
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 S

ep
te

m
be

r 
20

22
 

royalsocietypublishing.org/journal/rstb
Introduction
Cite this article: Holt KE, Aanensen DM,
Achtman M. 2022 Genomic population

structures of microbial pathogens. Phil.

Trans. R. Soc. B 377: 20210230.
https://doi.org/10.1098/rstb.2021.0230

Received: 28 June 2022

Accepted: 28 June 2022

One contribution of 11 to a discussion meeting

issue ‘Genomic population structures of

microbial pathogens’.

Subject Areas:
evolution, genomics, microbiology

Author for correspondence:
Kathryn E. Holt

e-mail: kat.holt@lshtm.ac.uk
© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Genomic population structures
of microbial pathogens

Kathryn E. Holt1, David M. Aanensen2 and Mark Achtman3

1Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
2Big Data Institute, Oxford University, Oxford, Oxfordshire, UK
3Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK

KEH, 0000-0003-3949-2471; DMA, 0000-0001-6688-0854; MA, 0000-0001-6815-0070
1. Introduction
A Royal Society Hooke Scientific Discussion Meeting to address ‘Genomic popu-
lation structures of microbial pathogens’ was originally scheduled for the end of
March 2020. That discussion meeting was conceived when a ‘big-data’ problem
became evident once more than 100 000 genomes of Salmonella had been
assembledwithin EnteroBase [1]. It was intended to provide a venue for bioinfor-
matic approaches, and lead to insights on how to analyse and learn from such
enormous numbers of pathogen genomes. However, the schedule overlapped
with the COVID-19 pandemic, and themeetingwas postponed to avoid the possi-
bility of a super-spreader event at a live meeting of 100s of individuals. The
further course of the COVID-19 pandemic highlighted both the tremendous
analytical challenges that result from large-scale pathogen sequencing as well
as the novel opportunities that they can provide.

The postponed discussionmeeting ultimately took place in September 2021 as
an online event. During the intervening 18 months, the world of pathogen
sequencing and analytics changed dramatically—over 3.9 million genomic
sequences of SARS-CoV-2 virus became publicly available [2], pushing existing
phylogenetic and visualization tools to their absolute limits and sparking the cre-
ation of several new solutions. Routine sequencing of bacterial pathogens also
continued, and became even more common in some settings owing to increased
accessibility of sequencing in clinical and public health settings. By June 2022,
more than 11.5 million SARS-CoV-2 genome sequences had been deposited in
the GISAID database (https://www.gisaid.org/), and there were over 430 000
Salmonella sequences in more than 21 000 single nucleotide polymorphism
(SNP) clusters within the NCBI Pathogen Detection Portal (https://www.ncbi.
nlm.nih.gov/pathogens/about/). That portal and EnteroBase also contain large
numbers of assembled genomes of bacterial pathogens from multiple other
genera. The era of big-data pathogen genomics has now well and truly arrived.

This special issue highlights some of the new ideas and methodological
approaches that were contributed by speakers at the September 2021 meeting.
Each article brings a fresh perspective to the topic of understanding genomic
population structures of microbial pathogens, including scaling up phylogenetic
analyses; developing tree-free alternatives to phylogenetics; understanding the
influence of horizontal gene transfer in bacteria; and using genomics to explore
adaptation at different scales.
2. Phylogenetic approaches to understanding population
structure

Fisher et al. [3] provide a brief overview of Bayesian phylogenetics for a broad
audience. This approach has largely been limited to medium-sized datasets
until recently because it depends on computationally intensive Markov chain
Monte Carlo (MCMC) sampling of all plausible evolutionary alternatives.
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Recent methodological approaches are described that can
improve the speed of likelihood calculations, reduce the time
needed for MCMC burn-in, and generate improved MCMC
estimates. Burn-in times were reduced from 6 h for a naive
analysis on 720 SARS-COV-2 genomes of which 588 had been
previously analysed, to less than 1 min, by adding the 132
new genomes to the pre-existing 588-tip tree. MCMC proposals
for phenotypic evolution in a 1536-tip human immunodefi-
ciency virus (HIV) tree were generated 1000 times more
quickly during the main run by parallel computing based on
Hamiltonian MCMC in comparison to adaptive MCMC
(uMH). Similarly, the age of a SARS-COV-2 clade within a
1000-tip genome treewas calculated in as little as 7% of the run-
timeneededbyuMH. The article concludeswith a discussion of
alternative methods that do not rely on MCMC for estimating
the posterior likelihood.

