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Genomic analysis of hypervirulent 
Klebsiella pneumoniae reveals 
potential genetic markers 
for differentiation from classical 
strains
Anton Spadar1, João Perdigão2, Susana Campino1 & Taane G. Clark1,3*

The majority of Klebsiella pneumoniae (Kp) infections are nosocomial, but a growing number of 
community-acquired infections are caused by hypervirulent strains (hvKp) characterised by liver 
invasion and rapid metastasis. Unlike nosocomial Kp infections, hvKp are generally susceptible to 
antibiotics. Due to the rapid progression of hvKp infections, timely and accurate diagnosis is required 
for effective treatment. To identify potential drivers of the hypervirulent phenotype, we performed 
a genome-wide association study (GWAS) analysis on single nucleotide variants and accessory 
genome loci across 79 publicly available Kp isolates collected from patients’ liver and a diverse 
global Kp dataset (n = 646). The GWAS analysis revealed 29 putative genes (P <  10–10) associated 
with higher risk of liver phenotype, including hypervirulence linked salmochelin iro (odds ratio (OR): 
29.8) and aerobactin iuc (OR: 14.1) loci. A minority of liver isolates (n = 15, 19%) had neither of these 
siderophores nor any other shared biomarker, suggesting possible unknown drivers of hypervirulence 
and an intrinsic ability of Kp to invade the liver. Despite identifying potential novel loci linked to a liver 
invasive Kp phenotype, our work highlights the need for large-scale studies involving more sequence 
types to identify further hypervirulence biomarkers to assist clinical decision making.

Klebsiella pneumoniae (Kp) is a Gram-negative pathogen increasingly capable of causing severe organ and life-
threatening disease. Kp is classified across two main virulence phenotypes, classical (cKp) and hypervirulent 
(hvKp). CKp is the most common and normally a nosocomial infection, generally occurring among patients 
with additional co-morbidities1. Less common is hvKp, which is characterized by invasive infection within the 
community setting in otherwise healthy individuals, and with rapid metastatic spread. The typical hvKp presenta-
tion involves pyogenic liver abscesses, but also endophthalmitis, meningitis or necrotising fasciitis, all of which 
are unusual clinical manifestations for cKp. Epidemiologically, hvKp is more common in East and Southeast 
Asia but is an emerging threat in Europe, particularly when associated with carbapenemase producing  clones1–4.

Biomarkers to differentiate cKp from hvKp are needed to inform diagnostic tests for application by clinical 
laboratories for optimal patient care and for use in epidemiological surveillance and research studies. However, 
a complete set of robust biomarkers is not available. Several genetic loci have been identified as virulence factors 
in Kp, primarily using murine models of infection. These include gene clusters associated with the synthesis of 
accessory siderophore systems yersiniabactin (ybt, irp1, irp2, and fyuA), aerobactin (iucABCD, iutA), colibactin 
(clbA-R), salmochelin (iroN, iroBCD), or microcin; mucoidy phenotype regulators (rmpA and rmpA2), which 
can up-regulate capsule production; an allantoinase gene cluster; the ferric uptake operon kfuABC; and the two-
component regulator kvgAS, and the K1, K2 and K5 capsular  serotypes1,5–8. The combination of salmochelin, 
aerobactin, and rmpA is frequently, but not always, linked to the presence of genes from the known Kp virulence 
plasmids such as pLVPK and pK2044. Some of these may be correlated with  hypervirulence5, but results are 
inconsistent. In a study of Kp samples from liver abscess samples in East China, only 29% of samples were of 
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hypermucoviscous  phenotype9. Similarly, while the accessory salmochelin locus is frequently found in hvKp 
 samples6, experimental evidence indicates that aerobactin is the main driver of  hypervirulence10.

