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Abstract

Clinical trials with longitudinal outcomes typically include missing data due to

missed assessments or structural missingness of outcomes after intercurrent

events handled with a hypothetical strategy. Approaches based on Bayesian ran-

dom multiple imputation and Rubin's rules for pooling results across multiple

imputed data sets are increasingly used in order to align the analysis of these tri-

als with the targeted estimand. We propose and justify deterministic conditional

mean imputation combined with the jackknife for inference as an alternative

approach. The method is applicable to imputations under a missing-at-random

assumption as well as for reference-based imputation approaches. In an applica-

tion and a simulation study, we demonstrate that it provides consistent treatment

effect estimates with the Bayesian approach and reliable frequentist inference

with accurate standard error estimation and type I error control. A further advan-

tage of the method is that it does not rely on random sampling and is therefore

replicable and unaffected by Monte Carlo error.
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1 | INTRODUCTION

The ICH E9(R1) addendum on estimands stresses the importance of a precise description of the targeted treatment effect
reflecting the clinical question posed by the trial objectives.1 One important attribute of an estimand is a list of possible
intercurrent events (ICEs), that is, events occurring after treatment initiation that affect either the interpretation or the exis-
tence of the measurements associated with the clinical question of interest, and the definition of appropriate strategies to
deal with ICEs. The two most relevant strategies for the purpose of this article are the hypothetical strategy and the treat-
ment policy strategy. For the hypothetical strategy, a scenario is envisaged in which the ICE would not occur. For the treat-
ment policy strategy, the treatment effect in the presence of the ICEs is targeted and analyses under a treatment policy
strategy include all observed outcomes regardless whether the subject had an ICE or not.

The ICH E9(R1) addendum distinguishes between ICEs and missing data. However, there are many connections
between them. Under the hypothetical scenario, outcome values after the ICE are not directly observable and treated
using models for missing data. Under a treatment policy scenario, the outcome assessments after the ICE are observable
but may be incomplete because study drop out cannot be prevented. In addition, intermittently missing outcome assess-
ments may also occur due to missed visits.

Received: 25 September 2021 Revised: 17 March 2022 Accepted: 26 April 2022

DOI: 10.1002/pst.2234

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.

Pharmaceutical Statistics. 2022;1–12. wileyonlinelibrary.com/journal/pst 1

 15391612, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2234 by T

est, W
iley O

nline L
ibrary on [13/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-4915-9015
mailto:marcel.wolbers@roche.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/pst
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpst.2234&domain=pdf&date_stamp=2022-05-19


For more than a decade, a likelihood-based mixed model for repeated measures (MMRM) approach has been the de
facto standard for the primary analysis of continuous longitudinal endpoints in pharmaceutical clinical trials.2 MMRM
approaches typically model the longitudinal outcomes at scheduled visits using a multivariate normal model with the visit
treated as a categorical variable in each treatment group, adjustment for baseline covariates, and an unstructured covariance
matrix. This provides valid treatment effect estimates if the missing data are missing at random (MAR) after accounting for
baseline covariates, the assigned treatment group, and observed outcomes and if the complete data model is correctly speci-
fied. Such a MAR assumption is often a good starting point for implementing a hypothetical strategy.3 However, it is typi-
cally less plausible when implementing a treatment policy strategy for an ICE such as study treatment discontinuation. For
this latter setting as well as for settings, which include multiple ICEs handled with different strategies, methods based on
imputation of missing data may be more suitable than MMRM.4 For example, it may be feasible to impute missing data after
study treatment discontinuation based on subjects from the same treatment group who also discontinued treatment but con-
tinued to be followed up.5,6 This is compatible with a more complex MAR assumption, which also accounts for the subject's
discontinuation status. An alternative, which is especially attractive if post-discontinuation data are sparse, is to use
reference-based imputation methods.3,4,7 These methods formalize the idea to impute missing data in the intervention group
based on data from a control or reference group. A typical approach to implement these imputation methods is to use multi-
ple imputation based on Bayesian posterior draws of model parameters combined with Rubin's rules to make inferences.

In this article, conditional mean imputation for MAR and reference-based imputation of missing data is introduced,
justified, and explored in a clinical trial application and a simulation study. The proposed approach differs from the
conventional multiple imputation methods in several ways. First, it estimates the parameters of the imputation model
using maximum likelihood rather than via Bayesian posterior draws.8 Second, it uses a single conditional mean imputa-
tion rather than random imputations. Third, inference is based on resampling methods, that is, the jackknife or the
bootstrap, and targets the frequentist repeated sampling variance. In contrast, the variance estimated by Rubin's rules is
approximately information-anchored, that is, the proportion of information lost due to missing data under MAR is
approximately preserved in reference-based imputation methods, but tends to over-estimate the frequentist variance for
reference-based imputation methods.9–13

Unlike the conventional approach, it avoids the specification of prior distributions and the complexity of Markov
chain Monte Carlo (MCMC) sampling and leads to deterministic treatment effect estimates (i.e., they are free from
Monte Carlo sampling error) and, in the case of the jackknife, also to deterministic confidence intervals and p-values.