Didelot & Parkhill [4] describe the advantages of using
a step-by-step approach for interpreting bacterial epidemio-
logy from genomic sequences. Their approach consists of:
generating sequence alignments, identifying recombinant
imports with a distinct phylogenetic history, calculating an
unrooted phylogeny, and elucidating a dated tree and popu-
lation structures. These steps then facilitate elucidating the
transmission chains that are of interest to epidemiologists.
This article compares the merits of alternative programmes
for each step, and makes a strong argument that a multi-step
approach is safer than relying on one massive model that
tries to estimate all the different parameters at once. The con-
clusions are illustrated with an example of such calculations
with 529 assembled genomes of Staphylococcus aureus ST239
from global sources, including details of the time needed to
perform each of the steps on a laptop computer.

Zaharias & Warnow [5] provide a broad overview
of new methods that can generate highly accurate maximum
likelihood (ML) trees from multiple sequence alignments
containing 100 000 s of gene or genomic sequences. Many of
these methods rely on divide-and-conquer techniques that
can handle phylogenetic heterogeneity resulting from incom-
plete lineage sorting and/or gene duplication or loss. Still
other methods can add sequences into large, pre-existing
gene or species trees. The different methods that are available
for each stage of the process are evaluated for speed and
accuracy, and this manuscript will serve as a highly useful
source of information on how to most accurately and most
rapidly create gene and species trees from very large datasets
of genomic data.

Phylogenetic trees are used to calculate evolutionary pro-
cesses and estimate the historical dates of genetic splits.
However, they are also used routinely to infer population struc-
tures and epidemiological events although the theoretical
basis for such inferences has not been definitively clarified.
In their publication, Hayati et al. [6] use novel deep learning
approaches to distinguish nine tree shapes that appear repeat-
edly among genome sequences of multiple species containing
bacterial pathogens. Several sub-tree shapes could be assigned
visually to the so-called ‘comet’, ‘star’ or ‘barbell’ types, which
may be relevant for epidemiological purposes. The ‘comet’
type contains a few ancestral genomes on long branches
whose isolates predated the expansion of a cluster of closely
related isolates. The ‘star’ type includes multiple discrete
branches of comparable length, and might be associated with
repeated homologous recombination or rapid diversification
without much selection. The ‘barbell’ shape contains two
discrete sub-populations with a long internal branch separ-
ating them. However, several other shapes were also
distinguished by deep learning, each encompassing distinct
subpopulations, and represent a population structure which
warrants further investigation. A variety of statistical tools
demonstrated only limited association with geographical
range, date of isolation or other metadata, illustrating the
problems which are posed for detailed epidemiological
interpretations by genomic sequences without extensive
associated metadata.
3. Alternatives to phylogenetics
Achtman et al. [7] present a monograph on the suitability of
HierCC (hierarchical clustering of core genome multi-locus
sequence typing data (cgMLST)) within EnteroBase, for the
identification of species and sub-species in six bacterial
genera: Salmonella, Escherichia/Shigella, Clostridioides, Yersinia,
Vibrio and Streptococcus. For each genus, a large representative
dataset of assembled genomes is identified. ML trees that were
calculated based on core SNPs and on the presence/absence of
accessory genes yielded similar branching topologies. The
branch structures of these trees were then used as the
‘ground truth’ for taxonomic designations in comparisons
with published designations, clusters based on 95% average
nucleotide identity (95% ANI) and HierCC clusters. HierCC
was found to be more sensitive, accurate and consistent than
classical taxonomy or ANI for five of the genera, and was
used to guide numerous manual taxonomic changes that are
now stored in EnteroBase, including the definition of novel
species and sub-species, deletion of scores of incorrect species
designations as well as upgrading/downgrading the taxo-
nomic levels of other species. Exceptionally, it was not
possible to identify a DNA-based metric that was consistent
with the taxonomic designations of Streptococcus because mul-
tiple ANI and HierCC clusters at the species/sub-species level
were identified in several taxonomic species. The manuscript
also describes the correlations between HierCC and popu-
lations/lineages in Salmonella and Escherichia/Shigella. HierCC
is concluded to represent a worthy replacement for legacy
MLST within these genera. Lineages within Salmonella are
remarkably uniform in O serogroup, whereas O serogroup is
highly variable even within sequence type (ST) complexes
within Escherichia. The manuscript also includes comparisons
of EnteroBase HierCC and Mandrake (introduced by Lees
et al. [8] in this special issue) on a large number of public gen-
omes of Streptococcus pneumoniae. The two methods were
highly consistent.

