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Maximum Likelihood Multiple Imputation:
Faster Imputations and Consistent Standard

Errors Without Posterior Draws

Paul T. von Hippel and Jonathan W. Bartlett

Abstract. Multiple imputation (MI) is a method for repairing and analyz-
ing data with missing values. MI replaces missing values with a sample of
random values drawn from an imputation model. The most popular form of
MI, which we call posterior draw multiple imputation (PDMI), draws the pa-
rameters of the imputation model from a Bayesian posterior distribution. An
alternative, which we call maximum likelihood multiple imputation (MLMI),
estimates the parameters of the imputation model using maximum likelihood
(or equivalent). Compared to PDMI, MLMI is faster and yields slightly more
efficient point estimates.

A past barrier to using MLMI was the difficulty of estimating the standard
errors of MLMI point estimates. We derive, implement and evaluate three
consistent standard error formulas: (1) one combines variances within and
between the imputed datasets, (2) one uses the score function and (3) one uses
the bootstrap with two imputations of each bootstrapped sample. Formula (1)
modifies for MLMI a formula that has long been used under PDMI, while
formulas (2) and (3) can be used without modification under either PDMI or
MLMI. We have implemented MLMI and the standard error estimators in the

mlmi and bootImpute packages for R.
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1. INTRODUCTION

Multiple imputation (MI) is a popular method for re-
pairing and analyzing data with missing values [27]. Un-
der MI, the distribution of missing values is assumed to
depend on the observed values Yobs and an imputation
model with parameter vector 8. Then MI proceeds in two
steps:

1. Obtain a parameter estimate éobs, m from Yops alone.
2. Fill in each missing value with a random imputation
drawn conditionally on Yops and Ogps. n; -

These steps iterate multiple times (m =1, ..., M), re-
turning M imputed copies of the dataset. These MI data
are analyzed to produce an MI point estimate By and an
estimate of its variance Vi = V(ng). Under some cir-
cumstances, discussed later [7], MI data can also be an-

Paul T. von Hippel is Associate Professor, LBJ School of
Public Affairs, University of Texas, Austin, Texas, USA 78712,
(e-mail: paulvonhippel @utexas.edu). Jonathan W. Bartlett is
Reader in Statistics, University of Bath, BA2 7AY, UK (e-mail:
J-w.bartlett@bath.ac.uk).

400

Missing data, incomplete data.

alyzed to estimate additional quantities that are not the
same as the imputation parameters 6.

Different estimates @;bs, m can be used for 6. The most
common approach draws é:)bs,m at random from the
Bayesian posterior distribution of the parameters given
Yobs [27]. We call estimates drawn in this way posterior
draws (PD), or @\pD’m, and when PD estimates are used
in the imputation model, we call the approach posterior
draw multiple imputation.

An alternative is to estimate the imputation parameters
by applying maximum likelihood (ML) to the incomplete
data Yobs [21, 24, 33, 34, 37]. Imputation parameters esti-
mated in this way are ML estimates, §ML, and when ML
estimates are used in the imputation model, we call the ap-
proach maximum likelihood multiple imputation (MLMI).
Any approach that uses asymptotically efficient estimates
of the imputation parameters is equivalent to MLMI.

Although PDMI is by far the more common approach
in practice, it does have certain disadvantages. A minor
disadvantage is that PDMI point estimates are less effi-
cient than MLMI point estimates, but the difference in
efficiency is trivial unless the fraction of missing infor-
mation is large and the number of imputations M is very
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small [37]. In small samples, PDMI point estimates can
also have more bias than MLMI point estimates, but the
biases are trivial in moderate to large samples [33, 34].

The more serious disadvantage of PDMI is computa-
tional. PDMI software users sometimes report runtimes
or hours or even days in large datasets [11, 18, 23,
25]. Although increases in computing power should have
speeded PDMI up, in practice these increases have been
offset by growth in the size of datasets and growth in
the recommended number of imputations M. In early MI
research, M = 3 — 10 imputations were recommended
as adequate for stable point estimates [27], but more re-
cent research, evaluating the stability of standard error
estimates and confidence intervals, calls for as many as
M =20 — 200 imputations in data with a high fraction of
missing information [35].

In addition to long runtimes, PDMI software can be
“fussy,” sometimes failing to converge [16], giving er-
rors and warning messages that seem inscrutable to end
users [25], or requiring diagnostics and changes to the
prior distribution that few end users, or even experts, are
qualified to carry out [16, 19, 28]. Long runtimes and con-
vergence issues contribute to the impression—not uncom-
mon among applied researchers—that MI is not worth the
trouble. This limits the adoption of MI, which is still rare
in some applied fields, such as economics.

Most of these problems occur because most PDMI
software uses a computationally intensive Markov Chain
Monte Carlo (MCMC) algorithm known as data augmen-
tation [28]. Faster algorithms are available to get PD es-
timates [22], and estimation can be further accelerated by
running the algorithm in parallel [17, 29]. But efforts to
speed up PD estimates beg the question of whether we
need PD estimates at all.

Cannot we do imputation without posterior draws, as
MLMI does? No matter what we do to speed up PDMI,
MLMI will always be faster, and MLMI point estimates
will always be more efficient. Why then has not MLMI
been used more often?

A major barrier to MLMI’s adoption has been a lack of
convenient formulas for estimating the variance of MLMI
point estimates. The variance of PDMI point estimates
can be estimated by a simple within-between (WB) for-
mula (5.5) that combines variances within and between
the imputed datasets [27]. But that WB formula, when
applied to MLMI data, will produce variance estimates
that are too small on average. For that reason, MLMI has
been labeled “improper” [27], and perhaps that label has
discouraged investigation. Alternative formulas have been
proposed for variance estimation under MLMI [24, 37],
but the formulas are cumbersome and require statistical
quantities that are often unavailable in applied data anal-
ysis.

In this article, we make MLMI more usable by deriv-
ing three simpler estimators for the variance of MLMI

point estimates. One formula (5.16) modifies the WB for-
mula that is used with PDMI. One formula (6.14) simpli-
fies a score-based (SB) variance formula first proposed by
Wang and Robins [37]. And one formula (8.4) combines
MI with the bootstrap to calculate variance components
due to sampling and imputation. We have implemented
these estimators in the mlmi and bootImpute packages
for R, which we have published on the Comprehensive
R Archive Network (CRAN) [4, 5].

With these new variance formulas, MLMI becomes a
more practical alternative to PDMI. The rest of this arti-
cle derives the variance estimators, compares their prop-
erties analytically and through simulation, and demon-
strates their use in an applied data analysis.

2. INCOMPLETE DATA

Before describing different estimators, let us define the
missing data problem.

If we had complete data Yo, with N cases, we could
maximize its likelihood to get a complete-data ML esti-
mate aom of the parameter vector 6. But instead we have
incomplete data where some values Yp,;s are missing and
other values Y, are observed. If values are missing at
random (MAR)—so that the probability of a value being
missing depends only on Y,ps—then we can get a consis-
tent ML estimate @ML using only Yps, without modeling
the process that causes values to be missing [26]. Note
that @\ML is calculated from all the observed values, in-
cluding observed values in cases with missing values [2,
9].

The variance V1, = V(@ML) of the observed-data ML
estimate exceeds the variance V.om = V(gcom) that we
would get if we had complete data. So the information
Vﬁﬁ in in the observed data is less than the information
V=l that the complete data would provide. The difference

com
is the missing information:

-1 —1 -1
@2.1) vil=vil — vl

mis com

The ratio of observed to complete information is the frac-
tion of observed information yops, and the ratio of missing
to complete information is the fraction of missing infor-
mation Ymis:

-1
(2.2) Yobs = VML Veoms
-1
(2.3) Ymis = Vipis Veom = 1 — Yobs-

If 6 is a scalar, then these variances and fractions are
scalars. If 6 is a vector, then these “variances’™ are covari-
ance matrices, and the fractions of observed and missing
information are matrices as well.

3. MULTIPLE IMPUTATION

MI is an algorithm with M iterations. In iteration m =
1,..., M, MI carries out the following steps:
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1. From the observed data Y,s, obtain an observed-
data estimate é\obs, -

2. Fill in the missing data Yp;s with random impu-
tations Yimp n drawn conditionally on Yops and @)bsym.
The result is a singly imputed (SI) dataset Ysi,, =

{YobSa Yimp,m}-

Together, the M SI datasets make up a MI dataset Y.
The difference between MLMI and PDMI lies in the

definition of the observed-data estimator @,bs, m in step 1:

e Under MLMI, é\obs,m is the ML estimate é\ML, or an-
other estimate that just as efficient in large samples.

e Under PDMI, @)bs,m is a PD estimate @\pD’m drawn at
random from the posterior distribution of 8 given Yps.

3.1 Computational Efficiency of MLMI over PDMI

The main advantage of MLMI is its computational ef-
ficiency. Under PDMI, a new PD estimate ng’m must be
drawn in every iteration m, so both steps of the algorithm
must be iterated. Under MLMI, by contrast, the observed-
data ML estimate é\ML is the same in every iteration, so we
can run step 1 just once and only iterate step 2. Not iter-
ating step 1 gives MLMI a speed advantage that increases
with the number of iterations M.

Even when M is small, MLMI remains faster because
it is faster to get ML estimates than it is to get PD esti-
mates. In some simple settings (such as our simulation,
later), both ML and PD estimates can be calculated using
closed-form formulas; PD requires an extra step, but the
extra runtime is trivial. In general settings, though, both
ML and PD estimates require iterative, numerical meth-
ods, which are much more computationally intensive for
PD than for ML. To get ML estimates, software can use
Sfull information maximum likelihood or the EM algorithm
[12]. But to get PD estimates, most PDMI software uses
data augmentation [28], in which the EM algorithm is
only the first step. Data augmentation typically begins by
using the EM algorithm to find the posterior mode of the
parameters of the imputation model. It then takes a ran-
dom walk around the posterior by iteratively reimputing
the data and reestimating the imputation parameters from
the imputed data. The reestimated parameters are PD es-
timates.

The main reason why data augmentation is slow to re-
turn results is that it discards results from the vast ma-
jority of iterations. It discards (“burns in”), say, the first
100 iterations to ensure that the PD estimates have con-
verged to their posterior distribution; then it discards, say,
99 out out every 100 PD estimates, to ensure that the PD
estimates are approximately uncorrelated. So 100M iter-
ations may be required to get M PD estimates and M im-
puted datasets.

A faster and stabler way to get PD estimates is to boot-
strap the incomplete data and calculate a ML estimate

from each bootstrapped sample [15, 22, 31]. Both data
augmentation and bootstrapped ML are faster if they run
in parallel [17, 29]. But both methods of getting PD es-
timates are slower than ML, so PDMI is slower than
MLMI.

