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a b s t r a c t 

Eye irritation and corrosion are fundamental considerations in developing chemicals to be used in or near the eye, from cleaning products to ophthalmic solutions. 
Unfortunately, animal testing is currently the standard method to identify compounds that cause eye irritation or corrosion. Yet, there is growing pressure on the part 
of regulatory agencies both in the USA and abroad to develop New Approach Methodologies (NAMs) that help reduce the need for animal testing and address unmet 
need to modernize safety evaluation of chemical hazards. In furthering the development and applications of computational NAMs in chemical safety assessment, 
in this study we have collected the largest expertly curated dataset of compounds tested for eye irritation and corrosion, and employed this data to build and 
validate binary and multi-classification Quantitative Structure-Activity Relationships (QSAR) models that can reliably assess eye irritation/corrosion potential of 
novel untested compounds. QSAR models were generated with Random Forest (RF) and Multi-Descriptor Read Across (MuDRA) machine learning (ML) methods, 
and validated using a 5-fold external cross-validation protocol. These models demonstrated high balanced accuracy (CCR of 0.68–0.88), sensitivity (SE of 0.61–0.84), 
positive predictive value (PPV of 0.65–0.90), specificity (SP of 0.56–0.91), and negative predictive value (NPV of 0.68–0.85). Overall, MuDRA models outperformed 
RF models and were applied to predict compounds’ irritation/corrosion potential from the Inactive Ingredient Database, which contains components present in 
FDA-approved drug products, and from the Cosmetic Ingredient Database, the European Commission source of information on cosmetic substances. All models built 
and validated in this study are publicly available at the STopTox web portal ( https://stoptox.mml.unc.edu/ ). These models can be employed as reliable tools for 
identifying potential eye irritant/corrosive compounds. 
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Chemicals employed in cosmetics, drugs, pesticides, household prod-
cts, among others, need to be classified appropriately according to their
otential ocular toxicity to ensure safety [1] . Eye irritation or corrosion
re characterized by cell membrane lysis, coagulation, saponification,
nd chemical reactivity [2] . All of these characteristics are mediated by
ontacts between a chemical and the eye surface (cornea and conjunc-
iva) [3] . 

The Draize test, published more than 70 years ago [4] , relies on in
ivo exposure to rabbits’ eyes to classify chemicals according to their ir-
itation/corrosion potential based on the damage caused within a well-
efined timeframe [5] . However, this test relies upon qualitative scor-
ng metrics of the severity and reversibility of highly subjective lesions,
emonstrates poor reproducibility, and has questionable relevance to
uman exposure scenarios and human ocular biology [6] . Despite the
cientific concern regarding the extrapolation of the observed results in
∗ Corresponding author. 
E-mail address: carolina@ufg.br (C.H. Andrade). 

ttps://doi.org/10.1016/j.ailsci.2021.100028 
eceived 10 November 2021; Received in revised form 30 November 2021; Accepted
vailable online 5 December 2021 
667-3185/© 2021 Published by Elsevier B.V. CCBYLICENSE This is an open access 
 http://creativecommons.org/licenses/by/3.0/igo/ ) 
abbits to human eyes [7] , the test is still used and recommended by the
rganization for Economic Cooperation and Development (OECD). 

The United Nations Globally Harmonized System (UN GHS) [8] pro-
oses four categories to classify the chemicals: ( i ) Category 1 are com-
ounds that cause irreversible eye effects within 21 days; ( ii ) Category
A are compounds whose effects are reversible within 21 days; ( iii ) Cat-
gory 2B are compounds whose effects are reversible within seven days;
nd ( iv ) No-Cat (NC) are compounds unable to cause eye corrosion or
rritation. 

Since the animal test ban in Europe for cosmetics ingredients in 2013,
he development of alternative methods to substitute and reduce the
umber of animals in toxicological tests has become imperative [9] . The
evelopment of effective and efficient NAMs to animal testing [10] has
een fueled in the last two decades by both public and political pressure
11] to employ the “Three Rs principles ” to reduce, refine, and replace
nimal tests [12] , and recent guidelines imposed by regulatory agencies
reate new demand for developing rapid, efficient alternative methods
 30 November 2021 
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o animal testing [10] . Within this context, the 2018 ICCVAM strategic
oadmap [ 13 ]called for the development of fit-for-purpose NAMs and
he US EPA publicized its commitment to “eliminate all mammal study
equests and funding by 2035 ” [14] . 