2 | CONDITIONAL MEAN IMPUTATION METHOD

In brief, the procedure is implemented in four steps. First, a MMRM imputation model is fitted to the observed outcome
data. Second, conditional mean imputation of missing data is performed based on the parameter estimates from the
MMRM imputation model and the chosen imputation method, for example, reference-based imputation. Third, the
completed data is analyzed using a simple ANCOVA model. Finally, inference is performed based on resampling tech-
niques. All four steps are described and justified below.

2.1 | Alignment between the estimand and the missing data strategy

Assume that the data are from a randomized two-group trial of an intervention versus control with n subjects in total
and that each subject i (i = 1, …, n) has J scheduled follow-up visits at which the outcome of interest is assessed. Denote
the observed outcome vector of length J for subject i by Yi (with missing assessments coded as NA [not available]) and
its non-missing and missing components by Yi! and Yi?, respectively.

Missing data in Yi may occur due to missed outcome assessment or may be caused by unobserved counterfactual
outcomes relevant to the chosen estimand. Observed outcome data after an ICE handled using a hypothetical strategy
is not compatible with this strategy. Therefore, we assume that all post ICE data after ICEs handled using a hypotheti-
cal strategy are already set to NA in Yi. Intermittent missing data and data after such ICEs will be assumed to be MAR
(conditional on baseline covariates and observed outcomes). Observed outcome data after an ICE handled using a treat-
ment policy strategy is compatible with the chosen strategy and therefore relevant for the analysis. Such post-ICE data
are increasingly systematically collected in RCTs. However, depending on the study context, it may be challenging to
retain subjects in the trial after ICEs such as study treatment discontinuation and missing post-ICE data may be
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common. Two options may be applied for imputation of missing post-ICE data in this setting: MAR imputation after
inclusion of time-varying covariates and reference-based imputation methods.

Imputation under a MAR assumption after inclusion of appropriate internal time-varying covariates associated with the
ICE (e.g., time-varying indicators of treatment compliance, discontinuation or initiation of rescue treatment) has been pro-
posed by Guizzaro et al.6 In this approach, post-ICE outcomes are included in every step of the analysis, including in the
fitting of the imputation model. The approach allows that ICEs may affect post-ICE outcomes but that otherwise missingness
is non-informative. The approach also assumes that deviations in outcomes after the ICE are correctly modeled by these time
varying covariates and that sufficient post-ICE data are available to reliably estimate the effect of ICEs on outcome data.

Depending on the disease area and the anticipated mechanism of action of the intervention, it may be plausible to
assume that subjects in the intervention group behave similarly to subjects in the control group after the ICE treatment
discontinuation. In such settings, reference-based imputation methods are valuable. They are implemented by combin-
ing estimated mean trajectories (and covariance matrices) from both treatment groups when determining the imputa-
tion distribution for a subject as described in Section 2.3.

2.2 | Imputation model

The purpose of the imputation model is to estimate mean trajectories and covariance matrices for each treatment group in
the absence of ICEs handled using reference-based imputation methods. Conventionally, publications on reference-based
imputation methods have implicitly assumed that the corresponding post-ICE data is missing for all subjects.7 We will also
allow the situation where post-ICE data is available for some subjects but needs to be imputed using reference-based
methods for others. However, any observed data in the intervention group after ICEs for which reference-based imputation
methods are specified are not compatible with the imputation model described below and they will therefore be removed
and considered as missing for estimating the imputation model, and for this purpose only. Different options are possible for
the handling of observed post-ICE outcomes in the control or reference group. One possibility is to also exclude them from
the imputation model. This ensures that an ICE has the same impact on the data included in the imputation model regard-
less whether the ICE occurred in the control or the intervention group. On the other hand, if imputations in the reference
group including post-ICE data can be reasonably based on a MAR assumption without accounting for the ICE, then includ-
ing post-ICE data from the control group in the imputation model may be preferable. In any case, all observed post-ICE data
will be included as is in the subsequent imputation and analysis steps. For subjects who experience an ICE that is to be han-
dled by reference-based imputation of missing data, denote the visit after which the ICE occurs byeti < J . For all other sub-
jects, set eti ¼∞. A subject's outcome vector after setting observed outcomes after time eti to NA is denoted as Y 0

i and the
corresponding data vector after removal of NA elements as Y 0

i!.
The imputation model of the longitudinal outcomes assumes that the mean structure is a linear function of

covariates. At a minimum, the covariates will include the treatment group, the (categorical) visit, and treatment-by-visit
interactions. Typically, other covariates including the baseline outcome will also be added. Interaction terms between
the treatment group and baseline covariates as well as three-way interactions between treatment group, baseline
covariates, and visit can also be included. Indeed, such interactions are recommended if they are suspected to be pre-
sent based on clinical considerations.14 External time-varying covariates (e.g., calendar time of the visit) as well as inter-
nal time-varying covariates (e.g., time-varying indicators of treatment discontinuation or initiation of rescue treatment)
may in principle also be included if indicated.6 Missing covariate values are not allowed. This means that the values of
time-varying covariates must be non-missing at every visit regardless of whether the outcome is measured or missing.