3.2 Bootstrapped MI

A variant of MI which can be useful for variance esti-
mation is bootstrapped MI (BMI). BMl is an iterative pro-
cedure with two nested loops. In iteration b=1, ..., B,

1. Take a bootstrapped sample Ypoor,, 0f N cases from
the incomplete data.

2. Then, in iteration d =1, ...,
That is,

D, apply MI to Ypoot,s-

(a) From the observed values in Ypoor,p, Obtain an
observed-data estimate @)bs bd-

(b) Fill in Ypoor,p’s missing Values with random
imputations drawn conditionally on Gobs »d and the
observed values in Ypoorp. The result is a single
bootstrapped-then-imputed (BSI) dataset Ygsr, pq-

Together, the BD BSI datasets make up an BMI dataset
Yemr.

There are two flavors of BMI: boostrapped MLMI
(BMLMI) and bootstrapped PDMI (BPDMI). The differ-
ence is the definition of the estimator é\obs’ bd:

e Under BMLMI, Gops pg is an ML estimate Oy de-
rived from the observed values in Yboot, p-

e Under BPDMI, 90bs »d 18 a PD estimate GPD bd drawn
at random from the posterior distribution of 8 given the
observed values in Ypoot,p-

As in other applications of the bootstrap, B = 40 is ad-
equate for some purposes, though larger B is better. The
optimal value for D, however, is 2, for reasons we will
discuss when we get to variance estimation.

Just as MLMI is faster than PDMI, BMLMI is faster
than BPDMI Not only is QML p easier to calculate than
QPD »d, but QML » only needs to be calculated once for
each bootstrapped sample, while QPD,bd needs to be cal-
culated D times for each bootstrapped sample. That is,
in the bth bootstrapped sample, PDMI must iterate all of
step 2, while MLMI can run step 2(a) just once and only
iterate step 2(b).

4. MI POINT ESTIMATES

With large N, and large M or BD, practically equiva-
lent point estimates can be calculated from data that was
imputed using PDMI or MLMI, with or without the boot-
strap. With modest M or BD, however, MLMI point esti-
mates are more efficient than PDMI point estimates, and
point estimates from either MLMI or PDMI are more ef-
ficient without the bootstrap than with it. This section
shows why.
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There are several ways to get point estimates from MI
data. The most common way is repeated MI [27], which
analyzes each SI dataset as though it were complete, pro-
ducing M SI point estimates §SI,m, m=1,..., M, whose
average is a repeated MI point estimate:

- 1 M
4.1 o= — %
“4.1) MI MmX::l SIm

Under MLMI, we call this estimate §MLMI; under PDMI
we call it §pDM1. The corresponding SI estimators are
§MLSI ancL é\pDSI. The limit of gMI as M gets large is
limps— o0 OM1 = B0 -

We can also get point estimates from BMI data. An-
alyze each of the bootstrapped-then-imputed datasets as
though it were complete to obtain BD individual point es-
timates §BD. Then average the individual estimates §BD to
get a BMI point estimate:

1 32
35 2 2 Oha-

b=1d=l1

(4.2) OpM1 =

Under BMLMI, we call this estimate §BMLMI; under
BPDMI, we call it Ogppm.-

4.1 Variance of Ml Point Estimates

Repeated MI point estimates By are consistent, asymp-
totically normal and approach Gy, as M and N get large.
The variance of a MI point estimate is

—~ 1
4.3) Vmr =V (6mr) = VmL + M(VSI - VML),

where Vgg is the variance of an SI point estimates. So as
M gets large, the variance of an MI point estimate ap-
proaches V. All these statements are true under both
MLMI and PDMI [37].

When M is finite, though, MLMI point estimates have
smaller variance than PDMI point estimates. To see why,
notice that the variance of an MI point estimate depends in
part on the variance of the observed-data estimate é\obs,m
that is used to generate imputations—and in large samples
the most efficient possible observed-data estimate is a ML
estimate. In fact, PD estimates are approximately twice as
Varlable as ML estimates [33, 34]. To see why, notice that
QPD m 1s drawn from a posterior density whose asymptotic
distribution is GPD m ™ N (QML, VML) So the variance of
Bpp,m is Vep = V (BuL) + VML ~ 2 VL. R R

The substantial efficiency advantage of 6mr. over 6pp
translates into a smaller efficiency advantage of '9MLMI
over QPDMI With large N, the variances of 9MLM1 and
Bppm are

—~ 1

4.4) Vamomr = V(Ovmmn) = VmL + MvcomymiS7
- 1

4.5)  Vppmi = V(fppm1) = VML + MVMLVmis-

These expressions come from Wang and Robins ([37],
equations (1) and (2)), but we have simplified the expres-
sion for Vppmr; the steps of the simplification are given in
Appendix A.

Since Veom < Vmr it follows that Vvt < Vepmi—
that is, MLMI is more efficient than PDMI in large sam-
ples. In small samples, MLLMI is also more efficient than
PDMI, and can be less biased as well, at least in normal
data [33, 34].

Later it will be helpful to have expressions for the vari-
ance of the SI estimators. We can get those expressions
by taking the variance of the MI estimators and setting
M=1:

4.6)  Vmisi=
“4.7) Vepst = V (@ppst) = VML 4 VML Viis-

4.2 Variance of BMI Point Estimates

V(é\MLSI) = VML + VeomVmis»

The variance of BMI point estimates is a little different.
It can be calculated as follows. In large samples, the indi-
vidual bootstrapped-then-imputed point estimates By fit
a random effects model that is centered around By :

(4.8) Oba = OnL + b + epa,

where ep, represents bootstrap or sampling variation, and
epq represents imputation variation. The variance compo-
nents are

(4.9) V(e») = VmL
and

V(epa) = Vsi — VML
(4.10) under BMLMI,
under BPDMI,

Veom Ymis

VML Ymis

where the expressions in the final brace come from sub-
stituting (4.6) and (4.7) for Vgy.

The BMI point estimate is just the average B]—D >3 Opa,
so its variance is

~ VML Vs1 — VML
— V(@ =W .
(OMm1) ML + B + BD

Clearly, Vpmr decreases faster with B than with D, so it
makes sense to set D as low as possible. We recommend
D =2 since at least 2 imputations per bootstrap sample
are needed for variance estimation.

With B bootstrap samples each imputed D times, a
@\BMI point estimate is more variable than a nonboot-
strapped MI point estimate Opr with M = BD imputa-
tions. The difference in variance

4.11) Vemr

VML
Vv =
MI = B

is obtained by subtracting (4.3) from (4.11) with BD =
M. Again, it is clear that Ve is smaller when B is large

4.12) Vemr —
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and D = M /B, perforce, is small. That is one reason we
recommend setting D = 2.

The variance of a BMI point estimates is smaller under
BMLMI than under BPDMI. We get the following expres-
sions by substituting (4.6) and (4.7) for Vgrin (4.11):

1
VeMLMI = VML<1 + E)

(4.13) 1
+ BD VeomYmis under BMLMI,
1
VepDMI = VML<1 + 3
(4.14) 1
+ BD VML Vmis under BPDML.

Since Veom < VML, it follows that Vemimvr < VerpDMI-

4.3 How Many Imputations Are Needed for Point
Estimates?

How many imputations are needed to produce MI point
estimates that are almost as efficient as they would be with
infinite imputations? The answer depends on the frac-
tion of missing information ynjs and on whether MLMI
or PDMI is used. The large- N efficiencies of 9MLMI and
QPDMI, relative to QML, are

_ 1 -1
(4.15) remivr = Vi VL = <I + Myobsymis) ,

1 —1
(4.16) reppmr = VPDMIVML— (1 +— les) .

These relative efficiencies were calculated from expres-
sions (4.4) and (4.5). The expression for reppmr, derived
a different way, also appears in Rubin [27], page 114.!

Under BMI, the efficiencies of GABMLMI and §BPDMI, rel-
ative to gML, are

rEBMLMI = VﬁﬁMI VML
= ((1 + _)I + == Vobsymls> s
B
rEBPDMI = VpﬁMI VML
(4.18)

-((1+ 1)1+ L)
- E ymls) .

These efficiencies were calculated from (4.11).

Table 1 shows the number of imputations that are
needed for MI point estimates to have 95% asymptotic
relative efficiency. Under MI, the number of imputations
is M ; under BMI, it is BD with D = 2.

IRubin was estimating the efficiency of a PDMI point estimate with
M imputations relative to one with infinite imputations, whereas we
are calculating the efficiency of a PDMI estimate relative to an ML
estimate. In large samples, however, a ML estimate is equivalent to
a PDMI estimate with infinite imputations, so the two definitions of
asymptotic efficiency are the same.

TABLE 1
Number of imputations needed for point estimates to have 95%
asymptotic relative efficiency

Imputations needed

Vinis PDMI MLMI BPDMI BMLMI
0.1 2 2 38 36
0.2 4 3 38 38
0.3 6 4 40 38
0.4 8 4 42 40
0.5 10 4 44 40
0.6 12 4 46 40
0.7 14 4 48 38
0.8 16 3 50 38
0.9 18 2 50 36

Note. For PDMI and MLMI, the number of imputations shown is M.
For BPDMI and BMLMI, the number of imputations shown is BD,
where B is the number of bootstrap samples and D = 2 is the number
of imputations per bootstrap sample.

MLMI point estimates need fewer imputations than
PDMI point estimates, especially when yp;s is large. Un-
der PDMI, the number of imputations needed increases
linearly as M = 25, but under MLMI, M is a quadratic
function of ymis that peaks at M = 4 near ypis = 0.5 and
falls if pyis is larger or smaller. PDMI and MLMI need
similar numbers of imputations if s is small, but if
Ymis 18 large MLMI needs many fewer imputations. For
example, if ymis = 0.9, MLMI needs just 2 imputations
while PDMI needs 18 imputations to achieve the same ef-
ficiency.

Under BMI, BMLMI needs fewer imputations than
BPDMI to achieve point estimates with the same effi-
ciency. But the difference is relatively small. Using either
form of BMI, 38 to 50 imputations typically suffice, that
is,, 19 to 25 bootstrapped datasets, each imputed twice.

If the efficiency of point estimates were all that mat-
tered, we would clearly choose MLMI over PDMI, and
we would not give BMI a second thought. But the picture
changes somewhat when we go beyond point estimates
and consider variance estimates as well.

5. WB VARIANCE ESTIMATES

In the coming sections, we will derive three ways to es-
timate the variance of an MI point estimate. We call these
the WB variance estimate, the SB variance estimate, and
the bootstrapped MI variance estimate. Each variance es-
timate can be used to calculate a confidence interval (or
hypothesis test) and estimate the fraction of missing infor-
mation. Both WB and SB estimates make certain assump-
tions about the imputation and analysis model, which we
will discuss later. Bootstrapped MI makes fewer assump-
tions.
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This section derives the within-between (WB) estima-
tors, so-called because they rely on variance components
that lie within and between the SI datasets in MI data.

When we analyze a SI dataset as though it were com-
plete, we get not just a SI point estimate 9\51,,,, but also a
SI variance estimate Vcom,sLm that would consistently es-
timate the variance if the data were complete. Across the
M SI datasets, the average of the \Zom sIm 1s the within
variance WMI, and the variance of the SI point estimates
951 m 18 the between variance BMI

_ 1M
(6.1 Wmr = " >~ VeomSLm:

. 1M _
(5.2) Bvui=—— @stm — D>
M—-1 o]

Here, the notation (§SL m— §MI)®2 represents the outer
product (é\SI,m — é\MI)(@sL m— gMI)T, which reduces to the
square @SLm — §MI)2 if 6 is scalar [37].