Lees et al. [8] describe Mandrake, a new approach that can
cluster 600 000 bacterial genomes or one million SARS-COV-2
genomes within a few hours. It is an efficient implementation
of dimensional reduction that can be run in parallel mode
on a GPU processor, and provides comparable or better
clustering of simulated population structure of bacterial
genomes than other slower methods including principal
components analysis, t-distributed stochastic neighbour
embedding and uniform manifold approximation and projec-
tion. Mandrake was also applied to a gene presence/absence
matrix of 20 047 genomes of S. pneumoniae and yielded
very similar clustering to either PopPunk clusters based on
core plus accessory genes or HC160 clusters according to
EnteroBase HierCC [9]. Similar results were obtained with
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Salmonella, where Mandrake clusters correlated with a some-
what finer clustering than HC900 in HierCC. Similarly,
Mandrake clustered Listeria monocytogenes and Mycobacterium
tuberculosis according to their major lineages. Similar cluster-
ing was also observed with 600 000 bacterial genomes of
diverse taxa, which were largely clustered into species-
specific lineages, and one million SARS-COV-2 genomes in
which the major variants of concern were assigned to
variant-specific clusters.
/journal/rstb
Phil.Trans.R.Soc.B

377:20210230
4. Influence of mobile genetic elements on
population structure and inference

In their article, Haudiquet et al. [10] present an overview
of how mobile genetic elements (MGEs) drive horizontal
gene transfer in microbial populations. It paints a picture
of bacterial genomes as playgrounds for MGEs engaged
in evolutionary war-games, which result in gene flow that
is a rich provider of novel functions to microbial genomes
but is largely out of the control of the recipient cells.
Haudiquet, Rocha and colleagues discuss mechanisms by
which MGEs control the timing of their own transfer. For
example, SOS responses of the host bacteria are used as
cues to ‘jump ship’ to neighbouring cells, and quorum-sen-
sing systems are used to detect the availability of suitable
new hosts in the vicinity. The manuscript then considers bac-
terial host factors that control or constrain MGEs, including
variation in the cell envelope and associated structures as
well as restriction-modification systems, and how their inter-
play with MGE create mobile gene turnover and shape the
evolution of the pan-genome. Finally, the authors reflect on
the need for quantitative studies which can measure how
these complex mechanisms contribute to adaptive evolution
of bacteria.

Quantitative data on horizontal gene transfer (HGT) can be
gathered by investigating naturally occurring gene and plas-
mid transfer events. This is of increasing interest in the field
of infection control genomics, because the transfer between
strains of plasmids and antimicrobial resistance (AMR) genes
is now well documented as playing a pivotal role in the emer-
gence and persistence of hospital-associated outbreaks of drug
resistant infections [11]. In their article, Huisman et al. [12] con-
sider how the choice of sequencing and assembly methods can
impact inferences of HGT of plasmids and AMR genes. They
use a set of 24 Escherichia coli isolates, sequenced with the
three currently most-popular technology platforms (Illumina,
Oxford Nanopore and PacBio), and use cgMLST gene align-
ments for phylogenetic inference of chromosomal trees with
BEAST2. The results show strong topological similarity for Illu-
mina, PacBio and Illumina/Nanopore hybrid genomes,
regardless of sequencing platform or assembly method. How-
ever, assemblies based exclusively on Oxford Nanopore
sequences resulted in erroneous tree topologies because they
were prone to base-call errors that interfered with cgMLST
gene calling. Inference and comparisons of plasmid trees are
challenging because plasmid sequences can be fragmented
across contigs. Huisman et al. [12] use an interesting approach
of aligning all genes that are annotated on the same contig as a
shared plasmid replicon marker. This approach revealed sub-
stantial variation in the plasmid trees generated using
different sequencing and assembly methods. However, down-
stream inferences of plasmid transfer between strains, and
of the transfer of plasmid-encoded AMR genes, were quite
robust to methodological choices. These findings are encoura-
ging for the burgeoning field of plasmid genomics and
transmission tracking [13], the importance of which
is increasingly recognized in public health genomics and
infection control.
5. Understanding adaptation at different scales
Fine-scale changes within an individual’s microbiome, includ-
ing strain-level adaptations, may contribute to a person’s
health and wellbeing. In her review article, Lieberman [14]
explores the potential for tracking adaptive evolution within
individual microbiomes at short timescales. Understanding
selection pressures exerted upon microbial genes and genomic
loci within an individual microbiome has the potential to
inform the design of rational probiotic therapies and contribute
to a deeper understanding of the fine-scale forces exerted upon
populations within a therapeutic regime. Current technical
limitations to whole-genome-scale investigation of selective
pressures on microbes are discussed, along with potential
solutions. For example, culture-based approaches for exploring
sub-lineage dynamics within multi-strain scenarios are suc-
cessfully uncovering phylogenetic details of lineages within
microbiomes. Lieberman [14] notes that the extrapolation of
insights from haploid eukaryotes to asexual bacteria can
lead to underestimating within-host recombination rates in
prokaryotes and the resulting adaptive evolution. Lieberman
[14] maps out the potential landscape for adaptive change:
given a conservative rate of 10−10 mutations per cell division,
a population of 1010 cells within a person’s gut could
explore every single point mutation across the genome each
generation. She describes challengeswith detection, limitations
of current statistical methods, and provides a strong case
for using parallel evolution as an indicator of recent within-
host adaptation. This approach is illustrated with examples
from the bacterial literature. She also compares the use of
different operational units (nucleotides, codons, genes, oper-
ons or pathways) at the genomic scale and at geographical
scales (e.g. between people versus intra-person), and argues
that understanding the factors which determine adaptive
potential will focus efforts to link in-person mutations to
health and disease.