Denote the J � p design matrix for subject i by Xi and the same matrix after removal of rows corresponding to miss-
ing outcomes in Y 0

i! by X 0
i!. Here p is the number of parameters in the mean structure of the model for the elements of

Y 0
i!. The MMRM imputation model for the observed outcomes is defined as:

Y 0
i! ¼X 0

i!βþϵi!with ϵi! ~N 0,Σi!!ð Þ,

where β is the vector of regression coefficients and Σi!! is a covariance matrix which is obtained from the complete-data
J � J-covariance matrix Σ by omitting rows and columns corresponding to missing outcome assessments for subject i.
Typically, a common unstructured covariance matrix across treatment groups is assumed for Σ. However, separate
covariate structures per treatment group are also possible and recommended in case heteroscedasticity between treat-
ment groups is suspected.

WOLBERS ET AL. 3
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2.3 | Conditional mean imputation step

Conditional mean imputation is based on either maximum likelihood or restricted maximum likelihood (REML) esti-
mates of the regression coefficients and covariance matrices from the imputation model which are denoted by bβ and bΣ.
As demonstrated by others, ML-based imputation is often more efficient and avoids the specification of prior distribu-
tions and the usage of Markov chain Monte Carlo (MCMC) methods which are required for imputation methods based
on Bayesian posterior draws of imputation parameters.8,15

In order to impute missing data for a subject, the marginal imputation distribution is first defined. For MAR impu-
tation, the marginal imputation distribution for subject i is a multivariate normal distribution with mean eμi ¼Xi

bβ and
covariance eΣi ¼ bΣ. For subjects randomized to the control group, the same marginal imputation distribution as for
MAR imputation is also used for reference-based imputation methods. For a subject i randomized to the intervention
group for whom a reference-based imputation method is used after visit eti < J , denote the predicted mean based on the
assigned treatment as μi ¼Xi

bβ. Denote the corresponding design matrix assuming that (counter to fact) the subject had
been randomized to the control group (but using the subject's observed baseline characteristics and time-varying
covariates) by Xi,ref and denote the corresponding predicted mean from the imputation model by μref,i ¼Xi,ref

bβ. Then,
the mean of the marginal imputation distribution depends on the chosen reference-based imputation
method7 (Section 4.3):

1. Copy reference (CR): eμi ¼ μref,i.
2. Jump to reference (J2R): eμi ¼ μi 1½ �,…,μi eti� �

,μref,i etiþ1
� �

,…,μref,i J½ �
� �T

.
3. Copy increments in reference (CIR): eμi ¼ μi 1½ �,…,μi eti� �

,μi eti� �þ μref,i etiþ1
� ��μref,i etiÞ� �

,…,μi eti� �þ μref,i J½ ��μref,i eti� �� �� �T�
.

If the same covariance matrix is assumed for both treatment groups, then the covariance matrix of the marginal
imputation distribution for reference-based imputation methods is also equal to eΣi ¼ bΣ. Otherwise, the relevant covari-
ance matrix is derived based on the estimated covariance matrices from the intervention and control groups as
described in Carpenter et al.7 (Section 4.3).

Intuitively, the marginal imputation distribution under CR assumes that subjects who discontinue the intervention
did not get any benefit from the intervention, J2R assumes that they did get benefit but that the benefit is lost immedi-
ately after discontinuation, whereas CIR assumes that the benefit accrued up to discontinuation is retained but that
there is no additional residual benefit after the ICE. In practice, the most conservative imputation method is J2R while
CIR is the least conservative. J2R and CIR may be seen as relatively conservative imputation strategies for a symptom-
atic or a disease-modifying intervention, respectively. A more general family of reference-based imputation methods
has been presented by White et al.16

Imputation of Yi is then according to the distribution of Yi? conditional on Yi! which is a multivariate normal distri-
bution with mean E Yi?jYi!ð Þ¼eμi?þeΣi?!eΣ�1

i!! Yi!�eμi!ð Þ where the subscripts “?” and “!” denote the selection of elements
of eμi and rows and columns of eΣi corresponding to missing and observed outcomes of Yi, respectively. Note that Yi!

includes observed post-ICE data, hence they are being conditioned on in the construction of the imputed data. Rather
than performing multiple random imputations of the missing data from the conditional distribution of Yi?jYi!, we per-
form a single deterministic conditional mean imputation, that is, we impute Yi? by E(Yi?jYi!). As demonstrated in the
next section, analyzing the deterministically imputed data set using conditional mean imputation with an ANCOVA
model is equivalent to performing infinitely many random imputations, analyzing each randomly imputed data set
using ANCOVA, and then pooling the resulting treatment effect estimates.

2.4 | Analysis step

The imputed data set using conditional mean imputation (as described above) can be analyzed using an analysis of covari-
ance (ANCOVA) model with the outcome (or the change in the outcome from baseline) at a specific visit j as the dependent
variable, the assigned treatment group as the primary covariate and, typically, adjustment for the same baseline covariates as
for the imputation model. The treatment effect estimator based on conditional mean imputation is then the regression coeffi-
cient corresponding to the treatment assignment and is denoted by bθCMI. In many trials, the outcome at the final visit
J will be the primary outcome, but the method can also be applied to outcomes from another visit.