Here we analysed the core genome and shared accessory genes of all publicly available Kp samples sourced 
from the liver (n = 79) and compared them to a large globally diverse public Kp dataset (n = 646) using robust 
statistical association and cluster analysis methods. Unlike previous studies which leveraged in vivo models in 
either mice (Mus musculus) or moths (Galleria mellonella) to determine  hypervirulence7,8, we looked at isolates 
collected from patients’ liver, which is a typical clinical presentation site of hvKp. We have found that both acces-
sory iro and iuc loci are strongly associated with liver isolates, and the hypermucoidy associated gene rmpA was 
not linked to hypervirulence. Whilst the analysis revealed new putative loci for the risk of liver phenotype, a 
minority (19%) of liver isolates did not have any of these markers. Although, the liver phenotype may be subject 
to misclassification, Kp may have intrinsic ability to colonise the organ, and its genetic underpinning will require 
a large-scale study to uncover the full repertoire of hypervirulence genes.

Results
Dataset characteristics. We analysed 79 hvKp isolates defined as samples isolated from patients’ liver. 
These were collected in China (n = 39), Singapore (n = 26), USA (n = 8), Brazil (n = 2) and one sample each from 
Ecuador, Guadeloupe, South Korea, and Viet Nam (Table 1). Of the 36 sequence types (STs) present in the 79 
hvKp samples, ST23 was the most frequent (n = 27) followed by ST86 (n = 9) and ST258 (n = 4). All other STs had 
two or fewer samples. The 79 hvKp were compared to a large dataset of Kp isolates. This large dataset consisted 
of two groups: (i) 520 Kp assemblies with similar locations and collection dates to liver isolates, representing the 
broader genetic landscape of the bacterium; (ii) 126 Kp isolates from three hospitals in  Thailand11, used to assess 
if our analytical approach was robust, especially to overfitting during data dimensional reduction. Overall, the 
resulting comparison dataset (n = 646) had samples from 302 different STs among which ST23 (n = 17), ST15 
(n = 29), ST147 (n = 29), ST11 (n = 25) were the most common.

Association analysis of liver invasive phenotype. We identified single nucleotide variants (SNVs) 
in the core genome (5.4 Mbp; 318,458 SNVs, with minor allele frequency (MAF) of 3 Kp isolates). We used a 
genome-wide association study (GWAS) strategy to identify any SNVs associated with the liver invasive pheno-
type, adjusting for population structure (Fig. 1A). None of the SNVs associations met our stringent statistical 
significance level (P <  10–10). A similar gene-wide analysis was performed on the presence or absence of acces-
sory loci (n = 15,852), determined from robust assembly of contigs. Whilst the frequency of accessory genes 
in representative and liver isolates is the broadly correlated (rho = 0.79), the overrepresentation of ST23 (34%) 
among liver isolates leads to non-linearity (Fig.  2A), which improves when ST23 liver isolates are removed 
(Fig. 2B) (rho = 0.89). The clustering of isolates based on accessory genome demonstrates that the related genes 
are linked to ST and not geography, with ST23 being a tight cluster (Fig. S1). We performed the GWAS analy-
sis accounting for this clustering, and found 29 putative genes associated with higher risk of liver phenotype, 
including known hypervirulence loci iro (odds ratio (OR): 29.8) and iuc (OR: 14.1), three further metal trans-
port related genes, c-type lysozyme inhibitor (OR: 14.5) and 8 unannotated loci that could not be annotated 
(P <  10–10; Fig. 1B; Table 2). These accessory loci are of lower frequency in representative samples compared to 
liver isolates, irrespective of inclusion of ST23 (Fig. 2). Of the 79 liver isolates, 15 (19.0%) had none of these 29 
putative accessory genes associated with liver invasive phenotype.

Association between identified biomarkers and the rest of the accessory genome. Having 
identified 29 accessory genes, including iro and iuc, with strong potential associations with the hvKp phenotype, 
we were interested in how they relate to each other i.e., their co-existence. As summarised in a recent  review12, 
plasmids such as pLVPK, pK2044 and pSGH10 are known carriers of hypervirulence associated genes. Because 
identified biomarkers do not occur at the same frequency, we hypothesised that they may be on different parts of 
the hypervirulence plasmids. To test this hypothesis, we performed a cluster analysis of all accessory genes using 
a umap (principal component-like) approach (see “Materials and methods”) (Fig. 3). All 29 association loci fell 
within a cluster of 121 (92 additional) genes (Fig. 3A; Data S3). By focusing on this cluster, iro and iuc loci are 
parts of different gene groups (Fig. 3B) consistent with these loci occurring independently of each other, and 
potentially linked to different hypervirulence plasmids (Fig. S2).