NAMs have been developed and made available for in vitro identifi-
ation of ocular corrosives/severe irritants using alternative biological
aterial including rabbit corneal cells (OECD Test Guideline 491) [15] ,

solated bovine corneas (OECD Test Guideline 437) [16] , and a mono-
ayer of Madin-Darby Canine Kidney (MDCK) cells (OECD Test Guideline
60) [ 17 , 18 ]. Other three-dimensional human tissue models such as the
econstructed Human Cornea-like Epithelium (RhCE) test (OECD Test
uideline 492) and the Vitrigel-Eye Irritancy test (OECD Test Guide-

ine 494) are approved for use in a bottom-up approach identifying sub-
tances not classified for ocular irritation. These tests provide varying
overage of the biology relevant to eye irritation and corrosion when
ompared to human ocular anatomy and physiology [19] . 

Computational models provide a fast and low-cost solution to ob-
ain reliable predictions for the endpoint of concern when generated on
igh-quality curated data and properly validated [10] . A major compu-
ational approach, named Quantitative Structure-Activity Relationship
QSAR) modeling, employs various statistical and artificial intelligence
AI) approaches, such as machine learning (ML) and deep learning (DL)
o generate models that can accurately predict the outcome of testing
ew compounds in a specific assay, based on their molecular features.
n recent years, the growth in publicly available data enabled the devel-
pment of highly robust and predictive models [ 20 , 21 ]. However, mod-
ling toxicity is a complex task as the underlying mechanisms are not
lways clear [ 3 , 21 ]. For this reason, QSAR models are highly dependent
n the quality and volume of the data [12] in the training set, proper
hemical and biological curation of primary data is critical [ 22 , 23 ], and
ailure to follow these practices question the trustworthiness of models
6] . 

Recently, there have been many attempts to model eye irritation end-
oints with varying degrees of success (see Table 1 ). Though many of the
odels showed good overall accuracy, most models were not compliant
ith the OECD’s guidelines for QSAR model development and validation

24] , with models lacking the recommended use of an external set or Y-
andomization [25–41] , or not reporting the model applicability domain
28–41] . Many studies lack a rigorous curation and standardization of
he chemicals used in the modeling, such as the study conducted by
erma et al. [25] , resulting ultimately in unreliable predictions [42] .
dditional problems include using unbalanced datasets, causing mod-
ls to have an intrinsic bias toward the largest class [ 20 , 22 ]; and lack
f model interpretation [20] . 1 These limitations make it impossible to
airly compare those tools with other peer reviewed and public QSAR
odels. 

Our team has extensively worked on the development of QSAR mod-
ls for toxicity endpoints and developed web applications to dissemi-
ate the use of these models, such as Pred-hERG [43] and Pred-Skin
44] . Considering the lack of reliable models for eye irritation and cor-
osion, herein, we have collected, curated, and integrated the largest
ublicly available eye irritation and corrosion datasets, used it to build
redictive and rigorously validated ML and instance-learner models, in-
egrated these models into a software package called STopTox (Sys-
emic and Topical chemical Toxicity), and made it publicly available
 https://stoptox.mml.unc.edu/ ). We offer these models as reliable com-
1 It is important to notice that there are some commercially available 
odels such as ADC/Percepta ( https://www.acdlabs.com/products/percepta/ 

ndex.php ) and Case Ultra ( http://www.multicase.com/case-ultra ) and 
reely available software tools such as Toxtree ( http://toxtree.sourceforge. 
et/ ) and QSAR toolbox that do not fully disclose their parameters, as well as 
atasets and statistics ( https://www.oecd.org/chemicalsafety/risk-assessment/ 
ecd-qsar-toolbox.htm#Guidance_Documents_and_Training_Materials_for_Using 
the_Toolbox ). 
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utational tools developed under the NAMs paradigm for evaluating
hemical hazard potential for eye irritation/corrosion. 

