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The association of COVID-19 incidence with 1 

temperature, humidity, and UV radiation – A 2 

global multi-city analysis 3 

 4 

Abstract 5 

Background and Aim. The associations between COVID-19 transmission and 6 

meteorological factors are scientifically debated. Several studies have been conducted 7 

worldwide, with inconsistent findings. However, often these studies had 8 

methodological issues, e.g., did not exclude important confounding factors, or had 9 

limited geographic or temporal resolution. Our aim was to quantify associations 10 

between temporal variations in COVID-19 incidence and meteorological variables 11 

globally. 12 

Methods. We analysed data from 455 cities across 20 countries from 3 February to 13 

31 October 2020. We used a time-series analysis that assumes a quasi-Poisson 14 

distribution of the cases and incorporates distributed lag non-linear modelling for the 15 

exposure associations at the city-level while considering effects of autocorrelation, 16 

long-term trends, and day of the week. The confounding by governmental measures 17 

was accounted for by incorporating the Oxford Governmental Stringency Index. The 18 

effects of daily mean air temperature, relative and absolute humidity, and UV radiation 19 

were estimated by applying a meta-regression of local estimates with multi-level 20 

random effects for location, country, and climatic zone. 21 

Results. We found that air temperature and absolute humidity influenced the spread 22 

of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that 23 

overall low temperatures (7.5°C compared to 17.0°C) and low absolute humidity (6.0 24 
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g/m³ compared to 11.0 g/m³) were associated with higher COVID-19 incidence (RR 25 

temp =1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH 26 

revealed no significant trend and for UV some evidence of a positive association was 27 

found. These results were robust to sensitivity analysis. However, the study results 28 

also emphasise the heterogeneity of these associations in different countries. 29 

Conclusion. Globally, our results suggest that comparatively low temperatures and 30 

low absolute humidity were associated with increased risks of COVID-19 incidence. 31 

However, this study underlines regional heterogeneity of weather-related effects on 32 

COVID-19 transmission. 33 

Key words: Temperature, Humidity, UV Radiation, COVID-19, Distributed Lag Non-34 

Linear Modelling, Global Analysis  35 
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Abbreviations 37 

Abbreviation Meaning 

AC Autocorrelation 

AH Absolute Humidity 

BLUP Best Linear Unbiased Prediction 

CAMS Copernicus Atmosphere Monitoring Service 

CB Crossbasis 

CI Confidence Interval 

COVID-19 Coronavirus Disease 2019 

DLNM Distributed Lag Non-Linear Models 

df degrees of freedom 

ERA5 Earth Reanalysis Dataset 5 

GSI Government Stringency Index 

JHU John Hopkins University 

MERS Middle East Respiratory Syndrome 

NS Natural Spline  

OxCGRT Oxford COVID-19 Government Response 

Tracker 

PACF Partial Autocorrelation Function 

PM Particulate Matter 

Q-AIC Quasi Akaike Information Criterium 

REML Restricted maximum likelihood method 

RH Relative Humidity 

RR Risk Ratio or Relative Risk 

SARS Severe Acute Respiratory Syndrome 

SARS-CoV-2 SARS Coronavirus 2 

SIR Susceptible Infectious Recovered 

TSR Time Series Regression 
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1. Introduction 39 

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic arose 40 

in late December 2019 in Wuhan, China. According to the WHO, by 12 July 2021 190 41 

million cases and 4 million deaths had been reported globally due to coronavirus 42 

disease 2019 (COVID-19).1 Evidence points towards transmission mainly taking place 43 

via airborne transmission (respiration of SARS-CoV-2 containing droplets).2 Other 44 

modes of transmission, including direct contact through contaminated surfaces, faecal-45 

oral transmission and other body fluids are still under investigation regarding the extent 46 

to which they influence the infection dynamics.3,4  47 

The relationship between COVID-19 incidence and meteorological factors is greatly 48 

discussed in the literature and of high public interest. A connection between 49 

meteorology and COVID-19 is considered likely as other coronaviruses and respiratory 50 

viruses show strong seasonal patterns of disease incidence that can to some extent 51 

be explained by meteorological factors in temperate regions.5,6 There are several ways 52 

in which meteorological factors (e.g. air temperature and humidity) could influence 53 

