incorrectly
inferred, MM (50%, 9/18) and PP (39%, 7/18) topology classes
predominated.

Explaining the Accuracy of Phylogenetic Inference of Transmission
Direction. The AUC characterizes the probability of discriminat-
ing between the correct and incorrect transmission direction.
Fourteen of 16 models were kept after variable selection and
regularization. We found that the 14 logistic models varied
greatly in their discriminatory power to detect when the phylo-
genetically inferred transmission direction was correct, with
mean AUC values ranging between 0.65 and 0.99 (Fig. 3A).
There were seven models with a mean AUC greater than 0.95

Table 1. Covariates used in the two models

Information class and covariate

Values (units where applicable)

Model with all data Model with routinely available data

Epidemiological (E)
Sexual risk exposure group Men who have sex with men or heterosexual
Recency of the transmitter’s infection Acute (transmission up to 90 d after

infection) or chronic (otherwise)
Excluded

Sampling (S)
Sample size Low (no. of unique sampled sequences in either partner <10) or

high (otherwise)
Sample size difference Difference* in the no. of unique

sampled sequences between
partners

Absolute difference in the no. of
unique sampled sequences between
partners

Time from transmission Sum of the absolute time to sampling
of both partners relative to
transmission time (d)

Excluded

Genetic (G)
Sequence alignment length No. of base pairs
Intrahost nucleotide diversity difference Difference* between the within-

partner mean pairwise sequence
diversity (substitutions/site)

Absolute difference between within-
partner mean pairwise sequence
diversity (substitutions/site)

Multiplicity of infection Single (probability of one founder
unique sequence in the recipient is
greater than or equal to 0.75) or
multiple (otherwise)†

Excluded

Phylogenetic (P)‡

Topology class PP, PM, or MM§

Phylogenetic diversity difference Difference* between the sum of the
branch lengths of each partner
subtree¶ (substitutions/site)

Absolute difference between the sum
of branch lengths of each partner
subtree¶ (substitutions/site)

Root to tip difference Difference* between the minimum
root to tip distances of the partners’
sequences (substitutions/site)

Absolute difference between the
minimum root to tip distances of
the partners’ sequences
(substitutions/site)

Most basal tip identity Transmitter, recipient, or both; the
identity of the tip(s) that minimizes
the no. of internal nodes along the
paths between itself and the root

Agree, disagree, or ambiguous;
whether the identity of the tip(s)
that minimizes the no. of internal
nodes between itself and the root
matches the identity with the higher
ancestral-state probability at the
root

Interhost patristic distance The shortest patristic distance between tips from the partners
(substitutions/site)

*Subtraction of the recipient’s value from the transmitter’s value.
†As in ref. 8.
‡Illustrated in Fig. 1. To build these covariates when using a posterior distribution of trees, we selected either the most frequent observation (in the case of qualitative covariates) or the
mean shift mode (in the case of the quantitative covariates).
§As in ref. 14.
¶We used the sum of the edge lengths that give rise to only one tip in the subtree as in ref. 27.
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and with comparable discriminatory power (the maximum
ΔAUC was 0.03); these seven models all included at least four
of the five covariates from the phylogenetic class (P) (Fig. 3B).
The model ESGP had the highest discriminatory power

(AUC = 0.99, 95% CI = 0.97 to 1.00), implying that factors
from all information classes affect transmission direction infer-
ence. However, when only a subset of classes is available, the
model GP (AUC = 0.97, 95% CI = 0.94 to 1.00) (SI
Appendix, Fig. 3 and Table 2) was selected as the best-fit model
in accordance with our criteria. This best-fit model included
four covariates of the phylogenetic class and one covariate from
the genetic class. Specifically, we find that the probability of
correctly inferring the transmission direction increases 1) when
we observe a PM or a PP topology class (compared with MM),
2) when the most basal tip in the tree corresponds to a sample
from the transmitter (compared with a tree when tips from
both partners are equally close to the root), 3) when the phylo-
genetic diversity of the transmitter is larger than that of the
recipient, 4) when the root to tip distance of the recipient is
larger than that of the transmitter, and 5) when the sequence
alignment length gets larger. In contrast, the probability of cor-
rectly inferring the transmission decreases when the most basal
tip corresponds to a sample from the recipient (compared with
a tree when tips from both partners are equally close the root).