aterials and methods 

ataset overview 

The publicly available data from the European Chemical Agency
ECHA) ( https://echa.europa.eu/ ) used in this work was graciously
rovided by Thomas Luetchtefeld [51] . Additional eye irritation-
elated data were also extracted from multiple literature sources
 25 , 29 , 35 , 40 , 45 , 52–55 ], curated (see next section), and integrated. The
CHA dataset was initially composed of 18,428 records for 9,801 chemi-
als and we compiled 2,769 additional records from the literature. In the
CHA dataset, 5,238 records with imputed eye irritation/corrosion data
rom QSAR models, weight-of-evidence or read-across were excluded,
eaving 7,332 records. Chemicals with inconsistent hazard classifica-
ion data ( n = 236) were removed. Inorganics ( n = 330) and mixtures
 n = 860), totalizing 1,190 entries, were also removed from the dataset.
he data collected from the literature had high overlap with the ECHA
ata presenting 2,438 duplicates. No discordant duplicates in terms of
azard characterization were found between the ECHA data and the lit-
rature. These duplicates were carefully analyzed and only one entry
er compound was kept. Furthermore, only studies following the OECD
est Guideline 405 [56] ( in vivo data) were kept, with 3,547 records
emaining after the data curation process ( Fig. 1 ). 

The final (unbalanced) dataset was composed of 3,547 compounds,
f which 2,401 were classified as non-irritant/non-corrosive, 937 were
lassified as irritant (categories 2A and 2B) of which 209 were classified
s corrosive (category 1). The GHS classification for irritant/corrosive
ompounds was only available for 1,248 compounds of the dataset,
here 209 compounds were classified as category 1 members, 166 were

lassified as category 2A, and 84 as category 2B, whereas 789 were clas-
ified as NC. These compounds classified under GHS system were used
o generate multiclass models. 

Binary QSAR models using the unbalanced data typically lead to bi-
sed models. To overcome this, the negative class in the unbalanced
ataset was under-sampled to balance the data set. We used the smaller
roup of irritant compounds as probes to search for the most struc-
urally similar non-irritants selecting half of the irritant group (469 com-
ounds). The remaining 468 compounds were randomly chosen from
he rest of the initial non-irritant class to maximize the chemical space
overage. This similarity-based selection procedure was carried out in
NIME using Tanimoto coefficient in two stages: (i) generate a similarity
atrix of chemical space between all the pairs of compounds; and then

ii) choose 469 non-irritants with the largest Tanimoto similarity to the
earest irritant and 468 via random selection. Such procedures allowed
s to create the most challenging training set with structurally similar
rritants and non-irritants to achieve the most rigorous model capable of
eparating these two classes from each other and including a fraction of
ore diverse non-irritants to provide broader chemical space coverage.
he final dataset consisted of 1,874 compounds (937 irritants and 937
on-irritants). The same approach was performed to balance the data
or the generation of QSAR models to predict eye corrosion, i.e. , the NC
lass of compounds was under-sampled using both structural similarity
nd random sampling, leading to a balanced data of 418 compounds
209 corrosive and 209 non-corrosive). 

ata curation 

The compiled data was carefully curated and inspected according to
rotocols proposed by Fourches et al. [ 42 , 57 ]. Briefly, counter ions were
tripped, mixtures and inorganics were removed, and specific chemo-
ypes such as nitro groups and aromatic rings were standardized. Dupli-
ates were identified, carefully analyzed, and only one entry was kept if
iological responses were similar. The curation steps were implemented

https://stoptox.mml.unc.edu/
https://www.acdlabs.com/products/percepta/index.php
http://www.multicase.com/case-ultra
http://toxtree.sourceforge.net/
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm\043Guidance_Documents_and_Training_Materials_for_Using_the_Toolbox
https://echa.europa.eu/
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Table 1 

Previously published QSAR models of eye irritation. 

Author Curation 
Cross- 
validation 

Y-rand or 
external set AD 

Number of 
compounds Metrics 

AI/Discriminant 
method Descriptor Year 

Model 
availability 

Basant et al. 
[45] 

Yes Yes Yes Yes 107 Training: 
77–94% 

Test set: 72–87% 

CT, RT Padel 2016 Unavailable 

Verma et al. 
[25] 

No No External set 
only 

Yes 816 training 
86 test 

CCR = 72.3% DT Molecular weight, 
logP, melting point, 
aqueous solubility, 
lipid solubility 

2015 Unavailable 

Liew et al. [26] Yes Yes External set 
only 

Yes 2108 split in 
multiple 
categories 

Training: 
CCR = 65–100% 

Test: 
CCR = 41–69% 

SVM, kNN Padel 2013 Publicly 
available [46] 