Clearly, WMI is a consistent estimator of V.om [27,
30]. EMI is an unbiased and consistent estimator for the
variance of 551 around @\001, and since é\oo ; approaches
§ML in large samples, it follows that §M1 consistently es-
timates

~ ~ ~ N ~ ~
E(Bwm1) = V(01 | Ooor) ——> V (@51 | Onr)

= Vo — V,

(53) SI ML
Veom¥Ymis under MLMI,
N VMLYmis under PDMI.

The last line, which is obtained by substituting expres-
sions (4.6) and (4.7) for Vsi, shows that EMI estimates a
different quantity under MLMI than under PDMI. When
this distinction is important, we will use the symbols
§MLMI and EpDMI, along with WMLMI and WPDMI.

A useful corollary of (5.3) is that EMI /M is a consistent
estimator for the variance of @\MI around §ML:

1 < Nooo 1 -~ -~

E(—B —V(Og1 | 6
(M Ml)—>M (@sr | OmL)
5.4 o
(54) = V@ | L)
= VM1 — VmL.

So if we derive a consistent estimator of V., we can
add By /M to get a consistent estimator of V.

Although consistent, EMI can be imprecise when M is
small, because §MI is a variance estimated from a sam-
ple of just M imputations. Estimators that give substantial
weight to B will be imprecise as well. We will return to
this issue repeatedly in the next couple of pages.

5.1 WB Variance Estimation Under PDMI

Under PDMI, the WB variance estimator is

~ A ~ 1 ~
(5.5) Vepmi,wB = WppMmi + Bppmr + MBPDML

This estimator can be derived in a Bayesian framework
[27], but it can also be derived by substituting consistent
estimators for the components of Vpppny in equation (4.5)
[37]. That is, VPDMLWB consistently estimates Vppmr be-
cause WPDMI consistently estimates Viom, EPDMI consis-
tently estimates Vyr, — Veom, and EPDMI /M consistently
estimates Vppmr — V ML

These are WB estimators for the fractions of observed
and missing information under PDMI:

(5.6) Yobs|PDMI,WB = (Wepwmr + Bepomr) ~! Wepwr,

(5.7) Ymis|pDML,WB = I — Yobs|PDMI,WB-

Again the consistency of these estimators can be veri-
fied by substitution. Yobs pDMI,WB 1S consistent for yobs =
Vﬁﬁ Veom because WPDMI is consistent for V.o, and
WPDMI"‘EPDMI is consistent for V. It follows that
Pimis|PDMI WB 18 consistent for Ymis.

(In the PDMI literature, the fraction of observed infor-
mation is usually defined a little differently, as
VPDMIVCOIH Under that definition, the fractions of ob-
served and missing 1nformat10n are consistently estimated
by Yobs|PDML,WB = VpDMI Wepwmr and 7, Ymis|PDML,WB = I —

Yobs|PDMI,WB-)
‘We can construct a WB confidence interval for scalar 0:

- =1)2
(5.8) fppMI1 £ PDMI,WB VPIéMI,WB’

where tppM1,wg is a quantile from a ¢ distribution with
vppMmr,wB degrees of freedom (df). A simple df estimate
is

(5.9) VppMI,WB = (M —
[27], but this estimate can be highly variable and produce
values that are unrealistically large (exceeding the sample

size) or unnecessarily small (less than 3). To avoid these
problems, we replace Vppmi,wg With

~—2
1) Vimis|pDMI WB

(5.10)  Vppmr,wp = max(3, (VPDIMI wh T Tops) h

which is bounded below at 3 and above at the df in the
observed data, estimated by

1
(5.11) M)

Veom + 3

where veom is the df that would be available if the data
were complete, for example, veom = N — 2 for a simple
linear regression [3, 34]. If 6 is a vector, we use the same
formulas but replace ymisppmi,wp With the average of its
diagonal elements [3].

Vobs = Vcom?obsPDMI,WB(
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The WB estlmators are functions of BPDM] and give
more weight to BPDMI if ymis is large. Since BMI is impre-
cise and volatile if M is small, it follows that the WB es-
timators are imprecise and volatile if M is small and yp;s
is large. The number of imputations M that are needed
for stable variance estimates increases quadratically with

Ymis [35]:

(5.12) M=1+ %(ymiS/CV)z,

where CV is the desired coefficient of variation for the SE
estimate. For example, if we want CV = 0.05—implying
that the SE estimate is expected to change by about 5%
if we impute the data again—then we should use M =
1+ 200)/112lis imputations, for example, just 3 imputations
if ¥mis = 0.1 but 51 imputations if ypis = 0.5.

5.2 WB Variance Estimation Under MLMI

The WB formulas that are consistent under PDMI are
inconsistent under MLMI, and for that reason MLMI has
been defined as “improper.” But we now present alterna-
tive WB estimators that are consistent under MLMI:

(5.13)  PinisMLMLWB = Wyt vy BMLMI
(5.14)  YobsMLMILWB = I — ¥ misMLMI, WB>
(5.15)  VMumLmLwB = VV\MLMI?OT);MLMLWB,
—~ —~ 1 ~
(5.16) VmLMLWB = VMLMLMILWB + MBMLMI-

To verify the consistency of these estimators, replace
WMLMI’ EMLMI and §MLMI /M with their estimands:
WMLMI consistently estimates Veom, EMLMI consistently
estimates Veom¥mis (from (5.3)), and §MLMI /M consis-
tently estimates Vvt — VmL (from (5.4)).

Although consistent, the WB estimators under MLMI
can be imprecise if M is small and Ymis 1S large The
imprecision comes again from BMLNH In fact BMLMI
can be so imprecise that it exceeds WMLMI If BMLMI is
scalar, the fact that it can exceed WMLMI means that the
estimate YmisMLMI,WB can exceed one, although the esti-
mand yn;s cannot; therefore, the estimates Yobs\MLMI,WB
and VML\MLMLWB can be negative, although the corre-
sponding estimands must be positive. If EMLMI 1S a ma-
trix, the problem is that the estimated covariance matrix
VMMMLMLWB may not be positive definite, although the
true covariance matrix must be. These problems are rare
if Ymis 1S small, but more common if ;s is large and M
is small. (See Appendix B.)

To increase precision and avoid negative estimates, if
YmisMLML,WB is a scalar we replace it with a shrunken
estimator that is guaranteed to take values between 0
and 1:

(5.17) YmisMLMI,WB = /A (VmisMLMI,WB, M — 1).

Here, the shrinkage function is

Er(z’z)

5.18
( ) F(V VA)

h(y,v) =
where I'(a, z) is the upper incomplete gamma function.
This shrinkage function is derived in Appendix B.

If ¥ is a matrix, the shrinkage function becomes

(5.19) OAQ7!,

where Q is the eigenvector matrix for ¥, and Adsa diag-
onal matrix of eigenvalues, each shrunk by £(). This re-
quires that all the eigenvalues are nonzero, which in turn
requires that M exceeds the number of rows in ¥.

The shrunken estimator VmismLmI,wB 1S guaranteed to
have eigenvalues between O and 1, and the shrunken es-
timator VMLMLWB is guaranteed to be positive definite.
In addition, the shrunken variance estimator VMLMLWB is
less variable than the nonshrunken estimator VMLMLWB.
There is more shrinkage if YmisjmLm1, wB is large or M is
small, and less shrinkage otherwise.

Shrunken estimates of yobs, VML, and Vmpimr can be
obtained by substituting )7mis|MLMI,WB for ?mislMLMI,WB
in equations (5.14), (5.15) and (5.162. The shrunken es-
timates YobsMLMI,WB> VML,wB and Viuimi,wB are guar-
anteed to be positive definite; they are also less vari-
able than thelr nonshrunken counterparts YobsMLMI,WB>
VML wa and Vipmiwe.

The cost of shrinkage is that the shrunken estimators
YmisMLML,WB> YML,wB and ViyLmi,wg are biased toward
zero (too small on average) if ynmis is large and M is small
relative to ymis. Table 2 uses numerical integration (see
Appendix B) to estimate the number of imputations that
are needed to avoid negative bias in VMLMHWB. Ten or
fewer imputations suffice if ypis < 0.6, which covers most
practical settings. Above ypis > 0.6, the number of im-
putations required by MLMI increases quickly, but may
still be practical since MLMI outputs imputations more
quickly than PDMI.

H (Pmis|MLMI,WB, V) =

TABLE 2
Number of imputations needed for
approximately unbiased shrunken
WB estimates under MLMI

Yimis Imputations
0.1 2
0.2 2
0.3 2
04 3
0.5 5
0.6 10
0.7 20
0.8 60
0.9 300
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If 6 is scalar, we can offer a CI:

~ ~1/2
(5.20) OMLMI T IMLMI, WB VM/LMLWBv

where fvm1,wB 1S a quantile from a ¢ distribution whose
df are approximated in Appendix C:

‘71\2/ILMI WB
(5.21) VMLMIL,WB = = — ,
VI\Z/[LA,WB ( ﬁ Buvrvn)?
VML, WB M—1
where
Yobs 2
(5.22) YMLWB = (M — 1)( ) —4.
yIl’llS
Notice that Dypmr, wp converges to Uy, wp as M gets
large.

As is the case under PDMI, under MLMI the df esti-
mate can be highly variable and it is helpful to prevent it
from getting too high or too low. To accomplish this, we
adapt the PDMI formula and replace Vmpmi,wg with

(5.23)  Vmpmrws = max (3,7 UMLMI wB T N&a]s)_l)v

where Vgps = Vcom?obslMLMI,WB Ezgxi?) estimates the df
in the observed data.

If 6 is a vector, we use the same df formulas but replace
VML WB» VMLMI wg and BMLMI with their diagonal ele-

ments and replace VobsiMLMI,WB and YmisjMLmI,wB With
the average of their diagonal elements.

6. SCORE-BASED (SB) VARIANCE ESTIMATION

As an alternative to WB variance estimation, Wang and
Robins [37] proposed a score-based (SB) variance esti-
mator, which used the score function, defined using the
contribution of each case to the gradient of the log likeli-
hood. Their formula was somewhat complicated, and we
derive a simpler alternative, which Appendix D shows is
equivalent in large samples. The same SB formulas apply
under PDMI or MLMI.

The SB formulas are less often usable than the WB for-
mulas, because the score function is often unavailable to
the user. The user typically does not see the score func-
tion when they maximize the likelihood, and some com-
mon estimation techniques, such as least squares, do not
maximize the likelihood explicitly, but obtain equivalent
estimates by other means. In addition, the SB formula
assumes independently and identically distributed (i.i.d.)
observations, which the WB formulas do not assume.