4 WOLBERS ET AL.
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This treatment effect estimator is generated conditional on the REML estimate of the imputation model whereas
reference-based imputation methods typically rely on Bayesian posterior draws from the imputation model.7 As demon-
strated in von Hippel and Bartlett,8 point estimates based on REML estimation yield slightly more efficient point esti-
mates than methods based on Bayesian posterior draws.

von Hippel and Bartlett8 further proposed to perform M random imputations based on the REML estimate, analyze
them, and use the average of the treatment effect estimates across random imputations as the overall treatment effect
estimator. We denote the treatment effect from a single randomly imputed data set m as bθSI,m and the overall average

treatment effect as bθMI,M ¼ 1
M

PM
m¼1

bθSI,m. In contrast, our estimator bθCMI is based on a single imputed data set using condi-

tional mean imputation.

However, in our particular setting of a continuous outcome analyzed by ANCOVA, it is easy to show that the pro-
posed estimator bθCMI is identical to the pooled treatment effect under multiple random imputations with an infinite
number of imputations or, more precisely, that

bθMI,M !bθCMI asM!∞ a:s:ð Þ: ð1Þ

Thus, in this particular modeling setup, the estimator based on conditional mean imputation corresponds to a com-
putationally efficient implementation of the proposal by von Hippel and Bartlett.8

To prove this, let Zm and ZCMI correspond to the imputed outcome vector from the visit relevant to the primary end-
point for all subjects based on the mth randomly imputed data set and conditional mean imputation, respectively. Then

XM
m¼1

1
M

Zm !ZCMI asM!∞ a:s:ð Þ

by the strong law of large numbers (and because the randomly imputed outcomes Zm are realizations of the conditional
mean imputation plus mean zero noise). Let X be the design matrix for the ANCOVA analysis model (which is identical
for all multiple imputed data sets). Denote the vector of estimated regression coefficients from the ANCOVA model bybβSI,m and bβCMI for the mth randomly imputed data sets and the conditional mean imputed data set, respectively. Then

bβMI,M ¼ 1
M

XM
m¼1

bβSI,m ¼ 1
M

XM
m¼1

XtXð Þ�1XtZm ¼ XtXð Þ�1Xt
XM
m¼1

1
M

Zm ! XtXð Þ�1XtZCMI ¼bβCMI

as M!∞ (a.s.). This proves (1) because the treatment effect estimators bθMI,M and bθCMI correspond to the same compo-
nent from the regression coefficient vectors bβSI,M and bβCMI, respectively.

The proof relies on the fact that the ANCOVA estimator is a linear function of the outcome vector. For complete
data, the ANCOVA estimator leads to identical parameter estimates as an MMRM model of all longitudinal outcomes
with an arbitrary common covariance structure across treatment groups if treatment-by-visit interactions as well as
covariate-by-visit-interactions are included in the analysis model for all covariates,17 (p. 197). Hence, the same proof also
applies to such MMRM models. We expect that conditional mean imputation is also valid if a general MMRM model is
used for the analysis but more involved argument would be required to formally justify this.

2.5 | Resampling-based inference step

The most frequently used method for inference with multiple imputed data is Rubin's variance formula. However,
Rubin's formula is not applicable to imputations methods generated conditional on the REML estimate.8 Rather than
deriving complex analytic formulas for inference in our setting, we propose to use resampling methods such as the jack-
knife and the bootstrap.18 Importantly, these methods require repeating all steps of the imputation procedure
(i.e., imputation model fitting, conditional mean imputation, and analysis step) on each of the resampled data sets.

WOLBERS ET AL. 5
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The jackknife requires n estimates of the treatment effect based on data with one subject removed from the original
data set each time. Denote the treatment effect estimate based on omission of subject i by bθ �ið Þ (i = 1, …, n). Then, the
jackknife standard error is defined as

bse jack ¼ n�1ð Þ
n

�
Xn
i¼1

bθ �ið Þ �θ :ð Þ
� �2

" #1=2

,

where θ :ð Þ denotes the mean of all jackknife estimates. Tests of the null hypothesis H0: θ = θ0 (and corresponding confi-
dence intervals) are then based on the Z-score Z¼ bθ�θ0

� �
=bsejack using a normal approximation.

Consistency of the jackknife method for variance estimation has been demonstrated for REML estimators in linear
mixed effects models,19 (Chapter 1.4.4) and for M estimators,20 (Example 2.5) under suitable regularity conditions. As
described, the conditional mean imputation is a simple transformation of the REML estimator of the imputation model,
the observed data, and missing data indicators, and the ANCOVA analysis model is a linear transformation of the
imputed outcomes. Therefore, our procedure can also be represented as an M-estimator, that is, as a stacked set of esti-
mating equations for estimating the variance components and parameters indexing the mean function of the MMRM
model and those for the analysis model.