Wang et al. [27] Yes Yes External set 
only 

Yes 6015 training 
1504 test 

CCR = 0.92–95% ANN, kNN, NB, 
SVM 

Atom pair, estate 
fingerprint, CDK 
fingerprints, 
Klekota–Roth 
fingerprint, MACCS 
fingerprint, 
Pubchem fingerprint 
and substructure 
fingerprint 

2017 Unavailable 

Jing Lu [47] No No External set 
only 

No 1845 training 
496 test 

CCR = 68% Read Across Codessa 2017 Unavailable 

Geerts et al. [29] No No No No 80 CCR = 60–80% Third-part 
software 

None 2018 Unavailable 

Bhhatarai et al. 
[30] 

No No No No 1644 CCR = 74–80% Third-part 
software 

None 2016 Unavailable 

Luechtefeld 
et al. [31] 

No No External set 
only 

No 929 
CCR = 73% − 100% 

DT, kNN Pubchem2d 
fingerprint 

2016 Unavailable 

Luechtefeld 
et al. [32] 

No Yes External set 
only 

No 15,760 CCR = 98% Read Across Pubchem2d 
fingerprint 

2018 Unavailable 

Verma et al. 
[ 48 , 49 ] 

No No External set 
only 

No 2928 Training: 
CCR = 85% 

Test: CCR = 83% 

ANN ADMET predictor 2015 Unavailable 

Worth and 
Cronin [34] 

No Yes No No 119 CCR = 60–73% LDA, CT, LR Molecular weight 2003 Unavailable 

Cruz- 
Monteagudo 
et al. [35] 

No LOO No No 46 Acc = 80.43% LDA LogP 2006 Unavailable 

Solimeo et al. 
[36] 

Yes Yes No No 75 CCR = 82–92% RF, kNN Dragon, MOE 2012 Available by 
request ∗ 

Patlewicz et al. 
[50] 

No No No No 29 R [ 2 ] = 0.702 ANN Logcmc, logP, 
molvol, mas $n-mas 

2000 Unavailable 

Sugai et al. [38] No LOO No No 138 Acc = 86.3%, 
Validation = 74% 

ALS Physico-chemical 
descriptors 

1990 Unavailable 

Cronin et al. 
[39] 

No No No No 53 R [2] = 0.80 LDA, LR ClogP, kappa 
indices, molecular 
connectivity indices 

1994 Unavailable 

Barratt et al. 
[40] 

No No No No 46 N/A PCA ClogP, mol. vol., 
Dipole moment, 

1995 Unavailable 

Abraham et al. 
[41] 

No No No No 91 R 2 = 0.94 LR Liquid vapor 
pressure, mr, 𝜋2 , Σ𝛼, 
Σ𝛽, liquid 
hexadecane partition 

1998 Unavailable 

CT = Classification Trees; RT = Regression Trees; SVM = support vector machines; kNN = k -Nearest Neighbor; ANN = Artificial Neural Networks; NB = Naïve Bayes; 
LDA = Linear Discrimination Analysis; LR = Linear Regression; RF = Random Forest; PCA = Principal Component Analysis; ALS = Adaptative Least Squares LOO = 
Leave One Out; CCR = Correct Classification Rate; Acc = Accuracy; N/ A = not applicable; R 2 = Correlation coefficient. ∗ Compounds must be sent to the authors to 
be predicted. 
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n the KNIME analytics platform ( https://www.knime.com/ ) using in-
ouse workflows. ISIDA Duplicates [58] was used to identify structural
uplicates and ChemAxon Standardizer (v.16.5.16.0, ChemAxon, Bu-
apest, Hungary, http://www.chemaxon.com ) was used to standardize
he chemical structures. 

luster analysis 

A 50 × 50 neuron self-organizing map (SOM) was generated using
he open-source software Data Warrior ( http://www.openmolecules.
rg/ ) [59] and employing SkelSpheres descriptors ( http://www.
penmolecules.org/help/similarity.html ) [60] . Data Warrior software
as used to cluster compounds that were colored according to their
3 
lobal Harmonization System (GHS) [8] class, in order to provide an
verview of the chemical space. 

olecular descriptors 

We employed RDKit whole-molecule descriptors, Morgan, MACCS,
nd Dragon to develop QSAR and MuDRA models. SkelSpheres descrip-
ors were calculated and used to cluster compounds in the SOM cluster
nalysis. 