Association between liver invasive phenotype and plasmid replicons. We evaluated the prev-
alence of the plasmids identified. Using PlasmidFinder nomenclature, pLVPK, pK2044 and pSGH10 carry 
IncHI1B(pNDM-MAR) replicons. In pLVPK and pK2044 the replicon sequences are identical. However, based 
on visual examination of sequences, the first 97nt of pSGH10 are different, while the remaining 472nt are identical 
to pLVPK and pK2044. In our dataset, 100 isolates had a pLVPK/pK2044 type sequence (20/100; 20.0% liver iso-
lates), while 39 isolates had a pSGH10 type replicon sequence (24/39; 61.5% liver isolates) (Table 3). We observed 
that pSHG10 type replicons occurred almost exclusively in ST23 isolates (37/39), while a pLVPK/pK2044 type 
was much more widely distributed, with ST86 (11/100) being most frequent. There was a further variant of 
IncHI1B(pNDM-MAR) present in single liver isolates from South Korea, which differed from the above variants 
in the first 120nts. Overall, the most frequent replicon family among liver isolates was IncHI1B(pNDM-MAR) 
(45/79) followed by IncFIB(K) (16/79).

Liver isolates without identified biomarkers. Fifteen (19.0%) of the 79 liver Kp isolates did not have 
the 29 accessory genes associated with the liver phenotype, and included four ST258, two ST1165 and 9 other 
sequence types. Assuming that the liver invasive phenotype was not misclassified for these 15 samples, we inves-



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13671  | https://doi.org/10.1038/s41598-022-17995-2

www.nature.com/scientificreports/

tigated whether there were any other genes in the accessory genome that differentiated this group from the rep-
resentative set. By examining differences in allele frequencies between the 15 isolates versus the representative 
set, we did not find any plausible biomarkers (Figure S3A). We also repeated the core genome GWAS for these 
15 samples, but once again there was no SNV which reached the significance cut-off (all P >  10–10). It is possible 
that a combination of accessory genes can predict the phenotype, and we employed nine different machine 
learning approaches to assess if such a complex gene relationship exists. The imbalance between the 15 hvKp 
and 646 representative isolates can lead to poor classifier performance in machine learning models, so we ran 
100 different datasets with the 15 liver and 15 randomly chosen representative isolates. The resulting predictive 
accuracy across all approaches was no better than 50% of the random guess (Figure S3B), suggestive that there 
are no strong predictors of the 19% of liver isolates in our dataset.

Table 1.  Characteristics of study samples. Sequence types (ST); O-types, carbapenemases and siderophore 
genotypes were determined by Kleborate software; *not reported by Kleborate software.

Characteristic

Liver 
samples 
(n = 79)

Non-liver 
samples 
(n = 646)