Predicting the Accuracy of Transmission Direction Inference
Using Routinely Available Data.
Base case analysis. While the previous models inform about the
covariates that affect the phylogenetic inference of the transmission

direction between a pair of individuals where direct transmission
has been previously established, they do not inform about the accu-
racy of the inference when we do not know who infected whom.
To tackle this issue, we reanalyzed the data after masking the iden-
tity of the transmitter and recipient and using only routinely avail-
able information. In our base case analysis (a binary model when
the outcome is consistent if pi > 0.5 and inconsistent otherwise),
the model fitting reduced the number of models to a total of seven
that were either single-class models (S, G, P) or the multiclass mod-
els SG, SP, GP, and SGP (Fig. 3C). While the model SGP had the
highest discriminatory power (AUC = 0.90, 95% CI = 0.82 to
0.98), model P was the best-fitting model in accordance with our
criteria (AUC = 0.88, 95% CI = 0.79 to 0.97) (SI Appendix, Fig.
3 and Table 3), with topology class, the identity of the most basal
tip, and the phylogenetic diversity difference as covariates (Fig.
3D). Specifically, we find that the probability that the transmitting
partner is correctly identified is higher when 1) we observe a PM
topology class (compared with either MM or PP), 2) the identity
of the most basal tip agrees (compared with being ambiguous) with
the identity of the individual with the highest probability at the
root, and 3) the diversity of one partner is substantially greater than
that of the other partner (the difference in phylogenetic diversity
gets larger). In contrast, the probability of correctly inferring the
transmission decreases when the identity of the most basal tip dis-
agrees (compared with being ambiguous) with the identity of the
individual with the highest probability at the root.
Sensitivity analyses.

Equivocal outcomes. When we classified the inferred direc-
tion of transmission to be consistent, inconsistent, or equivocal

Binary classification
(Inconsistent, consistent)

Ordinal classification
(Inconsistent, equivocal, consistent)

Relaxed Conservative

Topology class

Monophyletic−monophyletic

Paraphyletic−monophyletic

Paraphyletic−polyphyletic

0

20

40

60

0.
00

0.
05

0.
40

0.
50

0.
60

1.
00

0.
95

pi (probability of the transmitter being inferred as the character state at the root)

F
re

qu
en

cy

Fig. 2. Ancestral-state reconstruction. The probability for each transmission pair, i, that the transmitting partner is correctly identified using ML ancestral-
state reconstruction. Observations are colored by the topology class. Observations with pi > 0.5, pi > 0.6, and pi > 0.95 indicate that the inferred transmis-
sion direction was consistent with the known transmission history for the binary model, the ordinal model with relaxed threshold, and the ordinal model
with conservative threshold, respectively. For the ordinal models, the outcome can be equivocal (0.4 < pi < 0.6 for the relaxed threshold, 0.05 < pi < 0.95 for
the conservative threshold). The outcome is inconsistent if not consistent or equivocal.
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with a relaxed probability threshold (pi ranging between 0.4
and 0.6 as equivocal), the inferred direction of transmission
was consistent with the known transmission direction in 75%
(n = 84) of the pairs, equivocal in 13% (n = 15), and inconsis-
tent in 12% (n = 13) (SI Appendix, Table 1). Similarly, using a
conservative threshold (pi ranging between 0.05 and 0.95 as
equivocal) increased the proportion of pairs that are classified as
equivocal to 35% (n = 39) and reduced the proportions of con-
sistent and inconsistent pairs to 62% (n = 69) and 4% (n = 4),
respectively. The best-fit ordinal models were models SP
(AUC = 0.88, 95% CI = 0.83 to 0.95) and P (AUC = 0.83,
95% CI = 0.75 to 0.90) for the relaxed and conservative
thresholds, respectively (SI Appendix, Figs. 3 and 4 and Table
3). Similar to the base case binary model, the ordinal models
show that the probability of correctly inferring the direction of
transmission is higher 1) when one of the virus populations is
embedded as a monophyletic group in the virus population of
the partner and 2) when the identity of the basal tip either
agrees or disagrees (compared with ambiguous) with the iden-
tity of the individual with the highest probability at the root.