Here is a derivation of our SB formula. Let Scom =
VInL(0 | Yeom) be the complete-data score that would
be available with complete data, and let Sops = VIn L(6 |
Yobs) be the observed-data score that is available given
the observed data. Both scores have expectations of zero.
The variance of the complete-data score is the complete-
data information VCGI; = V(Scom). The variance of the

observed-data score is the observed-data information
V(Sobs) = Vi

In ii.d. data, each observation makes an equally
weighted contribution to the score. In complete data, the
score can be expressed as the sum Scom = Z,N: 1 Scom,i s
where each summand s¢om,; = VInL(0 | Yeom,i) 1s a func-
tion of the parameters 6 and the values ycom,; of the
complete data in observation i. We can think of scom,;
as a variable with a different value in each observation.
Then scom,; has an expectation of zero and a variance of
V(Scom,i) = Vc?)rlnN_

We can estimate scom,; using MI data. For observation
i in SI dataset m, the estimate is

(6.1) TS'\com,i,m = VlnL(é\Ml | ySl,i,m)

and the variance (over i) of Scom,i,m consistently estimates
chrlnN . In addition, Scom.im can be split into random
effects components. One component lies between obser-
vations, and the other component lies within observations,
for example, between different imputations of the same

observation:

(6.2) Scom,i,m = Sool,i + dStm,i-

The between-observation component sso7; is the av-
erage of Scom.m.; across the infinite population of impu-
tations; in large samples, soos,; 1S equivalent to Sops,; =
VInL(@|yobs,i), which is the contribution of case i to
Sobs. The within-observation component dsjy,,; is the
imputation-specific departure of Scom . from the aver-
age Soos,i- The components have expectations of zero and
asymptotic variances (over i) of

N—oo 1
(6.3) V Scom,m.,i) — — N VcorIn’
N 1 _
(6.4) V (Soor,i) ——> NVMﬁ’
N 1
(6.5) V(dsi,m.i) —= N Vmis

We can estimate the variance components using
MANOVA, and multiply the Variance estimates by N to

obtain estimators of Vcorln, les, and VML
v-1
(6'6) com|SB — Z Z com m,i’
m li=1
S SSW

Vmis|SB =
i M—-1
(6.7)

(6'8) VML|SB - VcomISB

where Scom; = M~} Zm:1§com,m,i, and SST and SSW
are the total and within sums of squares. We can use these
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results to derive estimators that are consistent for ypis and
Yobs:

(6.9) ?mis\SB = vrr?i;\SB Vcom\SB,
(6.10)

It occasionally happens that VMUSB and Yobs|sB Will fail
to be positive definite, especially if M is small and s
is large. This happens when some of the eigenvalues of
YmisjsB exceed 1. To guarantee positive definiteness, we
shrink the estimators as follows:

Yobs|SB = I — Vmis.

(6.11) Vmis|sB = H (PmisisB, (M — 1)N),
(6.12) Yobs|SB = I — Vmis|SB>
(6.13) VMLlSB = VcomlSB 370;;‘513,

where the shrinkage function H () was defined in (5.19).
Then an SB estimator for the variance of an MI point
estimate is

1 ~

(6.14) Varise = Vmwiss + MBMI-

VMHSB consistently estimatesAVMI because VMHSB con-
sistently estimates Var, and Bymp/M consistently esti-
mates Vyr — VL.

An SB CI for scalar 6 is

(6.15)

where 7gp is a quantile from a ¢ distribution with df = vgp,
which is the df of VMIlSB

It remains only to estimate vsg. Since BMI has df = M-
1 and VML|SB may be assumed to have df no less than

n ~>1/2
OBm1 £ IsB VMI\SB’

Vobs|SB = vcomyobg\SB( C2$+3 ), a Satterthwaite approxi-
mation for vsg is

VZ
- MI|SB
(6.16) pe—— S
Vause | (37 By
Vobs|SB M—1

which is very close to Vops|sp unless M is very small. If
N and M are large then Vgg approaches

2
(M — 1)( )
Yobs Ymis
6.17 ) N. Moo under MLMI,
. SB———> M )
(M — 1)( )
Ymis
under PDMI.

So that asymptotic degrees of freedom are larger under
MLMI than under PDMI.

7. CONDITIONS FOR CONSISTENCY OF WB AND SB
VARIANCE ESTIMATES

The derivations of the WB and SB variance formulas
make certain assumptions. If those assumptions are not
met, then the resulting variance estimates are not neces-
sarily consistent.

7.1 Compatible and Correctly Specified Models

The WB and SB variance formulas assume that that
the same model, with the same parameters 0, is used for
imputation and analysis. The formulas also assume that
this model is correctly specified [37]. In practice, though,
the analysis model is often different from the imputation
model, and one or both models may be misspecified.

When the analysis and estimation models are different,
WB and SB formulas still yield consistent variance esti-
mates if both models are “compatible” with some com-
mon model, and that common model is correctly specified
[7]. For example, later, in the simulations, we will con-
sider the situation where the imputation model is a linear
regression of ¥ on X and the analysis model is a linear
regression of X on Y. If both regression models have nor-
mal residuals, then both are compatible with a common
model in which (X, Y) are bivariate normal.

If the imputation and analysis models are different, but
compatible and correct, then the derivations of the WB
and SB variance formulas are valid provided we redefine
the parameter vector 6 to include all the parameters of the
common model, and not just the parameters of the analy-
sis model.

How much do the extra parameters in 6 matter for the
variance formulas? It depends which formula you use, as
we discuss next.

7.2 Which Variance Formulas Should Include All
Parameters of the Common Model?

Under PDMI, the WB formula (4 5) uses only addition;
it is a weighted sum of WPDM[ and BPDM[ As aresult, the
diagonal components, that is, the squared standard error
estimates—in VPDMLWB depend only on the correspond-
ing diagonal components of WPDMI and EPDMI.

This is a nice property because it means that the PDMI
WB formula can be applied to any submatrix of WPDMI
and Bpp and the resulting standard error estimates will
not change. In other words, you can apply the PDMI WB
formula to any subset of the parameters in 6. In fact, you
can apply the PDMI WB formula, in scalar form, to each
component of 6, and the standard error estimates will still
be the same.

Because of this property, the standard error estimates
that come from the PDMI WB formula do not change
when you include parameters that are not in the analy-
sis model but are in the common model. You can safely
neglect those extra parameters; you do not even have to
know what they are. When using the PDMI WB formula,
you can limit your attention to the parameters in the anal-
ysis model. The resulting standard errors will be consis-
tent if the analysis and imputation models are correct and
compatible.

Under MLMI, unfortunately, the WB formula (4.4)
does not have the same property. It must be applied in
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matrix form, and if the imputation and analysis models
are not the same, it must be applied to the whole pa-
rameter vector 6 of the common model—and not just se-
lected components, such as the parameters of the analysis
model. Because the MLMI WB formula involves matrix
multiplication, the diagonal elements of VMLMLWB can be
affected by the off-diagonal elements of I/B\MLMLWB and
WMLMIL, WB-

The SB variance formula (6.14) has the same issue. It
must be applied in matrix form, and if the imputation and
analysis models are not the same, it must be applied to the
whole parameter vector 6 of the common model. This is
because the SB variance formula uses matrix multiplica-
tion, so the off-diagonal elements of leS|SB and Vcom|s]3
can affect the diagonal elements of VMHSB We will return
to this issue in the simulations.

8. BOOTSTRAP VARIANCE ESTIMATION

Unlike the WB and SB formulas, bootstrapped MI
(BMI) offers consistent variance estimates and confidence
intervals with nominal coverage even when the imputa-
tion and analysis models are incompatible, or even incor-
rect. BMI variance formulas are straightforward and do
not require matrix calculations or inclusion of parame-
ters beyond those in the analysis model. The same BMI
variance formulas are consistent under BMLMI and un-
der BPDMI.

Remember that the individual scalar point estimates Bba
fit this random effects model (4.8):

(8.1 Oba = OnL + ep + epa.

The variance components are Vyp, = V(ep) and Vpp =
V(epa) = Vs — VM. To estimate the variance compo-
nents, we fit the model using ANOVA (or MANOVA) and
use mean squared formulas:

(8.2) VepjBMI = MSW,
MSB — MSW
M

where MSB is the mean square between the bootstrapped
datasets, with df = B — 1, and MSW is the mean square
within the bootstrapped datasets and between the imputed
datasets, with df = B(D — 1). Then Vgmi = V (@smr) is
estimated by

(8.3) VML\BMI =

’

VBDlBMI
BD

This estimate is consistent because it replaces each com-
ponent of the true variance in (4.11) with a consistent es-
timate.

Vimi can be reexpressed as a weighted sum of indepen-

dent mean squares
1
5)~MsW)
B

1
—(MSB( 1
w(ose(1+

~ ~ 1
(8.4) VBmr = VML|BMI(1 + E) +

85  Vemi=

which according to the Satterthwaite approximation has
the following df:

(MSB(B + 1) — MSW(B))?

MSB2(B+1)2 + MSW?2B
B—1 D—1

(8.6) VBMI =

If D =2, as we recommended earlier, then as B gets
larger, Ugmp approaches

(8.7) lim  Dpwi =

(1 ) MSB x MSW )
B—o00,D=2

MSB? + MSW?

which is just a little smaller than B if the fraction of miss-
ing information is not too large.
If 6 is a scalar parameter, then a confidence interval is

~ 5172
(8.3) OBMI T IBMI VBK/H,

where gy 1S a quantile from a ¢ distribution with df =

VM. Our df and CI formulas assume a scalar 6. If 8 is

a vector, then the same formulas apply separately to each
scalar component.

Notice that BMI variance estimation does not require
an estimate of the complete-data variance Von. But an
estimate of V o 1S necessary to estimate the fractions of
observed and missing information. To get those estimates,
start with a consistent estimate Vcom,bd obtained by ana-
lyzing each of the bootstrapped-then-imputed datasets as
though it were complete. The average of the Vcom,bd isa
consistent estimate of Viom:

1 &M
ﬁzzvcom,bd-

b=1m=1

(8.9 Veom[BMI =

It follows that

(8.10) %bs,BMI = vl\Z]ilBMI ‘//\com|BMI,
(8.11) Ymis,BMI = I — Yobs,BMI

are consistent estimators for the fractions of observed and
missing information.

8.1 How Many Imputations Are Needed for Variance
Estimation?

Table 1 gave the number of imputations that were
needed for relatively efficient point estimates. But more
imputations may be needed to estimate variances and Cls.
At a minimum, a variance estimate should be approxi-
mately unbiased if N and M are large. Most of our vari-
ance estimates will have little or no bias even if M is
small. The one exception is the WB variance estimate un-
der MLMI, and Table 2 gave the number of imputations
that were needed to reduce its bias to a negligible level.