N % N %

Sequence types

ST23 27 34 17 3

ST86 8 10 4 1

ST258 4 5 13 2

ST15 – – 29 4

ST147 – – 29 4

ST11 1 – 25 4

Other 39 53 529 81

Region

China 39 49 51 8

Singapore 26 33 1 0

USA 8 10 84 13

South America 4 5 10 2

South Korea 1 1 3 0

Viet Nam 1 1 – –

Other 0 – 497 77

O types

O1v1 22 28 147 23

O1v2 39 49 111 17

O2 8 10 152 24

O3 5 6 111 17

Other 5 6 125 19

Carbapenemases

None 74 94 476 74

KPC-2 4 5 50 8

KPC-3 1 1 25 4

NDM-1 – – 26 4

Other – – 69 11

Aerobactin

iuc1 45 57 56 9

iuc2 5 6 1 0

iuc3 3 4 11 2

Other – – 8 1

None 26 33 570 88

Salmochelin

iro 1 42 53 43 7

iro 1; iro 3 2 2 1 0

iro 2 5 6 2 0

iro 3 10 13 5 1

Other* 2 2 3 0

None 18 22 592 92
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Discussion
Hypervirulent Kp (hvKp) infections are an emerging global threat with biomarkers needed to differentiate 
underlying isolates from classical Kp, thereby informing clinical decision making. Previous genetic investiga-
tions for hvKp biomarkers have relied on animal  models7,8, where in vivo work has identified and focused on 
both salmochelin iro and aerobactin iuc loci, sometimes together with genes also present on virulence plasmids. 
Experimental work has demonstrated that aerobactin is important for Kp survival and growth in human ascites 
and  serum10. Additionally, in chicken E. coli infection models, both aerobactin and salmochelin have been shown 
to enhance the colonisation potential of  Kp13,14. In contrast, our in-silico analysis explored 79 Kp samples isolated 
from the liver, where a liver invasion phenotype is a strong indicator of hvKp. By comparing these isolates with 
a broader large Kp dataset (n = 646) using a GWAS approach, we found biomarkers on the accessory genome 
associated with liver hvKp. These markers included iro [B] and iuc [ABD] loci, as well as fepA (a siderophore 
enterobactin receptor), IutA (a ferric aerobactin receptor), IucA/IucC (siderophore biosynthesis proteins), and 
several hypothetical proteins, which serve as candidates for future experiments. RmpA, which confers a mucoid 
phenotype was not found to be associated at our stringent statistical cut-off (P <  10–10), but these findings are con-
sistent with recent work in carbapenem-resistant  Kp15. Further, rmpC was identified in our GWAS, and ΔrmpC 
has been shown to maintain the downregulated expression of capsule genes but preserve  hypermucoviscosity16 
Another interesting gene is putative c-type lysozyme inhibitor that appears linked to the iuc [ABCD] locus. The 
presence of this gene is potentially associated with the typical clinical manifestation of hvKp in liver and eyes, 
both organs with high levels of  lysozymes17.

Whilst most of the liver phenotype could be explained through accessory genes, a minority set of isolates did 
not have any apparent biomarkers. This observation may be explained by phenotypic misclassification where meta 
data is incorrect, the liver invasive phenotype being intrinsic to Kp, or due to rarely observed genes. Whilst Kp 
isolate sequence data are likely to be sourced from patients’ liver samples, the use of an in vivo hypervirulence 
phenotype can assist phenotypic-genotypic analysis. It is also possible that isolates with known iuc and iro mark-
ers are more likely to be reported compared to samples with undetermined virulence factors. To assess for the 

Figure 1.  Association analysis of liver versus non-liver against individual genome-wide SNVs (n = 318,458) 
in the core genome (A) and accessory genes (n = 15,852) (B), accounting for population structure. Each point 
represents a result from single SNV or gene, and P <  10–10 is the significance threshold.

Figure 2.  Frequency of accessory genome genes in all liver (A) (n = 79) and non-ST23 (B) (n = 52) liver isolates 
versus representative dataset (n = 646). The iro and iuc outliers are clearly visible. Each point is a gene, and the 
legend is consistent with Fig. 1.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13671  | https://doi.org/10.1038/s41598-022-17995-2

www.nature.com/scientificreports/

presence of sample selection bias, we included a large geographically concentrated dataset from Thai  hospitals11, 
and consequently found it was not an outlying population in combined analyses with the diverse large global 
collection. Another limitation is the small number of available hvKp sequences and overrepresentation of the 
ST23 sequence types. Although, our work is one of the largest hvKp genomic investigations to date, there is a 
need for larger studies to close knowledge gaps in hvKp epidemiology, pathogenesis, host susceptibility, optimal 
treatment, and appropriate infection control measures.