COVID-19 incidence. Extreme climatic conditions (e.g., extreme cold and heat) can 54 

result in people spending more time indoors, in closed, poorly ventilated spaces, which 55 

can increase the transmission of SARS-CoV-2.7,8 Moreover, lower temperatures 56 

enhance the stability of viral lipid envelopes and lower humidity favours droplet nuclei 57 

formation which prolong viability and transmissibility of SARS-CoV-2 9,10,11,12,13 Also, 58 

cold and dry conditions affect the human innate and adaptive immune response in 59 

various ways (e.g., in cold nostrils through inhibited mucociliary clearance and a 60 

decrease of phago- and leukocyte activity, which changes the likeliness of infection or 61 

symptom severity). 14,15,16,17 Altogether, these mechanisms support the hypothesis that 62 
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colder and drier conditions would favour SARS-CoV-2 transmission and increase 63 

COVID-19 incidence. 64 

Several spatial ecological and time-series studies have investigated the association 65 

between meteorological conditions and COVID-19 cases.18,19 However, so far the 66 

literature remains mainly inconclusive showing positive, negative, and no associations 67 

for temperature, humidity (relative and absolute) and UV radiation in different 68 

analyses.20–25,26–33 The variation in study results could partially be explained by varying 69 

spatial scales of analysis, application of different statistical methods with varying 70 

degrees of sophistication, and varying levels of consideration of potential confounding 71 

factors. Moreover, according to previous systematic reviews, epidemiologic studies 72 

assessing the relationship between weather and COVID-19 incidence could have 73 

methodologic limitations that may introduce bias and limit causal inference.34–36 For 74 

example, many studies did not consider the possibility of a non-linear relation and 75 

lagged effects of weather and incidence, they did not account for time-varying 76 

confounders, and they did not consider location-specific confounders. To address 77 

these limitations time-series regression methods could be used. These methods have 78 

been used to quantify short-term associations of environmental exposures with health 79 

outcomes, notably with infectious diseases.37 Time-series regression methods allows 80 

seasonality, long-term trends, other time-varying cofounding factors, and 81 

autocorrelation to be controlled for. It also allows us to explore the association with 82 

delayed and non-linear exposure effects.38 With the availability of longer time-series 83 

several studies have used time-series methods to evaluate the association between 84 

meteorological factors and COVID-19 incidence.39–50 Among those, three studies were 85 

performed on a global scale, 40,44 but they considered the country as unit of analysis. 86 

City-level studies are more appropriate given the lower measurement error on the 87 
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outcome and on the exposure. Moreover, they allow accounting for phenomena, like 88 

high levels of population density or human mobility, which are only observable on a 89 

small scale.38 90 

The aim of this study is to use city-level time-series models to evaluate the association 91 

between meteorological exposures (e.g., temperature, humidity, and UV radiation) and 92 

COVID-19 incidence at the global scale. 93 

 94 

2. Methods 95 

2.1 Data sources and extraction 96 

The data extraction was performed by members of the Multi-City Multi-Country (MCC) 97 

Network, an international research network focused on the study of environmental 98 

conditions, climate change, and human health (https://mccstudy.lshtm.ac.uk/). We 99 

considered the COVID-19 case time-series data for 455 cities between 3 February and 100 

31 October 2020. Details of the cities and sources can be found in Supplementary 101 

Table S1.  102 

We obtained exposure data from the Copernicus ERA5 dataset with a latitude-103 

longitude grid size of 0.25° x 0.25°(roughly 28x28km).51 We selected temperature and 104 

dew temperature in 2 m above the surface as well as the surface downwelling 105 

shortwave radiation (solar UV radiation, J/m2). For these variables daily averages were 106 

taken from the closest grid cell for each city or small region.  107 

We calculated the relative humidity (RH) from temperature and absolute humidity (AH) 108 

using the R “humidity” package.52 RH measures the percentage of water molecules in 109 

the air relative to concentration at full saturation, whereas AH measures the amount of 110 
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water vapor in a specific volume of air.53 This is the formula of how AH relates to RH 111 

and temperature:54 112 

𝐴𝐻 (𝑔/𝑚3) =
6.112 ×  𝑒

 
17.67 × 𝑇(°𝐶)
𝑇(°𝐶)+243.5  × 𝑅𝐻(%) × 2.1674 

273.15 + 𝑇(°𝐶)
 113 

The following variables were captured as we expected them to be confounders of the 114 

associations between weather variables and COVID-19 incidence. We extracted the 115 

Government Stringency Index (GSI) from the Oxford COVID-19 Government 116 

Response Tracker (OxCGRT) to control for changing governmental public health 117 

measures implemented in response to the pandemic.55 The GSI scale ranges from 0 118 

to 100 points with 100 representing the most strict measures implemented to hinder 119 