kelSpheres 

Skeleton Spheres descriptors [60] were calculated through the Osiris
ata Warrior software ( http://www.openmolecules.org/ ). SkelSphere is

https://www.knime.com/
http://www.chemaxon.com
http://www.openmolecules.org/
http://www.openmolecules.org/help/similarity.html
http://www.openmolecules.org/
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Fig. 1. Data compilation and curation workflow. 
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e  
 1,024 bin byte-vector descriptor that, despite being time- and memory-
onsuming, is more suitable than the other descriptors to perceive fine
imilarities. It also considers stereoisomers and has fewer hash collisions
ue to its higher resolution. The SkelSphere descriptor was calculated
rior to the SOM generation to better understand and cluster the com-
ounds of the modeling dataset and to visualize GHS classification la-
els. 

DKit molecular descriptors and fingerprints 

In KNIME, a collection of 117 different RDKit molecular descriptors
ere calculated for the dataset followed by the removal of invariant
escriptors and descriptors with a correlation higher than 0.9. MACCS
tructural keys [61] are implemented in the RDKit module available
n the KNIME platform, as well as Morgan fingerprints [62] . RDKit pro-
ides 166 publicly available structural keys to represent molecules, and,
or the Morgan fingerprint, it is possible to define the number of bits to
ncode the fingerprints as well as the radius, as the Morgan fingerprint
s a circular fingerprint similar to ECFP and FCFP fingerprints family.
or this study, Morgan fingerprints were generated using radius of 2
nd 2048-bits length. 

ragon descriptors 

Version 5.5 of Dragon software (Talete SRL, Milan, Italy) was used
o generate all the 0D, 1D, and 2D descriptors provided by the software,
otaling 2489 descriptors [63] . After the descriptors were calculated,
nvariant descriptors and descriptors with a correlation higher than 0.9
ere also removed prior to the model generation step. 

SAR modeling 

QSAR models for eye irritation and eye corrosion were generated
mploying a variety of chemical descriptors and algorithms. Binary and
ulticlass models were generated through the following steps: (i) data
4 
uration, preparation, and analysis; (ii) model generation and valida-
ion; (iii) model selection. To validate the method, we applied a 5-fold
xternal cross-validation, where the curated dataset is divided into five
qual-sized parts with an 80%/20% split between the modeling and test
ets; this process is iteratively repeated until all parts of the dataset are
sed once as a test set. It is important to note that only the modeling set
s used to generate the model; hence, during the 5-fold cross-validation
rocedure, compounds from the test set are not used in the generation
f the models whatsoever and are solely reserved for the test set. Best
odels were carefully selected according to acceptable threshold val-
es for all statistical metrics (for our purposes, this was set at 0.6). In
ddition, 10 rounds of Y-randomization were conducted to assess if the
esults were obtained by chance via annotating the statistical character-
stics of the shuffled-labels models. Binary models were built for both
orrosive and irritant classes of chemicals. Compounds classified as NC
ere used as non-corrosives and non-irritants as well. 

lgorithms 

Both RF [64] and MuDRA [65] algorithms were applied. RF is a well-
nown ensemble decision tree learning algorithm, while MuDRA is an
nstance-based learning process. MuDRA does not build an underlying
odel to make its predictions but performs an instantaneous classifi-

ation of known irritant/corrosive and non-irritant/non-corrosive com-
ounds based on their similarity range and nearest neighborhood. An
n-depth explanation of how the MuDRA method can be applied can be
ound elsewhere [65] . Both methods are implemented in the KNIME an-
lytics platform; RF is a built-in node provided by different developers,
hile MuDRA is implemented through the integration between KNIME
latform and Python scripting language via built-in nodes for this pur-
ose. 

tatistical evaluation of models 

The predictive power of both binary and multiclassification mod-
ls was performed based on the output of the models during their re-
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a  
pective validation processes. As described above, the 5-fold external
ross-validation procedure was chosen to validate the models in this
tudy. Hence, the statistical analysis is based on the collected results of
redictions made in each fold of the cross-validation approach. For the
ulticlassification models, the same metrics were calculated, but con-

idering the confusion matrix and comparing each class against all. The
tatistical metrics and the respective formulas are described below. 