Bootstrap methods can be used as an alternative to the jackknife and have already been recommended for inference
for multiple imputations.8,21 In most trials, the sample size n should be sufficiently large to ensure that bootstrap stan-
dard errors and normal approximations are reliable. An advantage of the bootstrap over the jackknife is that if there are
concerns about the adequacy of the normal approximation, then more precise bootstrap confidence intervals
(e.g., percentile or BCa intervals) and tests can be used for inference instead.18 The disadvantages of the bootstrap are
that the inference is no longer deterministic and that it is more computationally intensive as the required number of
bootstrap samples B is typically much larger than the sample size n. As a minimum, B = 999 is recommended,22 (page 202)

and, as described in the Supplementary Materials, substantially higher values may be required to obtain accurate p-values
which are minimally affected by Monte Carlo error.

3 | APPLICATION

We applied the proposed methods to a publicly available example data set from an antidepressant clinical trial of an
active drug versus placebo, which was also used in Mallinckrodt et al.23 and Tang.12 The relevant endpoint is the Ham-
ilton 17-item rating scale for depression (HAMD17) which was assessed at baseline and at weeks 1, 2, 4, and 6. Study
drug discontinuation occurred in 24% (20/84) for the active drug and 26% (23/88) for placebo. All data after study drug
discontinuation were missing and there was a single additional intermittent missing observation. The imputation model
had the mean change from baseline in the HAMD17 score as the outcome, included the treatment group, the (categori-
cal) visit, treatment-by-visit interactions, the baseline HAMD17 score, and baseline HAMD17-by-visit interactions as
covariates, and assumed a common unstructured covariance matrix in both groups. The data set included one intermit-
tent missing value, which was imputed under a MAR assumption. For imputing missing data after study drug discon-
tinuation, we explored MAR and reference-based imputation methods. The ANCOVA analysis model also adjusted for
the baseline HAMD17 value. The results for conventional Bayesian multiple imputation combined with Rubin's rules
(with M = 1000 imputations) and conditional mean imputation using jackknife or bootstrap (with B = 10,000 bootstrap
samples) standard errors, respectively, are reported in Table 1.

As shown in Table 1, conventional Bayesian multiple imputation methods and conditional mean imputation result
in nearly identical estimates of the treatment effect for all imputation approaches. However, for reference-based impu-
tation methods, the resampling-based standard errors of the treatment effect from conditional mean imputations are
considerably smaller than those from Rubin's rules. The reported treatment effects estimates and standard errors are
very similar to those obtained in Tang12 using a different implementation. The treatment effect estimate and the stan-
dard error for conditional mean imputation were smallest for J2R and the bootstrap produced slightly smaller standard
error estimates than the jackknife for all methods. The estimated computing time to obtain all four reported treatment
effect estimates and corresponding standard errors with our R software implementation were 14.48 min for Bayesian
multiple imputation (M = 1, 000), 5.16 min for conditional mean imputation plus jackknifing, and 312 min (5.2 h) for
conditional mean imputation plus bootstrapping (B = 10, 000, i.e., on average 1.87 s per bootstrap sample) on a single

6 WOLBERS ET AL.
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core of a low-power laptop with an Intel Core i5-8365U processor (1.60 GHz), 16 GB RAM, and Windows
10 Enterprise.

4 | SIMULATION STUDY

To further explore the statistical properties of the methods, we conducted a simulation study of a trial of an active drug
versus placebo with 100 subjects per group and bi-monthly visits from baseline until 12 months. The other simulation
parameters were chosen as follows:

1. The mean outcome trajectory in the placebo group (and in the active group under the null hypothesis) increased lin-
early from 50 at baseline to 60 at 12 months.

2. The mean outcome trajectory in the active group under the alternative hypothesis was identical to the placebo group
up to month 4. From month 4 onward, the slope decreased by 50% to 5 points/year.

3. The covariance structure of the baseline and follow-up values in both groups was implied by a random intercept and
slope model with a standard deviation of 5 for both the intercept and the slope, and a correlation of 0.25. In addition,
an independent residual error with standard deviation 2.5 was added to each assessment. This implies marginal
standard deviations ranging from 5.59 at baseline to 8.29 at the last visit in both groups.

4. The probability of study drug discontinuation after each visit was calculated according to a logistic model, which
also depended on the observed outcome at that visit. Specifically, a visit-wise discontinuation probability of 1.5% and
2.5% in the placebo and active group, respectively, was specified if the observed outcome was 50 or lower. For out-
comes above 50, the odds of discontinuation further increase by 50% for each 10 point increase.

5. Study drug discontinuation had no effect on the mean trajectory in the placebo group. In the active group, subjects
who discontinued followed the slope of the mean trajectory from the placebo group from that time point
onward (CIR).

6. Study drop-out at the study drug discontinuation visit occurred with a probability of 75% leading to missing outcome
data from that time point onward.

