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Abstract
Mammarenavirus RNA was detected in Musser’s bristly mouse (Neacomys musseri) from the Amazon region, and this
detection indicated that rodents were infected with a novel mammarenavirus, with the proposed name Xapuri virus
(XAPV), which is phylogenetically related to New World Clade B and Clade C viruses. XAPV may represent the first
natural reassortment of the Arenaviridae family and a new unrecognized clade within the Tacaribe serocomplex group.

Introduction
Arenaviruses are bi-segmented ambisense RNA viruses

hosted by rodents, bats, snakes, shrews, and ticks1–3. The
Arenaviridae family currently comprises 41 viral species,
classified into three genera, Mammarenavirus (35 spe-
cies), Reptarenavirus (five species), and Hartmanivirus
(one specie)4. Each of the two arenavirus RNA segments
encodes genes for two non-overlapping reading frames in
ambisense polarity: the large (L) genomic segment for the
viral RNA-dependent RNA polymerase (RdRp or L pro-
tein) and a zinc-binding matrix protein (Z protein),
whereas the small (S) genomic segment encodes for the
nucleocapsid protein (NP) and glycoprotein precursor
(GPC), which are post-translationally processed into the
envelope proteins G1 and G2 and the stable signal peptide
(SSP)1,5.
Mammarenaviruses were also classified into two

groups according to their genomic features and antigenic
properties: the Old World Lassa-Lymphocytic

choriomeningitis virus (LCMV) serocomplex, including
viruses from Africa and, recently, Asia; and the New
World Tacaribe serocomplex, formed by viruses indi-
genous to the Americas1,5–7.
Despite the increased number of Old World viruses

characterized in recent years3, New World mammar-
enaviruses remain the most genetically diverse viral group
within the family, composed of 18 species divided into
four lineages: Clade A, Clade A-recombinant (Clade D),
Clade B, and Clade C, according to their phylogenetic
relationships1,5,7. Clades A and B include five (Allpahuayo,
Flexal, Paraná, Pichindé, and Pirital) and seven (Amaparí,
Cupixi, Guanarito, Junín, Machupo, Tacaribe, and Sabiá)
South American arenaviruses, respectively, regardless of
the gene used for phylogenetic analysis7,8. Only Oliveros
and Latino viruses were identified in Clade C, regardless
of the gene sequence used for analysis5. Discrepancies
were observed for mammarenaviruses indigenous to
North America (Tamiami, Whitewater Arroyo, and Bear
Canyon viruses) and for a proposed new species from
French Guiana. An analysis based on complete sequences
confirms that the S RNA genome of these arenaviruses
has a chimeric origin, likely a recombination event that
occurred in an ancestral virus9,10. These viruses form a
separate lineage known as Clade A/Rec and are proposed
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to be named Clade D according to the latest updates in
arenaviruses taxonomy1.
The Amazon River Basin Region is a vast territory,

encompassing nine South American countries: Bolivia,
Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru,
Suriname, and Venezuela. This region contains the
world’s largest tropical rainforest, with a climate char-
acterized by high temperatures and humidity and copious
rainfall, and the most varied ecosystem in the world.
Favorable conditions exist for the transmission of
numerous infectious agents, particularly from increasing
contact of the human population to wild interface areas
and because of accelerating population growth, environ-
mental, and climate changes11. In fact, the Amazon Basin
is often regarded as a hot spot for viruses and other
pathogens that find optimal conditions to emerge or
reinforce their pathogenic potential12.
To date, three mammarenavirus were detected in the

Brazilian Amazon during surveys conducted in the 1960s:
Amaparí virus (Neacomys guianae), Cupixi virus (Oryz-
omys megacephalus), and Flexal virus from an uni-
dentified oryzomyini rodent5,7,13,14. Here, we report the
identification of a novel mammarenavirus in Neacomys
musseri (Rodentia: Sigmodontinae) from the Amazon
Basin Region; we propose that this mammarenavirus be
designated as Xapuri virus (XAPV) after the locality where
this new virus was detected.