Overall, with the increasing prevalence of hvKp strains globally, robust biomarkers of related infection are 
needed. Our GWAS approach has identified known and novel accessory loci associated with the liver invasive 
phenotype, some requiring experimental follow-up. It is possible that Kp has an intrinsic ability to invade the liver, 
requiring larger scale studies to understand the full repertoire of genes underlying hvKp, and thereby improve 
clinical decision making.

Materials and methods
Dataset. We identified potential hvKp samples with sequencing data by searching the NCBI Isolates 
 Browser18 (November 2021) using key words “liver” and “hepa”. Metadata of positive hits were manually exam-
ined to confirm a likely liver invasive phenotype. We did not identify any samples isolated from endophthalmitis, 
which is an infrequent manifestation of hvKp. The search resulted in 79 samples, of which 31 had sequencing 

Table 2.  Relative abundance of accessory genes associated with liver invasive phenotypes identified in Fig. 1B. 
The DNA sequences for each gene are in Data S2.

GeneID Description

No. of times gene occurs in isolates Association

Liver non-ST23 
(n = 52) Liver ST23 (n = 27) Non-liver (n = 646) Odds ratio − log10 P-value

B385452 iroC 34 24 53 29.84 19.33

B385338 iroD 34 24 53 29.84 19.33

B603951 Siderophore entero-
bactin receptor FepA 35 24 62 23.64 18.19

B362201 iroB 34 26 78 24.68 16.32

B58052 EamA family trans-
porter (peg-344) 34 27 86 22.76 15.58

B538146 IS21 family trans-
posase 26 27 57 19.67 15.44

B381713 iucA 26 27 69 14.96 13.48

B385021 rmpC 29 20 52 13.04 13.37

B381836 iucB 26 27 70 14.40 13.28

B597737 Class I SAM-depend-
ent methyltransferase 37 27 122 15.53 13.13

B382206 Ferric aerobactin 
receptor IutA 26 27 71 14.12 13.11

B382081 iucD 26 27 71 14.12 13.11

B381588 MFS transporter 26 27 71 14.12 13.11

B382762 DM13 domain-con-
taining protein 23 27 57 15.15 13.02

B382654 Hypothetical protein 23 27 57 15.15 13.02

B382870 Hypothetical protein 23 27 57 15.15 13.02

B381162 c-Type lysozyme 
inhibitor 23 27 58 14.54 12.80

B382331 Hypothetical protein 23 27 58 14.54 12.80

B381271 Peptide deformylase 23 27 58 14.54 12.80

B385565 Hypothetical protein 27 24 58 13.35 12.65

B385675 Hypothetical protein 27 24 58 13.35 12.65

B382547 Hypothetical protein 22 27 57 13.83 12.18

B382440 TetR/AcrR family tran-
scriptional regulator 22 27 57 12.96 12.04

B381960
IucA/IucC family 
siderophore biosynthe-
sis protein

25 26 69 11.83 11.79

B402327 Tn3 family transposase 21 27 55 12.58 11.67

B380773 Alpha/beta hydrolase 23 27 72 9.90 10.61

B239784 Hypothetical protein 30 27 107 8.24 10.38

B385127 Putative protein 23 23 49 10.78 10.35

B402432 Hypothetical protein 15 26 31 13.66 10.26
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reads and 48 were sequence assemblies. We assembled the sequencing reads for all samples using Unicycler 
v0.4.819 with a quality check performed using Busco software (v4)20 to ensure > 95% completeness and < 5% 
fragmentation of genes in the gammaproteobacteria_odb10 gene set. For consistency of downstream analysis, 
all samples were re-annotated with prokka software (v1.14.6)21 using the Klebsiella genus  database22 and default 
settings.