COVID-19 transmission such as closure policies, movement restrictions, income 120 

support, and testing policies. For the purpose of sensitivity analysis, we also used 121 

residential mobility from the Google Mobility index which measures the change in 122 

average duration of time spent at home compared to the median for the same weekday 123 

in a pre-pandemic period (3 January to 6 February 2020).56 124 

We considered the long-term mean temperature, demographic information on 125 

population size, density, and age proportion above 65 years in the fixed effects of the 126 

meta-regression. Demographic variables were collected from the Organisation for 127 

Economic Co-operation and Development (OECD) Global Human Settlement Layer 128 

Urban Centre Database unless specified otherwise in the results.57 This data was 129 

available at the city-level from the MCC Network.  130 

  131 
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2.2 Statistical analysis 132 

2.2.1 Descriptive analysis 133 

For the descriptive data analysis, the daily and cumulative COVID-19 cases of the 134 

included cities were summed for each country and the cases per 100.000 inhabitants 135 

were calculated using total population size of each city (OECD data).57  136 

2.2.2 Two-stage design 137 

We used a two-stage design to assess the association between the meteorological 138 

factors and COVID-19 incidence. The first stage consists of estimating the city-specific 139 

exposure-response association considering time-varying confounding in a time-series 140 

regression (TSR). In the second stage, a meta-analytic model is used to combine the 141 

city-specific estimates to obtain the pooled exposure-response association curve.  142 

For the first stage of the analysis, independent models for each exposure were 143 

formulated for all locations. The city-specific time-series were shortened to start up to 144 

15 days (depending on the considered days of lag) before the first time that 10 cases 145 

occurred in that city. This aims to exclude first imported cases. The exposures were 146 

modelled using distributed lag non-linear models (DLNMs).58 The basis function for the 147 

exposure dimension (temperature, AH, RH, and UV radiation) was chosen as a 2nd 148 

degree polynomial. The lag dimension was modelled with a natural cubic spline 149 

containing two equally spaced (at logarithmic scale) internal knots. In the main 150 

analysis, a lag of 15 days was considered, since the incubation period was estimated 151 

to be around 6 days for COVID-1959,60 and there is a delay in testing and reporting. 152 

The two bases were then combined to make a bi-dimensional basis called a “cross-153 

basis”.61 The residual variation of case counts was assumed to follow a quasi-Poisson 154 

distribution. 155 
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Several confounding factors were considered in the main model. Since the reporting, 156 

as well as many other factors (e.g., social behaviour and testing capacities), might vary 157 

between weekdays, we included a series of dummy day of the week variable (dow). 158 

Two other time-varying confounders were considered. The intra-year trend of COVID-159 

19 was considered in the model using a natural spline function of the date with 160 

6 degrees of freedom (df) (NS(date, df = 6)) which equals approximately 1.5 df per 161 

month. Changing governmental public health measures were modelled with a linear 162 

lag association model of GSI considering up to 15 days of lag dependence (CBGSI). 163 

The model was built using the R package “dlnm”.61 An autocorrelation term was 164 

included to account for transmission dynamics.37 For this purpose, the logarithm of one 165 

day lagged cases added to 0.5 was included (AC).  166 

In summary, the basic first stage model for each exposure (temperature, RH, AH, or 167 

UV) which was performed for each city looked like this: 168 

Ln(y) ~ CBexposure,lag=15 + AC + dow + CBGSI + NS(date, df = 6)                  ( I ) 169 

For the subsequent second stage meta-analysis, the R package “mixmeta” was used.62 170 

The coefficients representing estimated meteorology to COVID-19 associations were 171 

cumulated over all lags and their covariance matrices which were obtained at the first 172 

step were pooled over all included locations using a random effect meta-analytic 173 

model. We used the estimation method of restricted maximum likelihood (REML). In 174 

the main model (Model A), we considered groups defined jointly by country and climatic 175 

zones as random effects. The same model was used in Model B but only for the subset 176 

of locations with complete data in the meta-predictors (GDP, mean temperature, and 177 

% of population aged more than 65 years). In the subset of locations with complete 178 

data, we then also fitted the meta-regression model with the meta-predictors as fixed 179 

effects (Model C). To evaluate the role of country in explaining the heterogeneity in the 180 
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association curves, we considered models with city as a random effect and country as 181 

a fixed effect (Model D), or random effect (Model E). We then derived country-level 182 

Best Linear Unbiased Prediction (BLUP) curves from Model E. 183 

Using the pooled polynomial basis coefficients, we plotted the pooled mean curve (for 184 

all included cities) of COVID-19 risk against each exposure (temperature, RH, AH and 185 