Results
A total of 49 rodents were analyzed: 22 from Porto Acre,

16 from Xapuri, and 11 from Rio Branco localities;
Neacomys spinosus (17) and Oecomys bicolor (9) were the
most abundant (Table 1). Amplification of the partial
GPC gene was observed for one Neacomys musseri (1/
49–2.0%) male collected in 2015, in the Seringal
Cachoeira locality, Xapuri municipality (Fig. 1).
Complete genome sequencing of Neacomys musseri

mammarenavirus included two segments: the L segment
(GenBank MG976577) of 7049 nucleotides (nt) and the S
segment (GenBank MG976578) of 3405 nt. Each segment
encoded two open reading frames (ORFs) in an ambisense
organization with an intergenic region of 72 and 88 nt in
length containing a predicted hairpin between the ORFs
for the S and L segment, respectively. NP, GPC, Z, and L
protein lengths were 557 amino acids (aa), 512, 96, and
2199 aa, respectively (Fig. 2). Additional features com-
monly observed in mammarenavirus genomes include the
conservation of the 3′−5′ termini and the presence of an
L-domain motif within the Z protein.
Deduced aa and nt sequences from the four proteins

and complete S and L segments were compared to those
of other representative mammarenaviruses. Nucleotide
sequence divergences of >34.8 and >41.2% for the S and L
segments, respectively, were found between the Neacomys

musseri virus and all other known mammarenavirus
species, whereas a 38.5% aa sequence divergence was
found for the entire NP (Table 2). Pairwise sequence
comparison (PASC) was performed on both segments,
and our sample was found to be most closely related to
Latino (GenBank AF485259) and Oliveros (GenBank
NC_010248) viruses demonstrating 62.84–61.32% identity
for the S segment, whereas the L segment showed
57.35–55.71% identity with Amaparí (GenBank
AY924389) and Guanarito viruses (GenBank NC005082).
In the maximum likelihood (ML) and Bayesian phylo-

genetic analyses for the S and L segments, the Amazonian
virus described in this study formed an independent clade
closely related to Clades C and B New World mammar-
enaviruses, respectively (Figs. 3 and 4). Sequences from
NP, Z, and L proteins displayed the same topology as the
L segment, taking a stem lineage position for New World
Clade B viruses (Fig. 5). GPC was the most divergent
protein, forming a sister stem lineage clade with New
World Clade C viruses (Fig. 5). Bootscan and RDP4
recombination analysis of S and L segment sequences by
Simplot revealed no recombination peaks. Reconstructed
phylogenetic trees, including the complete nt GPC gene
show no alternate clustering of the N. musseri virus and
Clade C viruses.

Discussion
The genus Neacomys Thomas, 1900 (Cricetidae, Sig-

modontinae, Oryzomyini) comprises eight valid species

Table 1 Rodents captured in three localities from Acre
state, Brazil, 2015–2016, by species and locality

Species Number of captured rodents

Porto Acre Rio Branco Xapuri Total

Euryoryzomys macconelli — — 1 1

Hylaeamys perenensis — — 2 2

Hylaeamys yunganus 1 — 1 2

Mesomys hispidus 1 — 1 2

Neacomys musseri — — 4 4

Neacomys spinosus 8 3 6 17

Oecomys bicolor 7 2 — 9

Oecomys sp. — — 1 1

Oligoryzomys microtis 1 3 — 4

Proechimys brevicauda 2 — — 2

Proechimys gardneri 1 1 — 2

Proechimys simonsi — 2 — 2

Rhipidomys leucodactylus 1 — — 1

22 11 16 49
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of spiny rats, distributed from Central and South
America. They are mainly found in the Amazon region
(N. dubosti, N. guianae, N. minutus, N. musseri, N.
paracou, and N. spinosus), and only two species do not
occur in the Brazilian Amazon (N. pictus and N.
tenuipes)15,16. Neacomys rodents were identified as
important hosts for different rodent-borne viruses in
Brazil (Amaparí mammarenavirus) and Peru (Andes
orthohantavirus)13,17. In fact, Neacomys guianae is the
host of Amaparí virus, a Clade B mammarenavirus from
Amapá state, in the Brazilian Amazon13. The detection
of a new mammarenavirus in another Neacomys rein-
forces the importance of these rodents in mammar-
enavirus enzootic cycles, particularly in the Amazon
region.
Delineating species in the Arenaviridae family follows