In addition, this probability increases 1) when the sample size is
high and 2) when the sample size difference gets larger in the
case of the SP model (relaxed threshold) or 1) when only one of
the partners is very close to the root (the root to tip difference
gets larger), 2) when the diversity of one partner is substantially
greater than that of the other partner (the difference in phyloge-
netic diversity gets larger), and 3) when viral populations have
not diverged much (the minimum interhost patristic distance
gets smaller) in the case of the P model (conservative threshold)
(SI Appendix, Fig. 5).

Most parsimonious ancestral-state reconstruction. When we
used the most parsimonious reconstruction to calculate the
inferred transmission direction from the ML trees, the model
P was the best-fit model (AUC = 0.84, 95% CI = 0.78 to 0.89)
(SI Appendix, Figs. 4 and 5 and Table 3). This model suggests
that the probability of the inferred direction of transmission being
correct increases when 1) we observe a PM or a PP topology
(compared with MM), 2) the identity of the most basal tip agrees
(compared with either disagreeing or being ambiguous) with the
most parsimonious state at the root, 3) the diversity of one partner

A B

C D

Fig. 3. Model results. (A) AUC and 95% CIs of the models. The model name indicates the information’s class included in the model (i.e., epidemiological,
genetic, sample, or phylogenetic). The size of each circle shows the number of covariates in the model after Lasso regression. The green color underscores
the high-ranked models with equivalent discriminatory power. (B) The subset of covariates included in each model after Lasso regression colored by infor-
mation class. The number of covariates in boxes from B corresponds to the size of the model in A. The green-colored boxes underscore high-ranked models
with equivalent discriminatory power. The thick green box indicates the best-fit model. Gray-colored boxes emphasize models for which variable selection
returned either a null model or a model without covariates from all the classes. (C and D) The same as in A and B but using only covariates that are routinely
available and where the definition of the covariates did not consider the known direction of transmission. *Three covariates excluded in C and D.
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is substantially greater than that of the other partner, and 4) viral
populations have not diverged much.

Implications for Bias within Population Studies. We next eval-
uated whether routinely undisclosed epidemiological characteristics
are associated with the probability of correctly identifying the direc-
tion of transmission. Specifically, we found that the transmitter’s
infection stage at the time of transmission is associated with the
topology class of the phylogenetic tree. Paraphyletic–polyphyletic
topologies—which are associated with less chance of accurately pre-
dicting the transmitting partner—are more frequently observed
(64%) when transmission occurred during the transmitter’s acute
stage. PM topologies—that are associated with more chance of
accurately predicting the transmitting partner—are more frequently
observed (59%) when transmission occurred during the transmit-
ter’s chronic stage (Pearson’s χ2 test P < 0.015).

Implications for Inference of Transmission Direction. Our anal-
ysis suggests that transmission pair characteristics influence the
likelihood of correctly identifying the transmission direction using
ancestral-state reconstruction. To estimate the practical impor-
tance of this result, we used the best binary and ordinal models
(P and SP) under real-life conditions to predict the chance of
inferring the correct transmission direction across all possible cova-
riates by conducting one-way and multiway sensitivity analyses.
Our one-way sensitivity analysis suggests that a high phyloge-