But we often want more from a variance estimate than
lack of bias. We also want variance estimates to be repli-
cable in the sense that approximately the same variance
estimate would be obtained if the data were imputed
again, or if it were bootstrapped and imputed again. And
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TABLE 3
Number of imputations needed for variance estimates with specified
degrees of freedom

Score-based Within-between Boostrapped
variance variance variance
Ymis PDMI MLMI PDMI MLMI PDMI MLMI
(a) Imputations needed for df > 25
0.1 2 2 2 2 52 52
0.2 2 2 2 3 52 52
0.3 2 2 4 7 52 52
0.4 2 2 4 14 52 52
0.5 3 2 8 30 52 52
0.6 3 2 10 67 52 52
0.7 3 2 14 159 52 52
0.8 3 2 17 465 52 52
0.9 4 2 22 2350 52 52
(b) Imputations needed for df > 100

0.1 2 2 2 3 202 202
0.2 2 2 5 8 202 202
0.3 3 3 10 21 202 202
0.4 3 3 17 48 202 202
0.5 4 3 26 105 202 202
0.6 4 3 37 235 202 202
0.7 5 3 50 568 202 202
0.8 5 2 65 1665 202 202
0.9 5 2 82 8425 202 202

Note. For MI, the number of imputations is M. For BMI, the number
of imputations is BD, where B is the number of bootstrap samples and
D is the number of imputations per bootstrap sample.

we want the confidence interval derived from the variance
estimate to be reasonably short,

The df of the variance estimate is a useful guide to these
properties. The coefficient of variation for an SE estimate
is approximately +/1/(2df) [35]. So at df = 25 an SE esti-
mate would likely change by about 14%, and at df = 100
an SE estimate would likely change by about 7%, if the
data were multiply imputed again—or if it were boot-
strapped and imputed again under BML.

Table 3 gives the number of imputations M, or boot-
strap samples and imputations BD, that are needed for
different variance estimates to have at least 25, or at least
100, degrees of freedom.

The SB variance estimates have remarkably modest
needs, requiring 5 imputations or less even when the frac-
tion of missing information is very large. Unfortunately,
SB variance estimates are often unavailable in practice,
since they require a score function which the analyst may
not have.

The WB estimates need few imputations when the frac-
tion of missing information is small, but require more and
more imputations as the fraction of missing information
grows, especially under MLML.

The BMI variance estimators require BD = 2(df + 1)
imputations, regardless of the fraction of missing infor-

mation. Under PDMI, BMI needs more imputations than
the WB estimator even when the fraction of missing in-
formation is as large as 0.9. Under MLMI, BMI needs
more imputation than the WB estimator if the fraction of
missing information is less than 0.6, but BMI needs fewer
imputations than the WB estimator if the fraction of miss-
ing information is 0.6 or greater. Under MLMI, therefore,
if the fraction of missing information is large there is no
reason to use the WB estimator when the fraction of miss-
ing information is large; instead, switch to BMI.
Remember that BMI variance estimator is consistent
under circumstances when the WB and SB estimators
may be inconsistent. Therefore, BMI should be preferred
when there is enough time to produce the number of im-
putations that it requires. And more imputations can be
produced more quickly using MLMI than using PDMI.

9. SOFTWARE

The second author implemented all the methods de-
scribed here and published them in new R packages called
mlmi and bootImpute [4, 5].

The mlmi package implements MLMI and PDMI ver-
sions of four different imputation models: (1) normal lin-
ear regression of one incomplete variable on one or more
complete variables, (2) the multivariate normal model for
data with several incomplete continuous variables, (3) the
log-linear model for data with several incomplete categor-
ical variables and (4) the general location for a “mix” of
categorical and continuous variables. The general location
model can be described as a multivariate normal model
whose mean is conditioned on a log-linear model of the
categorical variables [28]. The m/mi package also imple-
ments the SB formulas and WB formulas that are appro-
priate for data imputed using MLMI and PDMI. When
using the SB formulas, the user must specify the score
function.

The bootImpute package implements bootstrapped MI
and the formulas that are used to calculate standard er-
rors and confidence intervals from bootstrapped MI data.
The bootlmpute package can be used with any imputa-
tion function, using either MLMI or PDMI. The bootIm-
pute package includes functions that integrate it with the
popular mice package [32], which imputes missing values
using a set of regression model, and the smcfcs package
[6], which modifies the mice approach to ensure that the
imputation and analysis models are compatible.

The second author used these R packages to carry out
simulations and an applied data analysis in R. The simu-
lation and analysis code resides in a github repository at
https://github.com/jwb133/mlmiPaper. Some of the sim-
ulations were replicated independently by the first author
in SAS.
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10. SIMULATIONS

In this section, we use simulation to compare the prop-
erties of MLMI and PDMI, with and without the boot-
strap.

10.1 Design

We simulated N rows of standard bivariate normal data
(X,Y)

X\ mx o3 pPOXOY
o B-e(E [ )

with correlation p = 0.5, means ux = uy = 0, and vari-
ances 0)2( = o)% = 1. The data fit a linear regression of Y

on X,orof XonY:

Y=ay+ByxX+eyx
(10.2) 2
where ey x ~ N (0,07 x),

X=oax+BxyY +exy
(10.3)
where ex.y ~ N (0,03 ).

The parameters of both regressions have the same val-
ues: dy = oy 20, ﬁy,x = ﬂx,y =P and (I)%.X = 0’}2(.), =
1— p2.

We then deleted some fraction—either p = 0.25 or p =
0.5—of Y values in one of two patterns:

e Missing completely at random (MCAR). Each Y value
has an equal probability p of being deleted.

e Missing at random (MAR). Y is more likely to be
deleted if X is large. In particular, Y is deleted with
probability 2p®(X), where & is the standard normal
CDF.

For a given value of p, the fraction of observed infor-
mation Yops was lower under MAR than under MCAR.
We imputed missing Y values using the following im-
putation model:
Yi=ayx +BrxXi+e
(10.4)
where ¢; ~ N (0, 8)%.}().

The parameter estimates @y .x, B\y. X, 8)%‘ x were ML
estimates under MLMI and PD estimates under PDMI.
In this simple setting, with X complete and ¥ MAR or
MCAR, we could get ML and PD estimates nonitera-
tively. We got ML estimates &y, x ML, Ey, x.ML by OLS
regression of ¥ on X in the ny cases with Y observed;
then we calculated the ML estimate 3)%. x w1 by dividing
the residual sum of squares by ny [1]. We got PD esti-
mates by drawing from the following distributions [20]:

~2 ny .,
(10.5) oy xpp~ UUY.X,ML’

~ ~ =2
ay. ay. 5 Oy.x,PD
(106) G50~ ([ G| Gy 230 ),
Y.X,PD Y.X ML GY.X,ML

where N5 () is the bivariate normal distribution, f/\ML is the
estimated variance of the ML estimates @y x ML, ,B\y. XML
and U is a chi-squared random variable with degrees of
freedom ny — 2 + vprior. Here, vprior is the prior degrees
of freedom, which we set conventionally to 0, although 2
is a better choice [20, 33].

In the imputed data, we regressed the incomplete vari-
able Y on the complete variable X, and then reversed the
regression, regressing X on Y. Using formulas derived
in previous sections, we calculated regression point es-
timates and their estimated covariance matrix, along with
standard error estimates and confidence intervals.

When using matrix formulas to calculate the covariance
matrix of the regression estimates the question arose how
large a matrix we must use. As discussed in Section 7.2,
the answer depends on whether the imputation model and
the analysis model were the same:

e When the analysis regressed Y on X, the analysis
model was the same as the imputation model, and we
could limit calculations to the 2 x 2 covariance ma-
trix of the parameter estimates (&y.x, By ;’3)‘ (We could

have used a 3 x 3 matrix that included o2y y, but this
was not necessary because o2y y is uncorrelated with
@y.x, Br.x).)

e When the analysis regressed X on Y, the analysis
model differed from the imputation model, but both
were compatible with a common bivariate normal
model for (X, Y). So the matrix calculations must use
a 5 x 5 matrix that includes the covariances among
the 5 estimated parameters of the bivariate normal dis-
tribution. There are several ways to parameterize the
bivariate normal distribution. We chose the parameter-
ization (xx.y, Bx.y, 0)2“,, nwy, a}%) because it includes
the parameters for the regression of X on Y .2

As noted in Section 7.2, the size of the covariance ma-
trix matters only for the SB formula and the MLMI WB
formula. When using the PDMI WB formula or the boot-
strap formula, the size of the matrix does not affect esti-
mated standard errors or confidence intervals.

We ran the simulation at two different sample sizes:
N =100 and 500. At each sample size, we used M = 10,
50 or 200 imputations. When using the bootstrap, we set
BD = 50 or 200, where B = 25 or 100 is the number of
bootstrap samples, and D = 2 is the number of imputa-
tions per bootstrap sample.> We replicated each simulated

2This parameterization results from factoring the bivariate normal
distribution as Ny (X, Y) = f(Y) f(X|Y).

3We considered a condition with M =5 imputations, but decided
against it since some By matrices are 5 x 5 and would not be posi-
tive definite with M = 5. We also decided against a condition B =5
bootstrap samples, as the resulting variance estimates would have only
about 4 degrees of freedom.
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condition 10,000 times, so that the coverage of 95% con-
fidence intervals was estimated within a standard error of
0.2%.

10.2 Results

In presenting simulation results, we focus on the regres-
sion slope By.x or Bx.y, though we got similar results, not
shown, for the intercept. We summarized the accuracy of
point estimates using the percent root mean squared error
(RMSE), that is, the RMSE of a scalar parameter estimate
B}. x Or E x.y expressed as a percentage of the true param-
eter value By x or Bx.y. In the regression of the incom-
plete Y on the complete X, the estimate B\y, x 1s unbiased,
so the RMSE reflects variability only. In the regression of
X on Y, though, the estimate Ey_ x 1s biased in small sam-
ples [34], so the RMSE reflects bias as well as variability.

P. T. VON HIPPEL AND J. W. BARTLETT

10.2.1 Regression of Y on X. We first regressed Y on
X. Here, the analysis model is the same as the imputa-
tion model, so all matrix calculations are limited to the
two model parameters (ay.x, By.x). See Section 10.1 for
explanation.

Table 4(a) gives the percent RMSE for point estimates
of the slope By x. The RMSE is slightly smaller under
repeated MI than under bootstrapped MI, and slightly
smaller under MLMI than under PDMI. But most differ-
ences in RMSE are very small, even when there is little
information or few imputations. For example, even with
10 imputations and 50% of values MAR, the RMSE is
only 2% smaller under MLMI than under PDMI.