𝑒 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

𝑝 = 

𝑇 𝑁 

𝑇 𝑁 + 𝐹 𝑃 

CR = 

Se + Sp 

2 

 𝑃 𝑉 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑃 

𝑃 𝑉 = 

𝑇 𝑁 

𝑇 𝑁 + 𝐹 𝑁 

 1 = 

2 𝑇 𝑃 
2 𝑇 𝑃 + 𝐹 𝑃 + 𝐹 𝑁 

𝐶𝐶 = 

( 𝑇 𝑃 × 𝑇 𝑁 ) − ( 𝐹 𝑃 × 𝐹 𝑁 ) 
√
( 𝑇 𝑃 + 𝐹 𝑃 ) ( 𝑇 𝑃 + 𝐹 𝑁 ) ( 𝑇 𝑁 + 𝐹 𝑃 ) ( 𝑇 𝑁 + 𝐹 𝑁 ) 

𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 

𝑅𝑒𝑙 𝑖𝑎𝑏𝑙 𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

𝑇 𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

Here, TP and TN are true positives and negatives, respectively; FP
nd FN are false positives and negatives, respectively. Se stands for the
ensitivity of the models, which is the correct identification of positive
amples, while Sp is the measure of the specificity of the models, eval-
ating the ability of the model to identify negative samples correctly.
CR stands for the correct classification rate, and are calculated as the
rithmetic mean of Se and Sp. PPV means positive predicted value, while
PV means negative predicted value; these metrics evaluate the proba-
ility of certainty of a positive or negative prediction, respectively. F 1 
core, the harmonic mean of PPV and Se (aka precision and recall), eval-
ates the ability of the model to identify each instance correctly within
he data. MCC encompasses the Mathews Correlation Coefficient and
as been largely used as a goodness-of-fit in machine learning modeling
asks. MCC ranges from − 1 to 1, being 0 equal to a random prediction. 

The Coverage was calculated based on what we defined as reliable
redictions, which means a prediction of a sample laying inside the ap-
licability domain (AD) of the model, calculated through the formula
elow. 

 𝑇 = �̄� + 𝑍𝜎

here D T is a distance threshold, ȳ is the average Euclidean distance
f the k nearest neighbors of each compound of the training set, 𝜎 rep-
esents the standard deviation of the Euclidean distances and Z is an
rbitrary parameter to control the level of significance. We set the de-
ault value of 0.5 for Z . 

Multiclass modeling 

To build multiclass models, three classes were considered based on
HS classification: corrosive, irritant (comprised by classes 2A and 2B),
nd NC. The binary statistical metrics described above were computed
or each of the three classes and averaged to report overall performance
or the multiclass models. 

irtual screening of CosIng and inactive ingredients database 

The best models were applied to virtually screen the Cosmetics &
ngredients Substances Database (CosIng) [66] , a European database
f information about cosmetics and their ingredients. After curation,
,780 compounds from CosIng were screened using our best performing
5 
odels to identify compounds with the potential to cause eye irrita-
ion/corrosion. 

The FDA inactive ingredients database (IID) set of compounds
s freely available at https://www.fda.gov/drugs/drug-approvals-and-
atabases/inactive-ingredients-database-download . We also retrieved
he data and curated it following the protocol described above. We ap-
lied the best models reported in this study to predict the ocular toxicity
otential of the final IID set, composed of 4,673 inactive ingredients for
harmaceutical products. 

issemination 

All workflows used in this work are available in the supplementary
aterial for those who want to build models to other endpoints as well

s for instructions about how to implement MuDRA along with Python
nd KNIME set-ups. 

esults and discussion 

luster analysis 

The SOM approach is an unsupervised classification technique that
aps compounds to visualize their structural similarity. The structural
ap ( Fig. 2 ) is colored by the three classes as defined by the GHS haz-

rd classification system used to develop multiclass models. The high-
ighted compounds show that small structural differences can be ob-
erved in pairs of compounds belonging to distinct classes. Analyzing
he background (shown in green in Fig. 2 ), the surrounding compounds
re similar to each other (Tc = 0.85); major structural changes in the
caffold can also be observed (shown in yellow in Fig. 2 ), and structures
ith high dissimilarity are highlighted (shown in blue in Fig. 2 ). As seen