multiple criteria, including the association with a main
host species or group of sympatric hosts, the presence in
a defined geographical area, and significant protein
sequence differences, such as a variance of at least 12.0%
in the aa sequence of the NP compared to that of other
species in the genus1,18. In addition, a recent update
from the International Committee on Taxonomy of

Viruses (ICTV)1 also includes as classifiable “virus
coding-complete genomic sequences for both S and L
segments even in the absence of a culturable isolate” and
recommends the use of the PASC tool for the assess-
ment of novel arenaviruses. Cut-off values selected for
classifying arenaviruses belonging to the same species
using this tool are >80.0 and >76.0% regarding nucleo-
tide sequence identity in the S and L segments,
respectively1. The virus identified in this study from N.
musseri is the first mammarenavirus detected in this
rodent species, the only mammarenavirus isolated from
Acre State, and the fourth from the Brazilian Ama-
zon14,19. Furthermore, the sequence of this virus also
meets the nucleoprotein aa sequence identities and
PASC requirements detailed by the ICTV as being
novel; thus, we suggest naming it XAPV after the
municipality where it was detected. Xapuri in a native
language from the Amazon means “river before.” The
city received this name because it is located between the
Xapuri and Acre rivers. Accordingly, we believe the
name is suitable for XAPV’s genetic characteristics,
standing as it does between Clade B and Clade C New
World mammarenaviruses.

Fig. 1 Municipalities of Acre state, Brazil, in which rodents were captured

Fernandes et al. Emerging Microbes & Infections  (2018) 7:120 Page 3 of 10



Fig. 2 Xapuri mammarenavirus genome organization and potential secondary structure of intergenic regions
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XAPV features are interesting for the Tacaribe virus
serocomplex group. The placement of XAPV as a divergent
but sister group of Clade C and Clade B mammarenaviruses
for S segment and L segments, respectively, could be indi-
cative of reassortment between these clades. Nevertheless,
although many studies indicated that viral diversification
during arenavirus evolution is due to high mutation rates
from a low-fidelity viral RdRp, recombination and reas-
sortment events (as for other segmented RNA viruses), no
reassortant mammarenavirus were previously isolated from
nature9,20,21. This absence of natural arenavirus reassort-
ments was attributed to the superinfection exclusion
exhibited by some members of this family in chronic
infection models. However, more recent studies demon-
strated that acute infection by New World Junín virus failed
to down-regulate entry receptors and did not induce
superinfection exclusion22,23. Additionally, it is noteworthy
that arenavirus reassortants have been produced in vitro,
and these data indicate that there are restrictions that
prevent the recovery of all possible combinations and that
only closely related viruses may be able to reassort with one

another20,24,25. Indeed, recent studies showed that reas-
sortment may be a common event for newly recognized
reptarenaviruses26. During reassortment events, in which
entire genes are exchanged during the swapping of seg-
ments, the ORF of the gene and, consequently, the protein
integrit, are maintained without changes in ORFs and their
encoded proteins as shown for XAPV (Figs. 3–5). There-
fore, we propose that XAPV may represent the first iden-
tification of a natural reassortant of the Arenaviridae family
that has arisen from two mammarenavirus groups that are
not closely related.
As for recombination events within the S RNA segment

of North American arenaviruses (Clade D), reassortment
between Clade B and Clade C likely occurred during the
early stages of South American mammarenavirus evolu-
tion1,5–7,9,27. In fact, when we analyze XAPV proteins, a
recombination pattern similar to those for Clade D is
found. GPC sequence analysis places XAPV in a sister
relationship with Clade C, whereas analysis of the N, Z,
and L protein sequence data places it in a sister rela-
tionship with Clade B27.