Table 4(b) gives the mean length of nominal 95% Cls,
along with their departure from 95% coverage. Boot-
strapped and SB CIs come within 0.5% of nominal cov-

TABLE 4
Estimating the slope of Y on X

(a) Percent root mean square error of point estimates

Missing Repeated MI Bootstrapped MI
% Pattern Imputations PDMI MLMI PDMI MLMI
25 MCAR 10 9.1 9.1
50 9.0 9.0 9.2 9.2
200 9.0 9.0 9.0 9.0
MAR 10 9.3 9.3
50 9.2 9.2 9.4 9.4
200 9.2 9.2 9.3 9.2
50 MCAR 10 11.3 11.2
50 11.1 11.1 11.3 11.3
200 11.1 11.1 11.2 11.2
MAR 10 13.8 13.5
50 13.7 13.6 13.9 13.8
200 13.5 13.5 13.5 13.5
(b) Mean length of 95% confidence intervals (Cls)
(Parentheses enclose % departure from 95% coverage)
Repeated MI
Missing Score-based Cls Within-between Cls Bootstrapped Cls
% Pattern Imputations PDMI MLMI PDMI MLMI PDMI MLMI
25 MCAR 10 0.18 (0.3) 0.18 (0.3) 0.18 (0.1) 0.19 (1.3)
50 0.18 (0.5) 0.18 (0.3) 0.18 (0.1) 0.18 (0.3) 0.19 (-0.3) 0.19 (-0.4)
200 0.18 (0.1) 0.18 (0.1) 0.18 (0.1) 0.18 (0.1) 0.18 (—0.1) 0.18 (—0.2)
MAR 10 0.19 (0.4) 0.18 (0.3) 0.18 (0.1) 0.19(1.3)
50 0.18 (0.0) 0.18 (0.2) 0.18 (—0.1) 0.18 (0.2) 0.19 (—-0.2) 0.19 (—0.3)
200 0.18 (0.1) 0.18 (0.1) 0.18 (—0.1) 0.18 (0.0) 0.18 (—0.4) 0.18 (—0.2)
50 MCAR 10 0.23 (0.6) 0.22 (0.4) 0.23 (0.1) 0.30 (2.1)
50 0.22 (0.6) 0.22 (0.6) 0.22 (0.1) 0.24 (1.3) 0.24 (0.3) 0.23 (0.0)
200 0.22 (0.4) 0.22 (0.4) 0.22 (0.0) 0.22 (0.2) 0.22 (-0.4) 0.22 (-0.4)
MAR 10 0.28 (0.7) 0.27 (0.4) 0.29 (0.1) 0.28 (—1.7)
50 0.27 (0.1) 0.27 (-0.2) 0.27 (-0.2) 0.27 (—1.3) 0.29 (0.2) 0.28 (—0.4)
200 0.27 (0.1) 0.27 (0.0) 0.26 (—0.2) 0.28 (—0.3) 0.27 (—0.4) 0.26 (—0.3)
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erage. They are shorter under MLMI than under PDMI,
but the difference is negligible and vanishes as the frac-
tion of missing information gets small or the number of
the imputations gets large.

WB ClIs have more accurate coverage under PDMI than
under MLMI. They come within 0.2% of nominal cover-
age under PDMI, but can drift as far as 2% above or below
nominal coverage under MLMI. Coverage improves with
more information or more imputations. Under most con-
ditions, WB ClIs are slightly longer, with higher coverage,
under MLMI than under PDMI, but with more missing
information WB Cls can be shorter under MLMI because
of the shrinkage function in equation (5.18).

10.2.2 Regression of X on Y. We next regressed X on
Y. Since the imputation model is a regression of Y on X,
the imputation and analysis models are different, but both
are compatible with a common bivariate normal model of

(X, Y). It follows that matrix calculations should involve
all 5 parameters of the bivariate normal model (see Sec-
tion 10.1). To see why, let us examine what happens when
matrix calculations are limited to just two parameters: the
slope and intercept of the analysis model.

Table 5(a) summarizes Cls for the slope Bx.y. The
bootstrap and PDMI WB CIs have good coverage under
all simulated conditions, but the other CIs do not. Under
most simulated conditions, all CIs have good coverage,
but when 50% of values are MAR, the WB intervals un-
dercover under MLMI, and the SB intervals undercover
under both PDMI and MLMI. This undercoverage does
not improve as the number of imputations increases.

The reason for the undercoverage is that the SB and
MLMI WB formulas have underestimated the covariance
matrix of the estimates. This is because we limited the SB
and PDMI WB formulas to the 2 x 2 covariance matrices
associated with the two parameters (ax.y, Bx.y)-

TABLE 5
Estimating the slope of X on Y. Mean length of 95% confidence intervals (Cls). (Parentheses enclose % departure from 95% coverage)

(a) With matrix formulas limited to two parameters (¢ y, Bx.y)

Missing Score-based Cls Within-between Cls Bootstrapped Cls
% Pattern Imputations PDMI MLMI PDMI MLMI PDMI MLMI
25 MCAR 10 0.17 (0.6) 0.17 (0.5) 0.17 (0.3) 0.17 (0.9)
50 0.17 (0.7) 0.17 (0.6) 0.17 (0.5) 0.17 (0.3) 0.18 (0.1) 0.18 (0.5)
200 0.17 (0.3) 0.17 (0.2) 0.17 (0.0) 0.17 (-0.2) 0.17 (-0.2) 0.17 (=0.1)
MAR 10 0.17 (—0.2) 0.17 (-0.1) 0.17 (—0.3) 0.17 (0.1)
50 0.17 (0.1) 0.17 (0.0) 0.17 (—0.1) 0.17 (—0.1) 0.18 (—0.2) 0.18 (—0.4)
200 0.17 (0.1) 0.17 (0.0) 0.17 (0.1) 0.17 (—0.4) 0.17 (—0.3) 0.17 (—0.2)
50 MCAR 10 0.20(0.2) 0.20 (0.0) 0.20 (0.0) 0.20 (-0.2)
50 0.20 (0.1) 0.20 (0.0) 0.20 (0.1) 0.19 (—-1.1) 0.21 (-0.2) 0.21 (—-0.4)
200 0.20 (0.5) 0.20 (0.5) 0.20 (0.4) 0.19 (-0.9) 0.20 (0.3) 0.20 (—-0.1)
MAR 10 0.21 (—1.4) 020 (—1.2) 0.22 (0.0) 0.20 (—1.7)
50 0.20 (—1.3) 0.20 (—1.5) 0.21 (0.3) 0.19 (-2.8) 0.23 (0.3) 0.23 (0.0)
200 0.20 (—1.0) 0.20 (—1.2) 0.21 (0.5) 0.19 (-2.9) 0.21 (0.2) 0.21 (0.1)

(b) With matrix formulas including all five parameters (a¢x.y, Bx.y, 0)2“,, ny, (7)2,)

Missing Score-based Cls Within-between Cls
% Pattern Imputations PDMI MLMI PDMI MLMI
25 MCAR 10 0.17 (0.8) 0.17 (0.7) 0.17 (0.3) 0.18 (1.2)
50 0.17 (0.8) 0.17 (0.9) 0.17 (0.5) 0.17 (0.5)
200 0.17 (0.5) 0.17 (0.4) 0.17 (0.0) 0.17 (0.1)
MAR 10 0.17 (0.1) 0.17 (0.2) 0.17 (=0.3) 0.18 (0.4)
50 0.17 (0.3) 0.17 (0.3) 0.17 (—0.1) 0.17 (0.3)
200 0.17 (0.3) 0.17 (0.3) 0.17 (0.1) 0.17 (0.0)
50 MCAR 10 0.21 (0.5) 0.20 (0.3) 0.20 (0.0) 0.21 (0.7)
50 0.20 (0.4) 0.20 (0.2) 0.20 (0.1) 0.21 (0.4)
200 0.20 (0.8) 0.20 (0.8) 0.20 (0.4) 0.20 (0.5)
MAR 10 0.22 (0.8) 0.22 (0.6) 0.22 (0.0) 0.21 (-0.9)
50 0.22 (0.6) 0.22 (0.5) 0.21 (0.3) 0.22 (0.2)
200 0.22(0.9) 0.21 (0.5) 0.21 (0.5) 0.22 (0.5)
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But consistent estimation requires that we apply the SB
and MLMI WB formulas to the full 5 x 5 matrix de-
scribing the five parameters of the bivariate normal model
(v, 08, ax.y, Bx.y, 0% ).

Table 5(b) shows what happens when we do that. The
covariance matrices are now consistently estimated, and
the confidence intervals have close to nominal coverage.

Although the need to use all five parameters in vari-
ance calculations is somewhat limiting, in the simulation
it only made a noticeable difference when the fraction
of missing information was quite large (i.e., 50% of val-
ues MAR). When the fraction of missing information was
small to moderate, as it often is in applied work, neglect-
ing parts of the parameter vector yielded acceptable re-
sults. In the next section, we will also get acceptable esti-
mates when applying these methods to an applied dataset.

11. APPLIED DATA ANALYSIS

We next conducted an applied data analysis to compare
MLMI to PDMI with different approaches to variance
estimation. We analyzed data from the Millennium Co-
hort Study [8], a longitudinal cohort study that followed
approximately 19,000 children who were born between
2000 and 2001 in the United Kingdom. We analyzed data
from wave 2 of the study, when the children were around
3 years old.

Our imputation model was a general location model,
which consisted of a log-linear model of the categorical
variables and a conditionally multivariate normal model
of the continuous variables [28]. The log-linear model in-
cluded all 2-way interactions, and the mean of the multi-
variate normal distribution depended only on main effects
of the categorical variables. The imputation model used
two auxiliary variables, which were not in the analysis
model but improved the imputation of variables that were
[36]. One auxiliary variable was the marital status of the
parents; the other was the employment status of the parent
or guardian responding to the survey.

We multiply imputed missing values using both MLMI
and PDMI. Under MLMI, we obtained ML parameter es-
timates using the EM algorithm. Under PDMI, we ob-
tained PD parameter estimates with an MCMC algorithm
that started with 100 burn-in iterations and then drew ev-
ery 100th estimate from the Markov chain.

Our analysis model was a linear regression of each
child’s school readiness, as measured by the Bracken
score, on family income, tenure of housing, any history
of the child having hearing loss, ethnicity, number of sib-
lings (categorized as 1, 2, 34) and the age of the parent
or guardian responding to the survey. The percentage of
missing values varied from 0.013% for the number of sib-
lings to 15.8% for family income. The Millennium Cohort
Study uses a complex sampling scheme, but for simplic-
ity of illustration we analyzed it as though it were a simple
random sample.

For our first analysis, we used 100 imputations; for
our second, we used 1000 to approximate the asymptotic
behavior of the estimators. When we used repeated MI,
the number of imputations was M; when we used boot-
strapped MI, the number of imputations was BD, where
B =50 (in the first analysis) or 500 (in the second) was
the number of bootstrapped samples, and D = 2 was the
number of imputations per bootstrapped sample. We ana-
lyzed the imputed data using the linear regression model
described above, applying WB, SB and bootstrap formu-
las to get SEs for the parameters of the analysis model.

11.1 Results with 100 Imputations

Table 6 shows results with 100 imputations. Table 6(a)
gives the runtime (in seconds) needed to impute the data
100 times and analyze it on a personal computer (a 2012
MacBook Pro 2.5 GHz Intel Core i5). Although all run-
times were under a minute, imputing was much faster with
MLMI than with PDMI. When we used repeated impu-
tation, MLMI was 25 times faster than PDMI; when we
used bootstrapped imputation, MLMI was 4 times faster
than PDMI. Bootstrapped MLMI, though 9 times slower
than repeated MLMI, was still 3 times faster than re-
peated PDMI. After imputation, the calculation of SEs
took approximately the same runtime under MLMI as un-
der PDMI. Score-based SE formulas were 3 times slower
than other SE formulas.