n Fig. 2 , the overall similarity between non-irritant and irritant com-
ounds can be found across the whole map, sharing regions of the map in
 non-compartmentalized way. This indicates that there are many activ-
ty cliffs in this dataset (as highlighted in Fig. 2 ). This type of dataset rep-
esents a challenge and although both RF and MuDRA are used to gener-
te predictive models, they predict activity cliffs differently. As a prime
xample, 2,3-dihydro-1,2-benzothiazol-3-one (158 in Fig. 2 ) and 2,3-
ihydro-1H-isoindole-1,3 ‑dione (1044 in Fig. 2 ) are respectively within
orrosive and NC categories, but share the same structural region in
he SOM. Another example is 3-amino-4-chlorobenzene-1-sulfonic acid
200 in Fig. 2 ) and 3,4-dimethylbenzene-1-sulfonic acid (1031 in Fig. 2 )
air, both in the same region of the SOM but respectively categorized
s corrosive and NC. The same can be observed for the aliphatic com-
ounds 1 ‑chloro-2-[2-(2- chloroethoxy ) ethoxy ]ethane (148 in Fig. 2 ) and
 ‑chloro-2-[(2- chloroethoxy ) methoxy ]ethane (800 in Fig. 2 ), grouped to-
ether within the same region of the structural map and respectively
lassified as corrosive and NC. However, regions of chemical space are
learly enriched for particular categories, lending support to the appli-
ation of QSAR modeling approaches while highlighting the necessity
f nonlinear AI methods to identify the complex feature combinations
hat will discriminate categories. 

SAR modeling 

inary models 

In this study, we built five binary models for eye irritation and five
inary models for eye corrosion. For each endpoint, we built RF models
sing four molecular descriptors described in the methods section as
ell as one MuDRA model. The AD of each model was calculated, with
n exception for the MuDRA method as it is an instance-based modeling
pproach. 

As one can see, models generated using the RF method for both end-
oints presented similar metrics. However, they were outperformed by
odels 5 and 10, generated using the MuDRA method, which was in

greement with the advanced performance of MuDRA in comparison

https://www.fda.gov/drugs/drug-approvals-and-databases/inactive-ingredients-database-download
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Fig. 2. Graphical representation of a self-organized map for the chemical space covered by modeling set chemicals. Red circles represent corrosives, yellow circles 
represent irritants, and green circles represent NC class. Blue-green regions show compounds that share structural similarities compared to their neighbors, and 
yellow-orange-red regions represent an abrupt change in the chemical structure of the compounds compared to their neighbors. The dataset is notably complex; 
there are similar compounds belonging to different classes, which makes the construction of multiclassification models a challenge. 
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ith other QSAR methods as reported by Alves and colleagues previ-
usly [65] . The binary models for eye corrosion showed higher pre-
ictivity. This could be because the eye corrosion dataset is smaller as
ompared to the eye irritation dataset. 

Obtaining high PPV values is crucial when dealing with toxicological
ndpoints as they indicate the ability of models to accurately predict
oxic compounds. For eye irritation, we can see that PPV values ranged
rom 0.70 to 0.90 (with the lowest value from Model 2 and the highest
alue from Model 5). For eye corrosion, PPV values ranged from 0.65
o 0.88 (with the lowest value from Model 6 and the highest value from
odel 9). Overall, PPV values were above acceptable thresholds and

eached high values (0.9), meaning that a prediction made by the two
est models generated in this study for both eye irritation and corrosion
ould be correct with more than 85% certainty. 

Likewise, high NPV values are equally important as they provide
he certainty of the prediction made by the model regarding the non-
rritant/non-corrosive classes. Classifying a molecule correctly as non-
rritant/non-corrosive is very important as an incorrect prediction could
ead to eyes being damaged. NPV values for the models built in our study
anged from 0.77 to 0.85 for eye irritation and from 0.68 to 0.83 for
ye corrosion. This shows that negative predictions made using our best
odels have at least 83% certainty. 

In analyzing sensitivity and specificity, other studies have reported
hat specificity values are usually higher than sensitivity values [ 45 , 67 ].
ere the sensitivity values’ range was 0.77–0.89 for eye irritation and
.61–0.84 for eye corrosion, while specificity values’ range was 0.56–
.86 for eye irritation and 0.71–0.91 for eye corrosion. In our study,
ll models for eye irritation showed sensitivity values higher than speci-
city. For the eye corrosion models, the same pattern was observed only

or Model 7 and Model 8, otherwise specificity value was higher than
he sensitivity value. 