netic diversity difference leads to the most considerable improve-
ment in inference accuracy across the covariates when outcomes
are classified as consistent or inconsistent (Fig. 4A). If equivocal
outcomes are considered, sample size differences between the indi-
viduals and topology class dominate in importance (Fig. 4C).
If we want to choose whether the transmission direction

inferred from ancestral-state reconstruction is either consistent or
inconsistent, our multiway sensitivity analysis suggests that we
can be at least 82% confident when the most basal tip agrees
with the identity of the individual with the higher state probabil-
ity at the root. If the phylogeny has a PM topology in addition,
this confidence increases to 93% (Fig. 4B). On the other hand,
if we want to choose whether the transmission direction inferred
from ancestral-state reconstruction is consistent, inconsistent, or
equivocal, the probability of correctly identifying the transmit-
ting partner is at least 94% when we observe a PM topology,
when the sample size is high, and when the identity of the most
basal tip does not disagree with the identity of the individual
with the higher state probability at the root (Fig. 4D).

Discussion

We have combined empirical data on well-characterized HIV
transmission pairs with statistical modeling to determine the con-
ditions under which ancestral-state reconstruction correctly infers
the direction of HIV transmission. Our results suggest that while
ancestral-state reconstruction correctly identifies the transmission
direction in the majority of known transmission pairs, this success
is determined by the epidemiological, sampling, genetic, and phy-
logenetic characteristics of the individuals and their viral popula-
tions. We show that topological and branch-length metrics—such
as phylogenetic diversity differences—from the phylogenetic tree
of the transmission pair affect the chances of successfully inferring
the transmission direction.
To guide future work on identifying the HIV transmitting

partner within a linked pair, we quantified the probability of
correctly inferring the transmission direction as a function
of available information. Under these circumstances, a PM
topology and a match between the identity of the tip closer to

the root (i.e., the one separated by the least number of internal
nodes) and the identity of the state assigned to the root were
highly predictive of inferring the correct transmission direction.
This result agrees with the theoretical prediction that when mul-
tiple viral sequences per individual are available, the relative
ordering of sequence clusters from the two individuals determines
transmission direction inference (14). Practically, this means that
when samples from partner A are embedded as a single clade
within samples of partner B, leading to ancestral-state reconstruc-
tion commonly inferring B transmitted to A, it is highly likely
(although not certain) that this inference is correct. Nevertheless,
our results suggest that using a relative metric of the difference in
intrahost diversity between the partners further improves discrim-
inatory power (with larger differences indicative of a greater
chance of correctly identifying the transmission direction), which
is also consistent with previous work (15, 16). That is, for the
example above, as the phylogenetic diversity difference between
samples A and B increases, so does the confidence that B trans-
mitted infection to A, in this case rising from 93 to 99%.

While we found several combinations of covariates that pro-
vide comparable discriminatory power, our conclusion is largely
insensitive to the exact details of these models; that is, topology
class, the most basal tip identity, and a measure of interhost
diversity are the important drivers of accurately inferring trans-
mission direction. This result is true when we extend our analysis
across different outcomes: for example, including an equivocal
class in addition to consistent and inconsistent.

There is a noticeable drop in discriminatory power when our
models only include readily obtainable information, and thus,
our results confirm that inferences about directionality entail
considerable uncertainty in the absence of key epidemiological
information (37). Moreover, because the stage of the transmit-
ting partner’s infection is likely to influence the topology class
of the phylogenetic tree, which in turn, influences the probabil-
ity of correctly identifying the transmitting partner, chronic-
stage transmitters who are more likely to exhibit PM topologies
are thus more likely to be correctly identified (8). This argu-
ment explains, to some extent, the greater success in the trans-
mission direction inference of recent studies from long-term
follow-up serodiscordant couples, where transmission was likely
to occur during the transmitter’s chronic stage (13, 15).