UV) expressed as relative risk (RR) to the median level which was set as the minimum 186 

exposure value. 187 

2.3 Sensitivity analysis 188 

We performed a sensitivity analysis of the observed effect on the days of lags 189 

accounted in the first stage model by varying the length of the lag period from 15 to 10 190 

days. The influence of choice of df used to model intra-year trends was also explored 191 

by altering from 6 df to 4 df. Furthermore, we evaluated the possible time-varying 192 

confounding of air pollution by considering city-level particulate matter (PM10) data in 193 

the first stage model using a distributed linear model (DLM) parametrization and up to 194 

15 days of lag. The PM10 data was obtained from the Copernicus Atmosphere 195 

Monitoring Service (CAMS) global near-real time service.63–65 The hourly modelled 196 

values of surface PM10 (0.4 x 0.4 arc degrees grid cell resolution) were averaged daily 197 

over the observation period and linked to the city using the city centroid coordinates. 198 

The statistical analysis was performed using R 4.1.2 statistical software. 199 

 200 

3. Results 201 

3.1 Descriptive analysis 202 

This analysis considered 10.5 million confirmed COVID-19 cases across 455 different 203 

cities in 20 countries between 3 February and 31 October 2020. The city locations are 204 
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shown below as well as the country-wide aggregated time-series of daily reported 205 

COVID-19 cases per 100.000 in the included city populations (Figure 1 and 2). In most 206 

of the countries in the northern hemisphere we can recognise two waves in late winter 207 

or early spring and in autumn, while countries in the southern hemisphere (e.g., Brazil, 208 

Chile, Peru, and South Africa) experienced a single wave during the observation period 209 

of this study. Table 1 shows the country-wide cumulative incidence per 100,000 210 

inhabitants which varied from 49 in South Korea to 8,350 in the USA. The average 211 

minimum and maximum recorded exposures per country within the observation period 212 

are reported in Table 1. Daily country averages of the meteorological variables over 213 

the observation period are represented in Supplementary Figures S1-4. Countries in a 214 

tropical climate or in the southern hemisphere (e.g., Brazil, Chile, Mexico, Peru, 215 

Singapore, and South Africa) show less variation of the meteorological variables, 216 

especially mean temperature, RH and AH. The correlation between the four exposures 217 

is shown in Supplementary Table S4. An overview of the governmental interventions 218 

against COVID-19 over time can be seen in Supplementary Figure S5. Most countries 219 

started out with stringent restrictions in the beginning of 2020 and loosened them by 220 

the middle of the year. Some tightened them again towards the end of October 2020 221 

(Supplementary Figure S5). Estonia had the lowest overall level of governmental 222 

interventions with an average GSI of 36.9% during the observation period, whereas 223 

Peru ranked highest on governmental stringency with an average GSI at 75.8% (Table 224 

1). 225 

3.2 Association between COVID-19 cases and temperature 226 

The pooled association curve, representing overall results across all cities, obtained 227 

from the pooled models for temperature exposure (Model A) is represented in Figure 228 

3a. Low temperatures were associated with higher risk of infection. At 7.5°C the relative 229 
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risk of COVID-19 incidence is 1.33-fold higher (CI-95%: 1.08;1.64) compared to a 230 

reference level at 17.0°C. The exposure-lag association indicated increased RRs with 231 

a 3-day lag after temperature exposure, reached a peak at 8-9 days, and decayed by 232 

the end of the observed 15 days’ lag period (Supplementary Figure S6a). We observed 233 

a substantial heterogeneity in the meta-analytic model (I2=67.3%). Investigating the 234 

city-level factors which could explain this heterogeneity (Model C), we found that old 235 

population (% population aged more than 65 years), the average daily mean 236 

temperature, and GDP modified the association between temperature and COVID-19 237 

incidence (Supplementary Figure S7a, Supplementary Table S2). Cities with an older 238 

population and lower long-term mean temperature seemed to have a higher impact of 239 

lower temperature on COVID-19 spread, but overall, these factors explain only 1.1% 240 

of heterogeneity. We also investigated the role of country on heterogeneity comparing 241 

the meta-analytic model with and without country modelled as fixed effect with an I2 242 

decrease equal to 4.3% (Supplementary Table S2). The Figure 4 shows the country 243 

specific curves obtained using BLUPs prediction from the Model E with country as a 244 

random effect. We observed different patterns of the temperature COVID-19 incidence 245 

curve with most countries showing curves with higher COVID-19 incidence with cold 246 

temperatures (e.g. Chile, Czech Republic, Estonia, Germany, Italy, Japan, Kuwait, 247 