TABLE 1 Results for the data set from an antidepressant clinical trial

LS mean changes

Imputation Method Drug Placebo Difference Standard error Two-sided p value

MAR Bayes + Rubin �7.639 �4.837 2.803 1.115 0.013

Conditional mean �7.636 �4.835 2.802

Jackknife 1.107 0.011

Bootstrap 1.090 0.010

J2R Bayes + Rubin �6.961 �4.839 2.122 1.122 0.060

Conditional mean �6.965 �4.839 2.126

Jackknife 0.858 0.013

Bootstrap 0.846 0.012

CR Bayes + Rubin �7.212 �4.849 2.363 1.104 0.034

Conditional mean �7.207 �4.836 2.371

Jackknife 0.981 0.016

Bootstrap 0.968 0.014

CIR Bayes + Rubin �7.289 �4.838 2.451 1.104 0.028

Conditional mean �7.284 �4.835 2.449

Jackknife 1.001 0.014

Bootstrap 0.986 0.013
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Under the alternative, the simulation parameters imply a true treatment effect of �2.59 (7.41 vs. 10.00) under a
treatment policy strategy which is the target of this simulation study. The treatment discontinuation probabilities were
34% and 24% in the active and placebo groups, respectively, under the null hypothesis and 31% and 24% under the
alternative hypothesis.

Reference-based imputation methods of missing data were compared to MAR imputation. Observed post-
discontinuation data was included in the analysis model but excluded from the imputation model for both reference-
based and MAR-based imputation methods. Imputation and analysis models were as described for the antidepressant
clinical trial application. Results for conventional Bayesian multiple imputation combined with Rubin's rules were
based on M = 100 random imputation and bootstrap standard errors were calculated for B = 1000 bootstrap samples
per simulation scenario.

Results of the simulations under the null hypothesis based on 100,000 simulated data sets are presented in Table 2.
This choice of the number of simulations provides a Monte Carlo standard error for type I error estimates of approxi-
mately 0.07%. As expected, the mean treatment effect estimate was essentially 0 for all imputation methods and scenar-
ios. For Bayesian multiple imputations, the observed standard deviation of treatment effect estimates across simulation
runs (SD bθ) was substantially smaller than the mean treatment effect standard errors from Rubin's rules (mean bsebθ) for
reference-based imputation methods. Consequently, the simulated type I error ranged from 0.92%–2.54% and was sub-
stantially below the nominal type I error of 5%. For conditional mean imputation approaches, there was close agree-
ment between the repeated sampling standard deviation SD bθ and the average standard error. The simulated type I
error for the jackknife ranged from 4.84% to 4.96%, which was slightly below but very close to the targeted type I, error
of 5%. Inference based on bootstrap standard errors was associated with a small type I error inflation with simulated
type I error ranging from 5.10% to 5.26%.

It is sometimes reported that MMRM models such as our imputation model using an unstructured covariance
matrix result in convergence problems.2 In this case, a simplified correlation structure, for example, a Toeplitz or auto-
regressive structure, may be applied. In our simulations with a relatively small sample size and a substantial proportion
of subjects with treatment discontinuations and missing data, the imputation model failed to converge in only
8/100,000 (0.008%) simulated data sets and these were excluded from our summaries in Table 1. Jackknifing did not
result in any additional convergence problems and convergence problems occurred only for 1/([100,000–8] � 1000)
bootstrap samples. In case convergence problems occurred for a bootstrap sample, we replaced it by a new bootstrap
sample, which seems unproblematic due to the minimal number of observed convergence problems.

TABLE 2 Results from the simulation study under the null hypothesis (for a nominal two-sided significance level of 5%)

Imputation Parameter Bayes + Rubin Conditional mean (jackknife) Conditional mean (bootstrap)

MAR Mean bθ 0.001 0.001 0.001

SD bθ 0.926 0.926 0.926

Mean bsebθ 0.924 0.932 0.921

Type I error 5.00% 4.94% 5.26%

J2R Mean bθ �0.005 �0.004 �0.004

SD bθ 0.691 0.690 0.690

Mean bsebθ 0.928 0.694 0.687

Type I error 0.92% 4.84% 5.10%

CR Mean bθ 0.001 0.001 0.001

SD bθ 0.803 0.802 0.802

Mean bsebθ 0.915 0.807 0.800

Type I error 2.54% 4.96% 5.17%

CIR Mean bθ 0.001 0.001 0.001

SD bθ 0.797 0.796 0.796

Mean bsebθ 0.915 0.801 0.792

Type I error 2.45% 4.94% 5.22%

Note: Simulations are based on 100,000 simulated data sets, which provide a Monte Carlo standard error for type I error estimates of approximately 0.07%.
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Results of the simulations under the alternative hypothesis based on 10,000 simulated data sets (providing a Monte
Carlo standard error for power estimates of <0.5%) are reported in Table 3. The mean treatment effect estimate under a
CIR assumption was identical to the simulation truth of �2.59 for all three methods. MAR imputation gave inflated
treatment effect estimates whereas CR and J2R were conservative. Rubin's rules overestimated the frequentist standard
error for all reference-based methods leading to a substantial reduction in the estimated power compared to methods
based on conditional mean imputation plus re-sampling. The frequentist standard error was lowest for J2R. Surpris-
ingly, this led to a larger simulated power for J2R than for CIR or CR. Inference based on bootstrapping led to small
power gains of 0.3%–0.4% across the four scenarios compared to the jackknife.