Our results suggest that there is little difference in the ordinal
classification performance of ancestral-state reconstruction methods
(either probabilistic or parsimony-based algorithms). However, we
show that even when we are conservative about attributing the
transmission direction using ancestral-state reconstruction, requir-
ing a probability equal to or greater than 0.95 to support a direc-
tion, the sensitivity of ancestral-state reconstruction to determine
transmission direction is not perfect at around 96%. These findings
further underscore that individual-level analysis of HIV-1 transmis-
sion is not recommended and that phylogenetic analysis cannot
alone prove the direction of HIV transmission between two linked
individuals. In addition, a recent study tested whether the predic-
tion of the transmission direction could be improved by using
next-generation sequencing, and in the best-case scenario, the pre-
diction was incorrect for 4/33 (12%) pairs (16). Thus, rather than
focusing attention on the accuracy of the transmission direction
inference for specific transmission pairs, we suggest that epidemio-
logical studies should instead first calculate the a priori confidence
in direction inference, similar to the probabilities presented here.
These confidence probabilities can then be integrated directly
into subsequent epidemiological analysis. Our study suggests that
these confidence levels—that is, the probability of ancestral-state
reconstruction correctly identifying the transmitting partner—can
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be easily calculated from readily obtainable sample and phyloge-
netic measures. For example, these probabilities could be used as
weights to adjust population-level analysis, for instance, in studies
investigating factors driving HIV epidemics, which rely on trans-
mission direction.
This study has some limitations. First, well-characterized trans-

mission pairs are scarce, and we could not test our models out of

sample. Second, it is difficult to assess if there is something
unique to a population consisting of transmission pairs with
known transmission direction (compared to the general popula-
tion where we do not know the transmission direction), which
could limit the generalizability of our findings. However, our
results might generalize to sexually acquired HIV-1 infections
whose characteristics overlap with the range of covariate values
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we documented here. Third, we used relational metrics that sum-
marized the magnitude of differences in the intrahost diversity
(i.e., the difference in the number of sampled unique sequences,
the difference in intrahost nucleotide diversity, and the difference
in the minimum root to tip distance), in the interhost diversity
(i.e., the difference in the minimum patristic distance), or in a
composite measure of diversity (e.g., the difference in phyloge-
netic diversity). However, there are alternative ways to conceptu-
alize diversity, and there may be other factors that affect the
correct inference of transmission direction. Fourth, we did not
consider the effects of processes such as superinfection and recom-
bination, which impact diversity and phylogenetic interpretation.
Fifth, we used sequences generated via capillary or Illumina
sequencing of PCR products. Thus, the generalizability of our met-
rics when using different protocols, technologies, and next-
generation sequence data warrants further investigation. Finally, we
considered only pairs of individuals for whom direct transmission
had been verified using information, such as contact tracing and
testing histories, as detailed elsewhere. While these data are cur-
rently the best available, it is conceivable that there may have been
an unsampled intermediate partner or common source partner.
Our study only addresses the chance of correctly identifying

the transmission direction given that the direct transmission of
infection between the two individuals has been previously
established. In reality, we would also like to identify direct
infection transmissions between individuals and rule out trans-
mission through one or more intermediate partners or common
sources. However, this latter question is inherently more com-
plex because not only is the range of possible outcomes larger
but also, the data on which to fit a model are scarce.
While phylogenetic analysis to infer transmission direction

has recently shown immense promise, it is unsuitable for indi-
vidual pair-level studies, such as forensics, because the sensitivity

of ancestral-state reconstruction, even in the most optimistic
conditions, is not perfect. Here, we provide a statistical frame-
work to help explain the factors affecting transmission direction
inference and to improve the reliability of future work. We
stress that while phylogenies provide rich and important infor-
mation about transmission at the population level, conclusions
on directionality at the individual level must be considered cau-
tiously and with full adherence to the strictest ethical standards
of data use.

Data, Materials, and Software Availability. Data are available as support-
ing information and in a public GitHub repository (https://github.com/Chjulian/
TransmissionPairs_iDoT) (38). The data file combines information from LANLdb,
GenBank and the original studies, as well as previously published work (8).
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