Romania, Spain and UK), some with limited exposure variation had a flat curve (Brazil, 248 

Peru, Singapore and South Africa), three had no evidence of an association (France, 249 

Canada and US), and three showed a tendency of increased COVID-19 risk with higher 250 

temperatures (Finland, South Korea, Mexico). 251 

3.3 Association between COVID-19 cases and Humidity 252 

Overall, little evidence was found for an association between relative humidity and 253 

COVID-19 spread (Model A), with a slight tendency of a lower risk of infection for higher 254 
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level of RH (Figure 3b). With respect to a reference level set at 65% RH, the RR of 255 

observing COVID-19 cases was 0.89 at 85% RH (CI-95%: 0.75; 1.06). This association 256 

did not diverge from RR=1.00 when considering different lags (Supplementary Figure 257 

S6b). There was substantial heterogeneity in this association (I2=68.3%), but 258 

examination of meta-predictors and country specific curves showed no interpretable 259 

patterns (Supplementary Figure S7b). Country modelled as a fixed effect explained 260 

3.6% of the heterogeneity (Supplementary Table S2). Figure 5 shows the country 261 

specific curves obtained using BLUPs prediction from the model with country as 262 

random effect (Model E). Adjusting for daily mean temperature gives a tendency of a 263 

protective effect at higher levels of RH (Supplementary Figure S8). 264 

For AH, we observed an inverse association (Model A in Figure 3c). Compared to the 265 

median value of 11.0 g/m³ there was a 1.33-fold increased RR at the AH of 6.0 g/m³ 266 

(95%-CI: 1.12; 1.57). The RRs were observed to be increased (RR>1.00) between 3 267 

to 15 days of lag (Supplementary Figure S6c). The meta-predictors old population, 268 

long-term mean temperature and GDP explained 3.7% of the heterogeneity 269 

(Supplementary Figure S7c, Supplementary Table S2). Cities with higher long-term 270 

mean temperature show a lower risk of COVID-19 infection associated with high levels 271 

of AH. Country modelled as fixed effect explained 4.7% of the heterogeneity. Country 272 

BLUPs estimates are presented in Figure 6 (Model E). As observed for temperature, 273 

we found different patterns of the association between AH and COVID-19 incidence in 274 

different countries. There are countries with higher COVID-19 incidence with low AH 275 

(e.g., Chile, Czech Republic, Estonia, France, Japan, Spain and UK), countries with 276 

no evidence of an association (Brazil, Kuwait, Mexico, Italy, Romania, Singapore, 277 

South Africa and US), and countries showing a tendency of increased COVID-19 risk 278 

with higher AH (Canada, Finland, and South Korea). 279 
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 280 

3.4 Association between COVID-19 cases and UV 281 

We found some evidence of an association between UV exposure and COVID-19 282 

spread (Model A in Figure 3d). Meta-predictors have little influence on the association 283 

curve explaining only 1.2% of the I2 (Supplementary Figure S6d, Supplementary Table 284 

S2). Country modelled as fixed effect explained 3.4% of the heterogeneity. Country 285 

BLUPs estimates are presented in Figure 7, with some countries (Canada, Finland, 286 

Kuwait, Mexico, Spain and US) showing lower COVID-19 incidence with lower levels 287 

of UV radiation. 288 

3.5 Sensitivity analysis 289 

A sensitivity analysis was conducted to assess the robustness of estimates of the 290 

previously described models. A decrease to 10 days of lag or lower degrees of freedom 291 

of long-term trend (4 df instead of 6 df) in general led to similar association curves 292 

(Supplementary Figure S10 and S11). Also, the inclusion of PM10 into the first stage 293 

model resulted in no major change of the exposure to COVID-19 associations 294 

(Supplementary Figure S12). Stratifying the analysis according to climatic zone, for air 295 

temperature all curves show a decreasing trend. For RH tropical cities show a higher 296 

COVID-19 spread in dry conditions. More variability was observed for AH and UV 297 

radiation (Supplementary Figure S13). 298 

  299 



 

15 

 

4. Discussion 300 

4.1 Main findings 301 

Overall, this study supports previous findings that temperature and absolute humidity 302 

are environmental factors that potentially influence the spread of COVID-19. Globally, 303 

low temperatures and low absolute humidity were associated with higher COVID-19 304 

incidences, but for RH no evidence of an association was found. There was substantial 305 

heterogeneity in the associations of the respective environmental exposures and 306 