Table 2 Nucleotide and amino acid identities of XAPV compared with New World representatives of the genus
Mammarenavirus

Virus species p distance

L segment (nt) S segment (nt)

Z (aa) L (aa) NP (aa) GPC (aa)

Allpahuayo 46.7% 50.7% 56.2% 39.9% 45.0% 44.3%

Amaparí 41.2% 48.0% 48.4% 39.8% 40.5% 53.4%

Bear Canyon 47.4% 53.3% 56.9% 42.1% 46.0% 50.6%

Chapare 41.8% 48.0% 48.7% 37.6% 38.7% 46.2%

Cupixi 42.8% 46.7% 48.9% 40.3% 38.9% 51.5%

Flexal 48.1% 52.0% 57.1% 39.9% 44.6% 42.0%

Guanarito 42.8% 40.0% 48.7% 38.8% 39.5% 52.4%

Junín 43.2% 46.7% 50.7% 38.5% 41.5% 48.5%

Latino 42.6% 50.7% 50.2% 35.2% 38.9% 44.8%

Machupo 43.1% 45.3% 48.7% 38.9% 38.5% 47.3%

Oliveros 42,4% 49.3% 48.6% 34.8% 38.5% 34.8%

Paraná 46.3% 52.0% 56.0% 39.6% 45.6% 45.5%

Pichindé 46.8% 56.0% 57.3% 40.8% 45.4% 44.3%

Pirital 46.7% 58.7% 55.7% 39.7% 44.6% 46.6%

Sabiá 41.9% 46.7% 49.6% 37.6% 40.3% 48.3%

Tacaribe 43.0% 46.7% 49.5% 41.5% 42.8% 48.3%

Tamiami 47.8% 48.0% 56.5% 41.6% 47.0% 51.0%

Whitewater Arroyo 47.3% 54.7% 57.2% 42.0% 47.7% 50.8%

XAPV Xapuri virus
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The generation of reassortant or recombinant arena-
viruses requires cells to be simultaneously infected by two
or more different viruses. Although coinfections were
reported in cell culture, this infection may be less likely to
happen in nature22–24. Persistent infection of rodent
reservoirs is also an important factor that could influence
the rate of recombination and reassortment, facilitating
coinfection of cells with two different virus28,29. Similarly,
different mammarenaviruses can sometimes infect the
same rodent species, such as Guanarito and Pirital viruses,
which were both isolated from Zigodontomys brevicauda
and Sigmodon hispidus in Venezuela30. Irwin et al.31

suggested that host switching is mainly responsible for
arenavirus evolution, which may contribute to coinfection
of a single host species with Clade B and Clade C
ancestors of XAPV and possibly other related viruses. It is
possible that future investigations will reveal new arena-
viruses closely related to XAPV and define a new fifth
clade within New World mammarenaviruses, composed
of chimeric viruses of Clades B and C.

Studies conducted with ML29, an in vitro reassortant
virus consisting of the Lassa virus S genomic segment and
the Mopeia virus L segment, suggest that major virulence
factors are located on the L genomic segment32,33. In fact,
many studies demonstrated key aspects of the L and Z
proteins during arenavirus infection34,35. A hallmark fea-
ture of arenavirus hemorrhagic fevers are the high levels
of viremia related to the L protein and its capacity to
enhance intracellular levels of replication36–39, whereas
the Z protein of pathogenic arenaviruses has an immune
suppressive function inhibiting interferon responses40,41.
Although it is not yet clear whether XAPV can cause
human infection, its unique features shared with Clade B
and Clade C may make it a potential threat to human
health.
In conclusion, XAPV may represent a new clade within

New World mammarenaviruses and its unique genetic
features could shed light onto evolutionary mechanisms
of arenavirus evolution and viral diversification.
Further studies should be conducted, particularly in the

Fig. 3 Phylogenetic tree based on the mammarenavirus complete L segments, with ML and Bayesian methods, using the evolutionary
model GTR+ G+ l . Numbers (≥0.7/≥70) above branches indicate node probabilities or bootstrap values (MrBayes/ML). Asterisks indicate values
below 0.7/70. Sequences from this study are highlighted in bold
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Amazon region, to better understand the epizootiologic
aspects of XAPV and its potential to cause human
disease, as well as increase the knowledge of the geo-
graphic range and genetic diversity of South American
mammarenaviruses.