The slowness of PDMI was due in part to the itera-
tive MCMC algorithm that implemented it [28]. While
MCMC is the most common PDMI algorithm, the boot-
strapped EM algorithm makes PDMI faster [22], though
still not as fast as MLMI.

Table 6(b) compares point estimates of the regression
parameters. Among the MI estimates, the MLMI and
PDMI estimates are very similar, with or without the boot-
strap. This empirical result is consistent with our theo-
retical results showing that MI point estimates, with or
without the bootstrap, are close to their asymptotic values
when 100 imputations are used. The MI point estimates
differ by less than 10% complete case estimates, except
for the coefficient of “Other housing,” which differs by a
factor of 4.

Table 6(c) compares SE estimates for the regression
parameters. Under repeated MI, nearly the SE estimates
are very similar whether we use MLMI or PDMI, and
whether we used score-based or within-between formu-
las.* This empirical result is consistent with our theo-
retical results showing that, with 100 imputations, score-
based and within-between variance formulas come close
to their asymptotic values.

4The one discrepancy is the SE of the “nonwhite” coefficient, which
is 10% larger using the within-between formula than using the score-
based formula.
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TABLE 6
Imputation and analysis of Millennium Cohort Study, using 100
imputations (M = 100 under repeated MI, B = 50, D =2 under
bootstrapped MI)

(a) Runtime (in seconds)

Runtime ratio

MLMI PDMI (PDMI/MLMI)
Repeated imputation 1.5 37.2 25
Bootstrapped imputation 13.3 52.6 4
Within-between SE calculation 8.7 7.6 1
Score-based SE calculation 21.5 20.6 1
Bootstrap SE calculation 7.3 7.1 1
(b) Regression point estimates
Repeated Bootstrapped
MI MI Complete

MLMI PDMI MLMI PDMI case analysis

Intercept 89.87 89.88 89.69 89.93 89.12
Respondent age 0.24 0.24 0.24 0.24 0.27
(years)
Family income 0.89  0.89 0.90 0.89 0.87
Rented housing —3.87 —-3.89 —-3.86 —-3.90 —4.03
Other housing —-0.52 —-049 -0.48 —-0.42 —0.14
Child hearing loss 2.75 272 276 256 3.02
Nonwhite -7.09 -7.09 -7.01 -6.99 —6.40
1 sibling —242 =245 -240 -2.47 —-2.52
2 siblings —-6.73 —6.74 —6.68 —6.77 —6.70

3 or more siblings —10.78 —10.78 —10.68 —10.83 —10.59

(c) Regression standard error estimates

Repeated MI

Score-based Within-between Bootstrapped
SEs SEs SEs

MLMI PDMI MLMI PDMI MLMI PDMI

Intercept 1.04 104 106 1.04 122 122
Respondent age 0.02 0.02 0.02 0.02 0.02 0.03
(years)
Family income 0.04 0.04 004 004 005 0.05
Rented housing 032 032 033 033 038 038
Other housing 071 071 073 073 077 073
Child hearingloss ~ 0.65 0.65 0.63 0.62 061 0.5
Nonwhite 036 036 040 040 043 039
1 sibling 031 031 031 031 036 026
2 siblings 038 038 038 039 036 037

3 or more siblings 048 048 048 050 052 052

Under bootstrapped MI, many of the SE estimates are
similar under MLMI and PDMI, but there are a few
noticeable differences. This reflects the fact that boot-
strapped SE estimates can be somewhat variable when
there are only B = 50 bootstrapped samples. With B =
50, the coefficient of variation for a bootstrapped SE es-

timates is about 10%,> implying that a bootstrapped SE
estimate typically changes by about 10% when the data
are bootstrapped and imputed again. That explains most
of the differences between the bootstrapped SE estimates
obtained under MLMI and PDMI. The differences do not
reflect a difference between MLMI and PDMI; we would
see similar differences if we had used bootstrapped MLMI
twice, or bootstrapped PDMI twice. When B is larger,
bootstrapped SE estimates are less variable and agree
more closely under MLMI and PDMI—as we will show
next.

11.2 Results with 1000 Imputations

Table 7 shows results for 1000 imputations. Table 7(a)
compares runtimes. With 1000 imputations, MLMI was
still much faster than PDMI. Under repeated imputation,
MLMI took half of a minute, while PDMI took six and
a half minutes. Under bootstrapped imputation, MLMI
took two minutes, while PDMI took eight and a half.
MLMT’s runtime advantage of approximately six minutes
was substantial, and could affect analysts’ productivity
and morale, especially if they re-specified the imputation
model and reimputed the data several times.

Table 7(b) compares regression point estimates. The es-
timates are very similar under MLMI and PDMI, with
or without the bootstrap. In fact, the point estimates with
1000 imputations are very close to the point estimates that
we obtained with 100 imputations (Table 6(b)), confirm-
ing our claim that those point estimates were close to their
asymptotic values.

Table 7(c) compares SE estimates. With 1000 imputa-
tions, nearly all the SE estimates are very similar, whether
we used MLMI or PDMI with the bootstrap, the score-
based formula, or the within-between formula. Evidently
1000 imputations was enough to bring all the SE estimates
close to their asymptotic values. The bootstrapped SE es-
timates were the most variable, but with B = 500 they
typically came within 3% of their asymptotic values.

When there are substantial disagreements between dif-
ferent SE estimates, we favor the bootstrapped estimates
because B is large and the bootstrap is consistent even
when the imputation and analysis models are incompati-
ble or misspecified. For example, for the coefficient non-
white children, the true SE is probably closer to the 0.44-
0.45 given by the bootstrap than to the 0.36 given by the
SB formulas or the 0.40 given by the WB formulas. But
such disagreements are rare.

5 As discussed earlier, the coefficient of variation for an SE estimate
is approximately «/1/(2df), and under bootstrapped MI df is just a
little smaller than B.

6 As discussed earlier, the coefficient of variation for an SE estimate
is approximately «/1/(2df), and under bootstrapped MI df is just a
little smaller than B. So with B = 500, the coefficient of variation for
a bootstrapped SE estimate is 3%.
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TABLE 7
Imputation and analysis of Millennium Cohort Study, using 1000
imputations (M = 1000 under repeated MI, B = 500, D =2 under
bootstrapped MI)

(a) Runtime (in seconds)

Runtime ratio

MLMI PDMI (PDMI/MLMI)
Repeated imputation 33.4 3945 12
Bootstrapped imputation 123.6 5124 4
Within-between SE calculation 78.2 75.2 1
Score-based SE calculation 217.0 214.5 1
Bootstrap SE calculation 64.5 65.9 1
(b) Regression point estimates
Repeated Bootstrapped
MI MI Complete

MLMI PDMI MLMI PDMI case analysis

Intercept 89.85 89.84 89.84 89.81 89.12
Respondent age 0.24 0.24 0.24 0.24 0.27
(years)
Family income 0.89  0.89 0.89  0.90 0.87
Rented housing —3.86 —-3.86 —3.86 —3.87 —4.03
Other housing —-0.50 —-0.48 —-0.53 —-0.50 —0.14
Child hearing loss 2.73 2.72 2.73 2.69 3.02
Nonwhite —7.08 —-7.06 —7.08 —7.06 —6.40
1 sibling —244 245 244 -243 —-2.52
2 siblings —6.74 —6.74 —6.74 —6.76 —6.70

3 or more siblings —10.78 —10.77 —10.72 —10.77 —10.59

(c) Regression standard error estimates

Score-based Within-between Bootstrapped
SEs SEs SEs

MLMI PDMI MLMI PDMI MLMI PDMI

Intercept 1.04 104 103 103 1.03 1.04
Respondent age 0.02 0.02 0.02 0.02 0.03 0.02
(years)
Family income 004 0.04 004 004 005 005
Rented housing 032 032 033 033 035 037
Other housing 071 071 072 071 073 071
Child hearing loss ~ 0.65 0.65 0.62 062 0.60 0.59
Nonwhite 036 036 040 040 044 045
1 sibling 031 031 031 031 032 034
2 siblings 038 038 039 039 041 040

3 or more siblings 048 048 048 048 051 051

How surprised should we be that the different SE for-
mulas agree so well? There are two considerations. First,
the formulas make different assumptions about the impu-
tation and analysis models (Section 7).

e The bootstrap SE formulas are consistent even when
the imputation and analysis models are incompatible or
misspecified. So they are consistent here.

e The PDMI WB formula is consistent when the impu-
tation and analysis models are compatible and correct.
Here, the imputation and analysis models are compat-
ible [7], and although they are unlikely to be perfectly
specified, evidently any misspecification is not serious
enough to introduce much bias. If there were much
bias, we would more often see the PDMI WB SEs dis-
agreeing with the bootstrap.

e The SB and MLMI WB matrix formulas have addi-
tional requirements. Not only must the imputation and
analysis models be consistent and correct, but the SB
and MLMI WB matrices should include parameters
from the imputation model that are not in the anal-
ysis model. In this example, though, the matrices in-
cluded only parameters from the analysis model—and
returned SE estimates that were mostly similar to the
consistent bootstrapped estimates.

Perhaps a reason for the near-agreement across differ-
ent formulas is that the fraction of missing information is
rather small. In our simulations, we found that the differ-
ences among SE estimates were barely noticeable unless
the fraction of missing information was quite large.

12. CONCLUSION

MLMI offers a serious alternative to PDMI. MLMI is
not the only alternative—fractional imputation also de-
serves serious consideration [38]—but it does have certain
advantages over PDMI.

The first advantage of MLMI is its computational effi-
ciency. MLMI is easier to code than PDMI, and MLMI
runs faster: it can produce more imputations in the same
runtime. The speed advantage of MLMI is substantial
when PDMI uses MCMC to get posterior draws, as most
PDMI software does. The speed advantage of MLMI is
more modest when PDMI gets posterior draws with a
more efficient algorithm, such as bootstrapped ML [22].

The second advantage of MLMI is the efficiency of
its point estimates. Compared to PDMI point estimates,
MLMI point estimates are more efficient when they use
the same number of imputations as PDMI, and still more
efficient when MLMI uses the larger number of imputa-
tions that it can generate in the same runtime as PDMIL.
The efficiency advantage of MLMI point estimates is typ-
ically quite small, but can be larger when the fraction of
missing information is large and PDMI uses few imputa-
tions.

Until now, the use of MLMI has been discouraged by
the lack of convenient formulas for variances, SEs, and
CIs. But we have derived and evaluated three SE estima-
tors: the within-between (WB) estimator, the score-based
(SB) estimator and bootstrapped MI. Some of these SE
estimators are more viable than others.

The WB variance formulas use variance components
that lie within and between the imputed datasets. An old
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WB formula (5.5) has been used with PDMI for over 30
years [27], and we have derived a new WB formula (5.16)
that is consistent under MLMI. Our MLMI WB formula
requires more imputations than the PDMI WB imputa-
tions, but when the fraction of missing information is 50%
or less, the number of imputations required is not exces-
sive and often present no practical problem since MLMI
produces imputations more quickly than PDMI (Table 3).
With more than 50% missing information, though, the
MLMI WB formula requires a rapidly increasing num-
ber of imputations, so that it becomes better to use boot-
strapped MI, which with high missing information can
produce better SE estimates with fewer imputations.