COVID-19 risk between countries.  307 

4.2 Possible biological and behavioural mechanisms 308 

Our results can be viewed in light of previous studies investigating the mechanistic 309 

principles behind associations between meteorological variables and COVID-19. The 310 

observation that low temperatures lead to higher transmission rates of viral disease 311 

has been made in many previous studies. Biophysical theory and laboratory results 312 

suggest that lower temperatures support the stability and viability of viral particles.66,67 313 

Additionally, animal experiments hint towards a connection with lower blood circulation 314 

and consequent local impairment of adaptive immunity at low temperatures, thereby 315 

affecting the host’s immune system’s ability to fight respiratory viruses.14,68 316 

The association between lower levels of humidity and higher levels of infections could 317 

be explained by virus-containing droplets having short ballistic settling characteristics 318 

under wet conditions. In contrast at dry conditions, droplets evaporate forming dry 319 

nuclei that are able to maintain floating over longer durations of time.12,69 Influenza-320 

related studies also hinted at an impaired immune response under dry conditions (e.g., 321 

through impaired mucociliary clearance and other innate responses).15 A US study 322 

found that outdoor AH is a good predictor for indoor AH while this is not true for RH.70 323 
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Hence, it could be that AH is a more useful predictor for COVID-19 incidence than RH. 324 

Previous studies came to that conclusion regarding AH as predictor for influenza 325 

transmission rates as well.71 However, the high correlation between AH and 326 

temperature (r=0.88, average of all cities in our dataset) implies that it is difficult to 327 

disentangle effects of the two exposures, with one of the associations possibly merely 328 

reflecting confounding by the other. 329 

There was some evidence of a positive association between COVID-19 cases and UV 330 

radiation. This was unexpected, as one hypothesis is that UV light could cause 331 

inactivation of viruses in the air and on surfaces. Also, there is a theory that more solar 332 

radiation could lead to less vitamin D deficiency (contributing to better functioning 333 

immune system).72  334 

4.3 Comparison to other modelling studies 335 

Due to the extensively growing literature in this field, the state of scientific knowledge 336 

on this topic is constantly evolving. A review from late 2020 reporting on about 60 337 

studies on associations between COVID-19 and weather identified a variety of findings 338 

for temperature and humidity.21 The included studies that reported a linear trend mostly 339 

showed a negative association bewteen COVID-19 cases and temperature as well as 340 

humidity (33 vs. 6 studies and 13 vs. 3, respectively). Global analyses support these 341 

local findings for temperature and humidity. Using different methodologies Sarkodie et 342 

al., Wu et al., Yuan et al., and Zhang et al. all found a negative association between 343 

temperature and RH with COVID-19 case rates in 20 countries, 166 countries, 127 344 

countries, and 1236 regions globally with data until April, March, August, and May 345 

2020, respectively.73–76 The study from Yuan et al. also widened their analysis to 346 

include 188 countries with data through December 2020, and also analysed the 347 

non-linear associations, showing similar exposure response associations as found in 348 
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our study using generalized additive model and as well DLNM methods.44,75 The 349 

temperature of minimum COVID-19 risk in both Yuan et al. studies was around 20°C 350 

and for RH the risk was highest at humidity around 70%. Another global study using 351 

DLNM from Guo et al. including 190 countries showed a similar association for 352 

temperature (highest RR at 5°C and lowest at 20°C) but exhibited a different exposure-353 

risk association for RH (risk maximum at 72% RH).77 Two studies that also used DLNM 354 

models on US counties only also found elevated infection risks (increased Rt levels) at 355 

lower temperatures and one of them as well for lower specific humidities.29,32 Fontal et 356 

al. analysed the transitory associations of temperature and AH until October 2020 in 357 

10 world regions and obtained negative associations for both.33 One global study did 358 

find only a small effect of temperature in 3739 global locations (Xu et al.) and two global 359 

studies did not find a statistically relevant effect for temperature (Carleton et al., Islam 360 

et al.) and RH (Islam et al.) in 206 countries and 3235 regions, respectively.30,27,78 361 

However, Guo et al., Xu et al., Carleton et al., and Islam et al. all had a comparatively 362 

short study period reaching until April 2020.77,30,27,78 363 

We recently performed a different global city-level analysis of meteorological factors 364 

and SARS-CoV-2 transmission.22 This used an ecological approach comparing 365 

effective reproduction number (Re) and meteorological variables between cities in the 366 

early phase of the pandemic, and identified a non-linear (though primarily downward) 367 

association between mean temperature, and absolute humidity with Re, and a 368 

tendency of a negative association between RH and Re. Non-pharmaceutical 369 

interventions had a greater effect on Re. The results of the current study complement 370 

our previous results that showed higher Re at lower mean temperature, lower absolute 371 

humidity, and a negative association between RH and Re.  372 
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Regarding UV exposure, out of the 60 studies analysed in the previously mentioned 373 

systematic review, only six analysed solar radiation and among those there was no 374 

consensus of whether there is an association and if so what type of association.21 Two 375 

of the previously mentioned global analyses also included UV variables. Carleton et al. 376 

reported in contrast to our study that higher UV radiations were associated with lower 377 