Models of metabolism within a genomic scale can be used
to characterize both pan-genome and core genomic capabilities
in model organisms. However, population level dynamics
require phylogeny-based approaches. Here, Monk [15] con-
structs genome-scale metabolic models for 222 strains of
Escherichia spanning the breadth of the core-genome diversity
representedwithin Enterobase. Differenceswithin and between
species and strains are described and used to demarcate core
and pan metabolic capabilities within Escherichia along with
the calculation of growth phenotypes on over 400 nutrients.
This analysis paves a path for determining common metabolic
capabilities at the genus level via in silico inference. Within the
context of pan-Escherichia metabolism, Monk also describes
multiple niche adaptations in metabolic capabilities. Finally,
he stresses the importance of the development of a highly
curated community resource for elucidating genotype to
phenotype relationships, and which could provide contextual
data for the rapid construction of strain-specific models for
newly sequenced isolates.
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6. Other topics covered
The ‘Genomic population structures of microbial pathogens’
meeting (https://royalsociety.org/science-events-and-lectures/
2021/09/microbial-pathogens/) included several other note-
worthy presentations that are not covered by articles in this
collection. Zamin Iqbal spoke about a key conceptual problem
in bacterial genomic analysis: how to capture and interpret infor-
mation onpopulation structure and function that is embedded in
the accessory genome. One solution, proposed by Iqbal and col-
leagues and implemented in their tool Pandora [16], is to build a
pangenome graph to represent a population of genomes, and
use this as a reference against which to call single nucleotide
and gene content variation. DavidAanensen spoke about Patho-
genwatch, an online platform for rapid local and international
genomic epidemiology, which is supporting genomic surveil-
lance and outbreak investigations for a range of pathogens
including Neisseria gonorrhoeae, Klebsiella pneumoniae and Salmo-
nella enterica serovar Typhi (typhoid fever). Kat Holt
continued this theme by discussing 20 years of typhoid geno-
mics, culminating in recent efforts by the Global Typhoid
Genomics Consortium to aggregate Typhi genomics data [17],
make it accessible to non-genomics audiences via the online
dashboard TyphiNET; and facilitate widespread use of genomic
data to inform public health policy including building the case
for local rollout of new typhoid vaccines. Pybus summarized
insights into the SARS-CoV-2 pandemic and other outbreaks
from large scale phylogenetic analysis [18]; and EmmaHodcroft
presented the CoVariants dashboard, which allows interactive
exploration of SARS-COV-2 variants of concern. Finally,
Christophe Fraser spoke about harnessing within- and
between-host pathogen population genetics, using the approach
implemented in PHYLOSCANNER [19], to gain insights into the
epidemiology, evolution and pathogenicity of diverse pathogens
ranging from methicillin resistant Staphylococcus aureus (MRSA)
[20] to SARS-COV-2 and HIV [21].
7. Final words
In 2006, a Royal Society meeting on ‘Species and speciation in
microorganisms’ was coupled with a special issue of Phil.
Trans. R. Soc. B. That meeting was organized by Matthew
Fisher, Brian Spratt and James Staley [22], and had an enor-
mous impact on the thinking of microbial population
geneticists. Memories of that meeting triggered the editors
of this introduction in conceiving of a similar meeting and
special issue dealing with solutions and insights on the pro-
blems and potential of Big Data in genomic sequences of
pathogenic microbes. That was 4–5 years ago. It is therefore
with an enormous sigh of relief that we perceive the publi-
cation of this special issue. It would have been wonderful
to have had a live meeting at which we could discuss these
topics in detail with other colleagues that we have not seen
in years. It would have been a superb opportunity to intro-
duce insights on this topic to a broad audience. However,
all three editors are proud to have found the courage to
cancel the live meeting two weeks prior to its scheduled
date at the end of March 2020, and very grateful to the
Royal Society for the grace with which they agreed to this
cancellation. We heartily thank the staff at the Royal Society
who so successfully managed the virtual meeting in 2021,
and Helen Eaton, the Editor at Phil. Trans. R. Soc. B who
demonstrated such incredible patience with our delays in
providing accepted manuscripts for this special issue. How-
ever, our greatest thanks go to the authors of the individual
jewels in this special issue for providing such lucid expla-
nations of difficult topics.
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