Materials and methods
Study area and small mammal trapping
The fieldwork was conducted in Rio Branco (9°58′29″S

67°48′36″W), Porto Acre (09°35′16″S 67°31′58″W), and
Xapuri (10°39′07″S 68°30′14″W) municipalities, Acre
State, North Brazil (Fig. 1). Rodent sampling was con-
ducted every 6 months between 2015 and 2016, during
five consecutive nights for each of the four capture ses-
sions. The capture effort was constant for all capture
sessions. We established transects with capture stations
setting Tomahawk (Tomahawk Live Trap, Hazelhurst,
WI, USA) (40.64 × 12.70 × 12.70 cm3) and Sherman (HB

Sherman Traps, Tallahassee, FL, USA) (7.62 × 9.53 ×
30.48 cm3), live traps baited with a mixture of peanut
butter, banana, bacon, and oatmeal.
Specimens were captured, anesthetized, and euthanized

according to recommended safety procedures and under
the Guidelines for the Care and Use of Laboratory Ani-
mals, Fundação Oswaldo Cruz, Brazil, License number
LW-39/1442. Animals were captured with authorization of
the Instituto Chico Mendes para Conservação da Biodi-
versidade (ICMBIO Authorization 13373). Specimens
were then measured, weighed, sexed, and identified by
cranial morphology/morphometry and karyotyping when
necessary. Collected tissues were placed in RNAlater™
Stabilization Solution (Sigma-Aldrich, St. Louis, MO,
USA) and stored at −20 °C. Mammarenavirus-positive
rodent specimens were confirmed by molecular analysis
(amplification of the cytochrome b gene)43. Voucher
rodent specimens were deposited in the Laboratory of

Fig. 4 Phylogenetic tree based on the mammarenavirus complete S segments, with ML and Bayesian methods, using the evolutionary
model GTR+ G+ l . Numbers (≥0.7/≥70) above branches indicate node probabilities or bootstrap values (MrBayes/ML). Asterisks indicate values
below 0.7/70. Sequences from this study are highlighted in bold
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Biology and Parasitology of Wild Mammals Reservoirs
collection, IOC/FIOCRUZ, Rio de Janeiro, Brazil.

Mammarenavirus detection
The total RNA was extracted from liver and kidney

tissue fragments using the PureLink Micro-To-Midi total
RNA Purification Kit (Invitrogen, San Diego, CA, USA)
according to the manufacturer’s protocol. Mammar-
enavirus detection was performed according to previously
described protocols targeting fragments of GPC and NP
genes from the S segment of mammarenaviruses8,44.

Metagenomic library preparation
The isolated RNA was depleted of ribosomal RNA using

NEBNext rRNA Depletion Kit (Human/Mouse/Rat) (New
England BioLabs Inc.) and was cleaned up using a Zymo
Clean and Concentrator column (Zymo Research). A 4 μl
aliquot of RNA was used to prepare complementary DNA

(cDNA) using a Sequence Independent Single Primer
Amplification approach adapted from ref45. Reverse
transcription and second-strand cDNA synthesis were as
described. The cDNA amplification was performed using
AccuTaq LA (Sigma), in which 5 μl of cDNA and 1 μl
(100 pmol/μl) primer B (5′-GTTTCCCACTGGAGGAT
A-3′) were added to a 50 μl reaction, according to the
manufacturer’s instructions. The PCR conditions were as
follows: 98 °C for 30 s, 30 cycles of 94 °C for 15 s, 50 °C for
20 s, and 68 °C for 5 min, followed by 68 °C for 10min.
Amplified cDNA was purified using a 1:2 ratio of AMPure
XP beads (Beckman Coulter, Brea, CA, USA) and quan-
tified using a Qubit and High Sensitivity dsDNA Kit
(Thermo Fisher Scientific Inc.).