COVID-19 growth rates, whereas Islam et al. concluded the relationship to be 378 

inconclusive within the same time period.27,78  379 

4.4 Strength and Weaknesses 380 

Our study has several important strengths. It considered a multitude of locations 381 

globally with smaller spatial units of analysis and longer observation periods than most 382 

published studies. Lagged effects of exposure were considered, as were potential non-383 

linear relationships of the exposure with COVID-19 incidence. Ecological and time-384 

varying confounders were analysed and incorporated.  385 

Possible short comings of this study are that the case definitions differed from country 386 

to country, that GSI might not adjust sufficiently for changes in governmental measures 387 

over time, and that the distribution of cities included is not equally distributed around 388 

the globe, with some regions underrepresented and only few locations close to the 389 

equator. Thus, while this study is one of the most detailed global analyses to date, the 390 

pooled estimates provide insights into the associations in the included cities but are 391 

not fully representative for everywhere around the globe. Also, a global estimate itself 392 

might be of limited use due to the heterogeneity amongst locations that was 393 

encountered. We considered factors explaining this heterogeneity and we found that 394 

long-term mean temperature (a proxy of the city climate) and the percentage of the 395 

population older than 65 years modify the association found. There was a tendency in 396 

cities with lower long-term temperature and older population to have higher COVID-19 397 
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incidence in colder and drier conditions, but these factors explain only a small amount 398 

of the observed heterogeneity leading to some difference among countries. These 399 

differences could be due to limited sample size in some countries (e.g., Estonia, 400 

Finland, South Africa), and different and narrower ranges of exposure experience in 401 

countries (e.g. Brazil, Mexico, Chile, Peru and Singapore). Moreover, the observed 402 

differences could also be due to different adaptation of local populations to various 403 

weather conditions. 404 

 405 

5. Conclusion 406 

This study indicates that there is a tendency of a higher risk of COVID-19 cases at low 407 

temperature or absolute humidity levels, which aligns to an extent with available 408 

mechanistic explanations and previous literature basis. The between country 409 

heterogeneity of weather-related effects on COVID-19 when applying our uniform 410 

modelling framework in a global analysis shows the importance of determining location 411 

specific estimates of meteorological effects on COVID-19 spread. As more data 412 

accumulates, studies using longer observational periods will help elucidate weather-413 

sensitivity and seasonal patterns of COVID-19 transmission. 414 

  415 
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Table 1: Summary Table of observed COVID-19 cases, meteorological exposures, 671 

and governmental stringency index in the different countries.  672 

Country Number of 
included 
cities  

Cumulative  
cases per day 

[ # per 
100.000] 

Daily mean 
temperature 
[°C] 

Daily mean  
RH 
[%] 

Daily mean 
AH 
[g/m3] 

Daily mean 
UV 
[J/m2] 

OxCGRT GSI 

[%] 

Brazil 13 1677 24.3  
(4.7, 31.7) 

76.5  
(30.2, 99.0) 

17.5  
(5.9, 23.6) 

210.7  
(20.3, 353.7) 

65.0 
(51.6, 69.8) 

Canada 15 578 12.6  
(-21.0, 28.9) 

67.3  
(23.7, 95.8) 

8.3  
(0.7, 20.3) 

207.8 
(10.9, 368.1) 

60.4 
(6.7, 65.1) 

Chile 4 8,052 11.9  
(1.85, 23.7) 

74.1  
(34.8, 96.7) 

7.9  
(4.0, 13.2) 

169.5  
(3.8, 357.6) 

68.7 
(0.0, 78.4) 

Czech 
Republic 

1 7,390 13.8  
(-1.5, 25.7) 

65.4  
(33.6, 93.6) 

8.2  
(2.2, 14.8) 

176.7 
(9.7, 316.0) 

52.1 
(10.9, 80.2) 

Estonia 1 410 10.9  
(-3.2, 22.5) 

75.9  
(46.0, 96.2) 

8.1  
(2.3, 14.6) 

165.0  
(6.7, 336.1) 

40.8 
(0.0, 63.5) 

Finland 1 915 10.9  
(-2.6, 23.2) 

75.2  
(45.9, 97.9) 