The 79 hvKp samples were complemented by 520 randomly selected assemblies also from the NCBI Isolates 
Browser. However, before the random selection we identified groups of isolates matching by location, isolation 
source and create date. We removed all but one representative isolate from each group, to minimize bias from 
large, localized studies. These randomly chosen samples may have characteristics of hvKp, but they provide 
an important comparison for establishing if a set of genes is more common in hvKp compared to those in the 
broader population. We also enriched our dataset with a further 126  samples11 isolated from three hospitals in 
Thailand, to evaluate the impact of samples chosen from a small geographic area with a diversity of STs and 
assess the robustness of analysis. If our methods are prone to generating bias, we would expect this dataset to 
stand out, but it did not (see Fig. S1). The comparison dataset of 646 isolates consisted of 302 different STs with 
ST15 (n = 29), ST147 (n = 29), ST11 (n = 25) being the most common. Kleborate software (v2.1.0)23 was used to 
profile the isolates’ virulence and ST (Data S1).

Analysis. The genes from all assemblies were clustered in a reference independent manner. The Kp core 
genome was identified as those genes which are not accessory. To identify a core genome, BLASTn (v2.9.0)24 
with word-size 20 was used to find and remove genes that shared > 90% identity, were within 20% of median 
length of all such genes, and were present in > 90% of samples. A sensitivity analysis performed with alternative 
parameters produced similar results. This approach identified a conserved core gene set which was removed. 
For the remaining genes we performed an all versus all BLASTn search with word-size 11. We assigned genes 
to groups based on > 60% identity between any two genes intra group and < 20% length difference from median 
gene length intra group. The input for subsequent analysis was a 15,852 × 725 matrix with rows as gene groups 
and columns as samples, where individual cells are a binary value with one indicating that sample contains a 
gene from the group, zero otherwise. Genes were aligned using MAFFT software (v7.467)25 and the resulting 
alignment files transformed into a 318,458 × 725 python matrix, where rows are individual SNVs and columns 
are isolates.

Logistic regression models were used to find associations between the liver phenotype and SNVs or pres-
ence of accessory genes. These models included principal components for the population structure, and were 
implemented using statsmodels software (v0.13.0)26. The projection of the dataset into two dimensions was 
performed using the umap library (v0.5.1)27 in python using “hamming” distance. Clusters were determined 
using  DBSCAN28 as implemented in sklearn (v0.24.2)29. Machine learning analysis was performed using sklearn 
functions to identify predictors of the liver phenotype. Plasmid replicons were identified using PlasmidFinder 
software (v2.1.1) with default  settings30. The scripts for accessory genome construction are available at https:// 

Figure 3.  Cluster analysis of accessory genes. (A) Projection of genes presence/absence matrix into a umap 
2-dmiensional view; (B) Structure of the iro and iuc containing gene cluster in (A). The liver phenotype genes 
(Table 2) are visible both in (A) and in greater detail in (B) for which the dimensional reduction algorithm was 
re-ran with subset of genes in (A). The axes are dimensionless. Each point is an accessory gene.

Table 3.  Prevalence of IncHI1B(pNDM-MAR) plasmid replicons.

Replicons Total STs (no. isolates) Countries (no. isolates) From liver With iuc With iro

IncHI1B(pNDM-MAR) [pLVPK/pK2044 
type] 100 ST86 (11), ST23 (6), ST15 (6), ST14 (5) China (26), Thailand (24), Singapore (8), 

USA (5), United Kingdom (4) 20 (20.0%) 48 (48.0%) 39 (39.0%)

IncHI1B(pNDM-MAR) [pSHG10 type] 39 ST23 (37), ST1941 (1), ST152 (1) China (15), Singapore (12), Thailand (8) 24 (61.5%) 39 (100%) 36 (92.3%)

https://github.com/AntonS-bio/accessoryGenomeBuilder
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github. com/ AntonS- bio/ acces soryG enome Build er. The analysis scripts are available at https:// github. com/ 
AntonS- bio/ KpHyp ervir ulence.

Ethics approval and consent. No ethics approvals were required as all data is publicly available.

Data availability
All data used in this work is publicly available in NCBI database (https:// www. ncbi. nlm. nih. gov/). A list of isolates 
is in Data S1. Analysis scripts are available at https:// github. com/ AntonS- bio.
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