5 | DISCUSSION

We introduced and justified conditional mean imputation based on the REML estimates of the parameters of the impu-
tation model for MAR and reference-based imputation methods with longitudinal multivariate normal outcomes. For
inference, we explored the use of the jackknife and the bootstrap. The data example and the simulations illustrated that
this leads to nearly identical treatment effect estimates compared to established methods based on multiple imputation
using Bayesian posterior draws form the imputation model parameters and Rubin's rules. The resampling methods pro-
duced standard errors, which were consistent with the observed repeated sampling variation. The jackknife demon-
strated exact protection of the type I error in simulations with a relatively low sample size (n = 100 per group) and a
substantial amount of missing data (>25% of subjects with treatment discontinuations) whereas the bootstrap based on
a normal approximation showed a slightly increased type I error rate compared to the nominal value (up to 5.26% at a
nominal 5% significance level). The method based on Bayesian posterior draws and Rubin's rules had inflated standard
errors relative to the true repeated sampling variance, very conservative observed type I error rates, and a substantially
decreased statistical power for reference-based imputation methods.

Based on our simulations, we recommend the jackknife over the bootstrap for inference because it performed better in
our simulation study, is typically much faster to compute than the bootstrap, and leads to deterministic inference. In both
the data example and the simulation study, jackknife standard errors tended to be slightly larger than bootstrap standard
errors. This is in line with theoretical investigations which suggest that the jackknife variance tends to be biased upwards
for finite sample sizes24 whereas bootstrap variances are more susceptible to downwards bias,20 (Section 3.4.3). Therefore, the

TABLE 3 Results from the simulation study under the alternative hypothesis (for a nominal two-sided significance level of 5%)

Method Parameter Bayes + Rubin Conditional mean (jackknife) Conditional mean (bootstrap)

MAR Mean bθ �3.142 �3.142 �3.142

SD bθ 0.925 0.925 0.925

Mean bsebθ 0.927 0.934 0.923

Power 92.12% 92.11% 92.40%

J2R Mean bθ �2.384 �2.383 �2.383

SD bθ 0.740 0.740 0.740

Mean bsebθ 0.950 0.747 0.739

Power 74.92% 90.35% 90.74%

CR Mean bθ �2.547 �2.547 �2.547

SD bθ 0.827 0.827 0.827

Mean bsebθ 0.934 0.835 0.828

Power 80.37% 86.73% 87.12%

CIR Mean bθ �2.591 �2.591 �2.591

SD bθ 0.822 0.821 0.821

Mean bsebθ 0.933 0.829 0.820

Power 81.98% 88.30% 88.73%

Note: Simulations are based on 10,000 simulated data sets which provides a Monte Carlo standard error for power estimates of <0.5%.
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jackknife demonstrated exact type I error protection whereas the bootstrap led to slight type I error inflation. While we
have not formally investigated this, it could be that bootstrap methods, which use more accurate methods for inference
than the normal approximation, have an advantage over the jackknife for very small sample sizes or other settings where
the normal approximation to the test statistics is in doubt.

There are several differences between the proposed conditional mean imputation approach combined with the jack-
knife and conventional multiple imputation approaches based on Bayesian posterior draws combined with Rubin's
rules. First, our approach leads to deterministic treatment effect estimates, standard errors, and inference. This is partic-
ularly important in a regulatory setting where it is critical to ascertain whether a calculated p value which is close to
the critical boundary of 5% is truly below or above that threshold rather than being uncertain about this because of
Monte Carlo error. Second, our approach does not rely on the specification of prior distributions, other tuning parame-
ters (such as the number of imputations), or MCMC sampling. Third, previous publications on reference-based imputa-
tion methods have implicitly assumed that the corresponding post-ICE data is missing for all subjects whereas our
implementation also covers the setting where post-ICE data is available for some subjects but requires imputation using
reference-based methods for others. Fourth, our approach provides frequentist consistent estimates of the standard
error for reference-based imputation methods whereas it is well known that Rubin's rules do not provide frequentist
consistent estimates of the standard error for reference-based imputation methods.9–13 Intuitively, this occurs because
reference-based imputation methods borrow information from the reference group for imputations in the intervention
group. This creates a positive correlation between outcomes in the two treatment groups and leads to a reduction in the
frequentist variance of the resulting treatment effect contrast, which is not captured by Rubin's variance estimator. For-
mally, the discrepancy is due to uncongeniality between the imputation and analysis models in reference-based imputa-
tion methods.13,25 Cro et al.10 argued that Rubin's variance (which cannot be obtained from our approach) is
nevertheless valid for reference-based imputation methods because it is approximately information-anchored, that is,
the proportion of information lost due to missing data under MAR is approximately preserved in reference-based impu-
tation methods. In contrast, several other authors have implicitly or explicitly favored inference that is correct from a
frequentist repeated-sampling perspective.9,11–13 To us, information anchoring is a sensible concept for sensitivity ana-
lyses, whereas for a primary analyses, we feel that that it is more important to adhere to the principles of frequentist
inference.