The SB variance formulas decompose the variance of
the score function. The same SB formula is consistent un-
der PDMI and MLMI. The SB variance formula needs
fewer imputations than the WB formulas, but its calcula-
tion requires the contribution of each case to the score
function. This can be a serious disadvantage, since the
user often does not know the contribution of each case to
the score function, and some approaches to estimation do
not use the score function at all. This limits the practical
use of the SB formula.

When the imputation and analysis models are the same,
both the SB formula and the MLMI WB formula can be
applied to the parameters of the analysis model alone. But
when the imputation and analysis models are different, the
SB and MLMI WB formulas can also require the param-
eters of the underlying common model that is consistent
with both the imputation and analysis model. When these
additional parameters are neglected, the SB and MLMI
WB formulas can produce poor SE estimates, although in
practice the SE estimates seem to perform well unless the
fraction of information is quite large.

Bootstrapped MI variance estimation is the most robust
approach. It is flexible and can work with a variety of im-
putation methods, including but not limited to PDMI and
MLMI. Bootstrapped MI variance estimates are consis-
tent even when the imputation and analysis models are
different or misspecified. Unlike SB and MLMI WB esti-
mates, bootstrapped MI estimates never require parameter
estimates beyond those from the analysis model. Unlike
WB variance estimates, bootstrapped MI variance esti-
mates do not require a complete-data analytic SE for com-
plete data, and so can be used in situations where analytic
SEs are unavailable or invalid.

A further advantage of bootstrapped MI variance esti-
mates is that they are consistent even when the imputa-
tion and analysis models are incompatible or misspeci-
fied. This property is valuable since in practical settings
most models are at least a little misspecified, and incom-
patibility between the imputation and analysis models is
common. While no method can ensure that point esti-
mates will be consistent under a misspecified model, boot-
strapped MI can at least ensure that the variability of point

estimates is estimated accurately. This is a property that
WB and SB estimates lack, under both MLMI and PDMI.
We know of only one other approach that can produce
consistent variance estimates under misspecified and in-
compatible imputation and analysis models [24]—but the
calculations are relatively complicated and require statis-
tics, including but not limited to the score function, that
users often lack access to in practical settings.

Bootstrapped MI, by contrast, is straightforward. An
old knock against bootstrapped MI was that it seemed to
require a large number of imputations D for each boot-
strapped sample [10]. Our approach, however, produces
consistent variance estimates with just D = 2 imputa-
tions. Another knock was that the bootstrap can require a
large number of bootstrapped samples B, but that require-
ment is not limited to imputed data. In complete data, the
bootstrap can also require a large B, and analysts often
consider that an acceptable price to pay for robust SE esti-
mates. Bootstrapping MI requires approximately the same
B as bootstrapping complete data. In both complete and
MI data, the degrees of freedom is slightly less than B,
and perhaps B = 25 samples suffice for replicable point
estimates, and B = 500 for replicable SE estimates. Im-
puting B bootstrapped samples can take a long time if
you use PDMI, but MLMI can impute the bootstrapped
samples much more quickly.

APPENDIX A: SIMPLIFIED EXPRESSION FOR Vppy

In equation (4.5) we gave an expression for Vppmr
which we claimed was equivalent to the more compli-
cated expression in equation (2) from Wang and Robins
[37]. Below we give the steps of the simplification. The
first line gives equation (2) from Wang and Robins [37],
with a typo corrected and the symbols changed to match
our notation. The last line gives our simplified expression
4.5).

1 1
VeomI = VML + M Veom Vmis + Mynj;is VML Vmis
1 T
= VML + M(Vcom + VYmis VML)Vmis

1
= VML + M(Vcom +U - Vobs)T VML) Vmis

1 _ T
=W + M(Vcom + (I - VM]i Vcom) VML)Vmis

1
= VamL + M(Vcom
_ T
+ ((VM]i(VML - Vcom)) VML)Vmis
1

+ (VML — Veom)” Vart. VML) Vinis
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1 —
FY: (Vcom + (WML — Veom) VMII VML) Ymis

=W
ML+M

1
= VML + M(Vcom + VML — Veom) Vmis

1
= VML + MVMLVmis-

APPENDIX B: SHRINKING WB ESTIMATES UNDER
MLMI

In Section 5.2 we presented a simple estimator
Ymis|MLMIL,WB = WﬁﬁMIB\MLMI for the fraction of miss-
ing information under MLMI, then replaced it with the
shrunken estimator YmismLmi = A (), M —1). We now ex-
plain why shrinkage is necessary, and justify our shrink-
age function £ ().

The problem with the simple estimator YmisMLMI,WB 1S
that it can exceed 1, whereas the true fraction of missing
information yps cannot. To show this, we adopt the con-
vention, common in the MI literature, that the variation in
WMI is negligible compared to the variation in EMI. Then
the distribution of YmisjmpLmi is approximately scaled chi-
square:

(B.1)  Ymis)MLMI = Vmis where U ~ x3,_,

M -1
and the probability that yPmigmimi exceeds 1 is
P(ymisﬁ >1)=PU > A;’T_isl). Figure 1 graphs this
probability as a function of M and 5. The probability
is negligible if yp;s is low, but can be substantial if yp;s is
high and M is low relative to yYp;s.

Our solution is to replace YmisimLm1, wg With a shrunken
estimator YmisjMLmr,wa Which is guaranteed to take val-
ues in (0,1). We define YmisMvLmi, wB as the posterior
mean of ypyis when the prior is uniform on (0, 1). With
this prior, the posterior distribution of yyis approximates
a scaled inverse chi-square—

M—1 )
where U ~ xj;_4

(B.2)  Ymis = Ymis, MLMI,WB

—with the modification that the distribution of Y is
truncated on the right at 1. We calculated the mean of this
truncated distribution using Mathematica software, ver-
sion 8. The solution is (5.18), that is,

(B.3) YinisMLMLWB = 1 (VmispMLML,WB, M — 1),

where

(3]

Nlc

F(”—
" T

2
)
Using numerical integration in Mathematica software,

we calculate the bias E (¥misMLMI,WB — ¥mis) that is sum-
marized in Table 2.

(B.4) h(y,v) =

l\)l C
DI
)

4
> 2

Since the function I'(a, z) is unavailable in some sta-
tistical software, for implementation purposes it helps to
know that with v > 2, (¥, v) simplifies to

v RF(zsz)

= L wiw

where Rr(a, z), which is widely available in statistical
software, is the survival function for a gamma distribution
with shape parameter a, evaluated at z. Since this simpli-
fication requires v > 2, it can only be used when M > 4.

APPENDIX C: DEGREES OF FREEDOM FOR WB
VARIANCE ESTIMATION UNDER MLMI

Equation (5.21) approximates the df of the variance es-
timate VMLMI wB- Although VMLMI wB is not a chi-square
variable, a chi-squared variable with df = Dypmrwp will
have approximately the same coefficient of variation (CV)
as VMLMILWB-

To derive this approximation, consider the scalar ex-
pression

1 ~

— Bmimr,

VML MLMI,WB +
| , M

(C.1) VMLMLWB =
where

(C2)  VMLMLMLWB = WMLMIVOBSI\MLMLWB»
(C.3)  VobsMLMLWB = 1 — Vmis|MLML,WB,
(C4)  VmisMLMLWB = 1 (Ymis|MLMI,WB)
(C.5)  PinisMLMLWB = Wygi v BMLMI.

We can approximate the distribution of ‘7MLMI wB by
starting w1th its components. BMLMI has approx1mately
a scaled X 47— distribution, and if we regard WMLMI

as fixed, then ¥misMLmi,wB also has approximately a
scaled XI%/I— | distribution with expectation yp;s. We regard
Ymis)MLMI,WB as having approximately the same distribu-
tion as Ymis|MLMI,WB-

Under these assumptions, YobsMLMI,WB has expecta-

tion Yobs, standard deviation ypis+/2/(M — 1), and CV=
(ymls )a/2/(M — 1), which is also the CV of a Xv variable

with df =v; = (M — 1)(%)
YobsMLMI,WB as a scaled Xgl variable.

. So we can approximate

Then ?OB;|MLMI,WB approximates a scaled inverse chi-
square variable with df = vy, but this inverse chi-square
has the same CV as an ordinary chi-square variable with
df =v; — 4. So we can approximate VOBSI‘IMLMI,WB as a
scaled Xfl _4 variable. It follows that VMLMLWB is approx-
imately scaled Xu21 _4 as well.

Now

1 ~

(C.6) VMLMILWB = VMLMLMILWB + MBMLMI
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FIG. 1. The probability that YisMLMI exceeds 1, as a function of M and yyy;s-

is the sum of two scaled chi-square variables with respec-
tive dfs equal to vi —4 and M — 1. The variables are not
independent, but the covariance between them is negligi-
ble if M is large or ynis is small. If we apply the Satterth-
waite approximation to the sum, we get expression (5.21)
for the df of VMLMI,WB'

APPENDIX D: WANG & ROBINS’ SB ESTIMATORS

In Section 6 we mentioned that Wang and Robins [37],
Lemma 2, use a different SB estimator for VI\ZLl. After cor-
rection of a typo,’ their estimator is

N
v 1
—1
(D.1) MLISB = s a7 _ 1y Z Zcmm/,ia
MM —1) &
m#m' i=1
where
(D.2) = LT S 5 i)
: Cmm'’ i = 2 scom,m,iscom,m/,,' Scomsm/siscom,m,i

is the “symmetrized” cross-product of score estimates be-
tween one SI dataset (m) and another (). The cross-

AT A . . . .
product ¢, m.iS com.mr.i 1S DOt Symmetric, and neither is
r .8 _, but the aver-

the reverse cross-product §Com7m 5 comm.i
age ¢, 1s symmetric and so can be used to estimate the
symmetric matrix Vi .

Since ¢, = ¢ We can halve the number of cross-
products we need to calculate by restricting ourselves to
cross-products where m < m’. Then Wang and Robins’
estimator simplifies to

. 2 N
-1
(D.3) VMmus = m Z Zcmm/,i-

m<m'i=1

7Wang and Robins inadvertently divide Vl\ZI{I sg by N.

VI\ZIHSB looks quite different from our estimator ‘71\;11|SB’
but in fact the two are just different formulas for estimat-
ing the between-group variance of Scom,m.i- To see this,
notice that, if Scom,m,; is scalar, then Vh}ﬁ‘SB becomes

. 2 il
—1 Q Q
(D.4) Vs = MM —1) Z Zs‘iomsmviscomvmﬂi

m<m'i=1
which, if divided by N and V (Scom.m.i), is just a century-
old formula for estimating the intraclass correlation [13,
14].8 The intraclass correlation formula can be simplified
so that no cross-products are required [14]; applying the
simplification, we get

1 M Y
77— _ < ®2
(D'S) m<m'i=1
L
M—1 VcomlSB

. . .. |
which is very similar to our VMLsB-
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