7.90  
(2.2, 13.9) 

168.6 
(6.4, 341.9) 

44.4 
(16.2, 57.8) 

France 17 477 15.9  
(0.5, 30.0) 

69.0  
(24.1, 96.9) 

9.6  
(2.4, 20.3) 

202.0  
(11.2, 352.2) 

60.0 
(12.0, 75.0) 

Germany 12 575 14.1  
(-1.4, 29.2) 

66.6  
(30.8, 97.5) 

8.4  
(2.2, 16.0) 

177.1 
(4.5, 338.7) 

56.2 
(14.6, 69.8) 

Italy 23 2,013 18.6  
(1.0, 30.8) 

67.5  
(26.9, 97.7) 

11.21  
(2.1, 22.0) 

222.9 
(9.6, 345.0) 

68.4 
(49.7, 81.0) 

Japan 10 163 19.8  
(-5.9, 32.6) 

74.2  
(34.2, 97.8) 

14.0  
(2.4, 25.4) 

182.6 
(11.3, 342.9) 

43.9 
(16.2, 49.0) 

Kuwait 1 2,949 
79 

30.2  
(7.8, 41.3) 

40.6  
(18.6, 84.1) 

12.4  
(2.6, 29.4) 

274.7 
(114.8, 336.0) 

58.5 
(5.2, 79.2) 

Mexico 8 1,367 20.2  
(9.5, 31.1) 

59.5  
(9.8, 96.9) 

10.5  
(2.2, 20.3) 

269.6 
(40.1, 371.4) 

51.9 
(0.0, 62.5) 

Peru 18 3,489 
80 

15.0  
(1.1, 30.1) 

67.0  
(5.0, 96.3) 

9.8  
(0.5, 24.1) 

236.7 
(36.2, 383.8) 

76.3 
(13.0, 81.8) 

Romania 8 1,006 
81 

18.5  
(3.3, 30.1) 

63.7  
(22.9, 97.8) 

10.4  
(2.1, 19.2) 

211.1 
(14.6, 338.2) 

52.0 
(42.2, 71.4) 

Singapore 1 2,879 27.6  
(26.0, 29.3) 

80.6  
(71.2, 86.5) 

21.9 
(20.0, 23.6) 

196.3 
(49.1, 304.8) 

60.7 
(31.7, 78.7) 

South Africa 1 1,998 
82 

15.1  
(9.9, 19.8) 

78.6  
(56.8, 95.2) 

10.30  
(6.2, 13.5) 

172.7 
(30.4, 350.1) 

68.9 
(14.1, 80.2) 

South Korea 6 49 18.5  
(-6.0, 29.8) 

73.3  
(24.8, 98.0) 

13.0  
(1.1, 24.7) 

185.1 
(134.8, 332.1) 

53.3 
(22.9, 72.9) 

Spain 52 6,210 17.9 
(0.3, 34.2) 

63.9  
(17.0, 97.3) 

9.9 
(1.7, 22.1) 

232.2 
(12.9, 368.6) 

56.8 
(2.1, 72.9) 

United 
Kingdom 

54 1,254 13.4  
(2.3, 26.2) 

75.4  
(41.9, 99.4) 

9.0  
(3.7, 16.9) 

170.6 
(5.9, 344.0) 

65.4 
(8.3, 71.9) 

United 
States 

209 8,350 19.4  
(-14.1, 41.0) 

64.4  
(5.8, 100.0) 

11.7  
(0.7, 26.0) 

225.7 
(7.1, 384.3) 

63.0 
(8.3, 66.2) 
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Figure 1. World map showing the included cities colour-coded by region. 675 
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Figure 2. Time-series of COVID-19 cases per 100.000 inhabitants aggregated by 679 

country over the period form 3 February to 31 October 2020.  680 
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Figure 3: Association between meteorological variables and COVID-19 incidence. 685 

Association curves were obtained with meta-regression Model A with random effect 686 

defined by country and climatic zones. 687 
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Figure 4. Country specific association between temperature and COVID-19 692 

incidence. For each country the number (n) of cities included in the analysis is 693 

indicated.694 

 695 
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Figure 5. Country specific association between relative humidity and COVID-19 696 

incidence. For each country the number (n) of cities included in the analysis is 697 

indicated.698 

 699 
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Figure 6. Country specific association between absolute humidity and COVID-19 700 

incidence. For each country the number (n) of cities included in the analysis is 701 

indicated.702 

 703 
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Figure 7. Country specific association between UV radiation and COVID-19 704 

incidence. For each country the number (n) of cities included in the analysis is 705 

indicated.706 

 707 