Illumina library preparation and sequencing
An Illumina sequencing library was prepared using the

Nextera XT V2 Kit with 1.5 ng of cDNA as the input,

Fig. 5 Phylogenetic trees based on the complete NP, GPC, Z, and L mammarenavirus proteins, using ML and Bayesian methods, (Z
protein) complete Z, using the evolutionary model RtREV+ G+ I, (RdRp protein) complete L, using the evolutionary model LG+ G+ I,
(GPC protein) complete GPC, using the evolutionary model LG+ G+ I, and (NP protein) complete NP, using the evolutionary model.
Numbers (≥0.7/≥70) above branches indicate node probabilities or bootstrap values (MrBayes/ML). Asterisks indicate values below 0.7/70. †Exhibited
a difference between ML and MrBayes tree-building method topologies. Sequences from this study are highlighted in bold
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following the manufacturer’s instructions. Indices were
selected using the Illumina experiment manager software.
Samples were multiplexed in batches of a maximum of
eight samples per run and sequenced on a 2 × 150 bp
paired-end Illumina MiSeq run by the Genomics Services
Development Unit, Public Health England.

Data handling
Reads were trimmed to remove adaptors and low-quality

bases, to achieve an average phred score of Q30 across the
read, using trimmomatic46. BWAMEM v0.7.1547 was used
to align reads to the Mus musculus reference genome
(assembly GRCm38.p6). Viral reads were extracted from
the fastq files using seq_select_by_id48. De novo assem-
blies were generated using Spades 3.8.249 in combination
with SSPACE Standard v3.050. Contigs larger than 1 kb
were searched against the National Center for Bio-
technology Information (NCBI) protein database using a
translated nucleotide query51.
Complete coding sequences for both segments of each

virus were loaded into the PASC tool and analyzed using
the default parameters (https://www.ncbi.nlm.nih.gov/
sutils/pasc/viridty.cgi?cmdresult=main&id=448)52.

Phylogenetic analysis
Multiple sequence alignment and comparison of aa

were performed using MAFFT version 7 with the E-INS-i
algorithm in the Jalview v.4 software program53,54. Phy-
logenetic relationships were estimated with (a) ML phy-
logenetic inference using PhyML implemented in
SeaView v.4 software program55,56, and (b) a Bayesian
Markov Chain Monte Carlo (MCMC) method imple-
mented in MrBayes v3.2.657. For the Bayesian analyses, we
used a mixed aa model of evolution with a γ-shaped
distribution of rates across sites. This model allows
selection to be integrated across all best-fit models. The
MCMC settings consisted of two simultaneous indepen-
dent runs with four chains each that were run for 10
million generations and sampled every 100th generation,
yielding 100,000 trees. After eliminating 10% of the
samples as burn-in, a consensus tree was built. Statistical
support for the clades was measured by a heuristic search
with 1000 bootstrap replicates and the Bayesian posterior
probabilities. The best-fit evolutionary model was deter-
mined using MEGA version 7, using the Bayesian Infor-
mation Criterion58.

Detection of recombination
To analyze possible recombination events, a set of 33S

and L segment sequences from all mammarenavirus
recognized by ICTV (http://ictvdb.bio-mirror.cn/Ictv/
fs_arena.htm (accessed 02 February 2018)) were aligned,
including the sequence generated in the present study.
Sequence alignment was analyzed with Bootscan

implemented in Simplot and RDP4 software59,60. The
sequences for Bootscan analysis were grouped according
to the clustering clades in the phylogenetic trees for the L
and S segment, and the sequence of the XAPV comprised
the query group.
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