The proposed approach requires resampling for inference, which is generally applicable but also computationally
intensive. However, the time-consuming resampling procedure can easily be parallelized and computing time reduced
if computations are distributed over multiple cores. A further limitation is that the validity of our approach has only
been demonstrated for cases where parameter estimates from the analysis model are a linear transformation of the out-
come such as general linear models including ANCOVA. This hinders the generalizability of the approach to binary or
count outcomes. In addition, we have not covered the case of missing baseline covariates.

Under a standard MAR-based missing data assumption (accounting for baseline covariates, the treatment group,
and observed outcomes), direct likelihood approaches such as MMRM are the most established and computationally
efficient approach for treatment effect estimation. However, our approach and other approaches based on missing data
imputation still play an important role for implementing more complex MAR assumptions. As an example, Noci et al.26

implemented a treatment policy strategy by including interaction terms between the treatment group and two time-
varying covariates in the imputation model to account for the impact of treatment discontinuations and initiations of
symptomatic treatment, respectively, on outcomes. Completed data sets based on this more complex imputation model
were then analyzed using a standard ANCOVA analysis model. It may be possible to derive an equivalent treatment
effect estimator (and a corresponding standard error) directly from an MMRM model with time-varying covariates but
this would be conceptually less straightforward and require additional algebraic manipulations. Providing formal justifi-
cation and reliable implementations of such alternative MMRM-based approaches is an area of ongoing research.

We believe that methods based on missing data imputation are the most flexible and established approach to imple-
ment reference-based missing data assumptions but we acknowledge that related approaches based on MMRM model
fitting have also been proposed by Mehrotra et al.27 and Liu and Pang.11 Instead of using subject-level imputation,
Mehrotra et al.27 propose a simpler approach for the primary analysis in which the entire missing mean for the drop-
outs from the intervention group is explicitly replaced with the MAR-based estimated overall control group mean. The
resulting treatment effect estimator is the difference between the mean outcome of completers from the intervention
group and the MAR-based estimated mean outcome from the full control group, which is then multiplied by the pro-
portion of completers from the intervention group. The mean outcomes in these two patient groups are obtained by sep-
arate MMRM models evaluated at the observed overall mean(s) of the baseline covariate(s) based on all randomized
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patients in the trial. Of note, Mehrotra et al.27 compare two non-randomized patient groups (completers from the inter-
vention group versus all subjects from the control group) and observed outcomes from subjects in the intervention
group who drop out have no impact on the resulting treatment effect estimator. In case the probability of dropout
depends only on baseline covariates but not on observed outcomes, this method leads to similar estimates as methods
based on a jump-to-reference missing data assumption. However, in many clinical settings, it is plausible that subjects
with worse observed outcome values are more likely to drop out. Consequently, completers in the intervention group
would on average have better outcomes than the full intervention group. Under the null hypothesis of equal mean out-
comes in the intervention and control group, the approach by Mehrotra et al.27 would therefore target a treatment effect
different from zero, which could also lead to type I error inflation. In contrast, none of the reference-based imputation
methods included in our simulation study showed evidence of bias under the null hypothesis or type I error inflation
even though the probability of study drug discontinuation depended on observed outcomes. Liu and Pang11 derived
treatment effect estimators compatible with a reference-based imputation assumption based on parameter estimates
from a standard MMRM fit to the data. However, it would be challenging to extend this approach to more general set-
tings (e.g., allowing for different covariance structures in the two treatment groups or accounting for the inclusion of
post-ICE data as proposed here).

Analyses of data with missing observations generally rely on unverifiable missing data assumptions and the assump-
tions for reference-based imputation methods are relatively strong.13,16 Informally, they assume that treatment discon-
tinuations in the control or placebo group do not affect outcomes, that is, that imputations under a standard MAR
assumption are valid, and that subjects in the intervention group who discontinue treatment subsequently immediately
follow the mean trajectories implied by the chosen reference-based imputation assumption. However, these assump-
tions may not be plausible if subjects who discontinue randomized treatment are likely to also initiate rescue medica-
tion or if the effects of discontinuing the intervention treatment are not immediate. Therefore, these assumptions need
to be clinically justified as appropriate or at least conservative for the considered disease area and the anticipated mech-
anism of action of the intervention treatment. Moreover, if sufficient post-discontinuation data is available, it is possible
to check whether reference-based imputations of missing post-discontinuation data are consistent with the observed
post-discontinuation data. For example, one could graphically examine whether there are any systematic deviations
between observed outcomes and corresponding conditional mean imputations. Furthermore, appropriate sensitivity
analyses should always be planned for missing data methods. While we have not explicitly discussed it, δ-based imputa-
tion approaches which adjust imputed data sets prior to the analysis for sensitivity analysis purposes could also be
incorporated in our framework in a straightforward manner.4

In summary, we believe that conditional mean imputation for MAR and reference-based imputation of missing data
combined with the jackknife is a useful complementary approach to Bayesian multiple imputation for longitudinal
multivariate normal outcomes. It provides replicable parameter estimates and standard errors and correct frequentist
inference.
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