An additional cluster analysis was conducted to further investigate
he better performance of MuDRA when compared to the models gen-
rated using RF for eye irritation and eye corrosion endpoints. In this
nalysis, it was noticed that all compounds belonging to the biggest
luster of compounds of eye irritation dataset (six irritants and 11 non-
rritants) were correctly predicted by MuDRA. Meanwhile, from those 17
6 
ompounds within eye irritation dataset, the models built with RF algo-
ithm combined with one type of molecular descriptor (Dragon, MACCS,
organ, or RDKit) mis-predicted on average 7 of them (see Supplemen-

ary File 9). 
Fig. 3 compares 1,646 correct predictions made by MuDRA, 1,446

orrect predictions made by RF_Dragon (Model 3), 1,436 correct predic-
ions made by RF_MACCS (Model 4), 1,420 correct predictions made by
F_Morgan (Model 2), and 1,440 correct predictions made by RF_RDKit
Model 1). It shows that MuDRA was able to correctly predict 198 com-
ounds that the other models were not. It is important to note that 1,081
orrect predictions were shared by all models. This reinforces the im-
ortance of data curation process as well as the use of best practices for
SAR modeling. On the other hand, when the overlap between all mis-
redicted compounds was checked, it was noticed that 38 compounds
25 irritants and 13 non-irritants – see File S9) mis-predicted by all mod-
ls were predicted correctly only by MuDRA ( Fig. 4 ). 

Moreover, we observed that MuDRA was more accurate than RF
odels when making predictions for certain chemical classes, such as

ong chain hydrocarbons and fatty acid derivatives ( Fig. 4 ), such as
thyl tetradecanoate, 1,6-dioctyl-hexanedioate, 2-methylpropyl octade-
enoate, and 2-[2-( nonanoyloxy ) ethoxy ]ethyl nonanoate. However, as
his cluster was composed by only 17 compounds, this is not enough
o assure MuDRA superiority over RF models. Overall, MuDRA uses a
roader descriptor space, which is able to capture more rigorously the
tructural differences between compounds, to identify the nearest neigh-
or, read-across it, and then return a more accurate prediction. 

ulticlass models 

Using the data and the GHS labeling system, multiclassification mod-
ls were generated. We used three classes based on the GHS classifi-
ation: corrosive, irritant (comprised by classes 2A and 2B), and NC.
able 3 shows the overall statistical metrics for all multiclass models
uilt in this study, averaged across the binary metrics for each class
erformance. 

Model 15, generated using the MuDRA method, outperformed the
ther RF models in all statistical metrics except sensitivity. Thus, the ma-
ority of generated models using RF were above the acceptable thresh-
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Fig. 3. Venn diagram showing the overlap between correct predictions done by all models for the eye irritation dataset. 

Fig. 4. Example of compounds correctly predicted only by MuDRA. 

7 
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Table 2 

Statistical characteristics of binary QSAR models for eye irritation and eye corrosion assessed by 5-fold cross-validation. 

Binary models for eye irritation generated with RF algorithm 

Model Descriptor CCR Se PPV Sp NPV F1 MCC Coverage 

1 RDKit 0.76 0.77 0.76 0.76 0.77 0.77 0.53 1 
RDKit-AD 0.77 0.78 0.77 0.76 0.77 0.77 0.53 0.96 

2 Morgan 0.77 0.84 0.73 0.69 0.81 0.78 0.53 1 
Morgan-AD 0.72 0.88 0.70 0.56 0.81 0.78 0.47 0.91 

3 Dragon 0.77 0.78 0.77 0.77 0.78 0.78 0.55 1 
Dragon-AD 0.77 0.79 0.76 0.75 0.78 0.77 0.54 0.97 

4 MACCS 0.77 0.80 0.75 0.73 0.79 0.77 0.53 1 
MACCS-AD 0.76 0.81 0.74 0.71 0.79 0.77 0.52 0,99 

Binary model for eye irritation generated with MuDRA algorithm 

Model Descriptor CCR Se PPV Sp NPV F1 MCC Coverage 

5 Multi 0.88 0.89 0.90 0.86 0.85 0.90 0.76 1 

Binary models for eye corrosion generated with RF algorithm 

Model Descriptor CCR Se PPV Sp NPV F1 MCC Coverage 

6 RDKit 0.70 0.70 0.71 0.71 0.70 0.70 0.41 1 
RDKit-AD 0.75 0.61 0.86 0.89 0.68 0.72 0.52 0.88 

7 Morgan 0.68 0.76 0.65 0.59 0.71 0.70 0.36 1 
Morgan-AD 0.75 0.76 0.81 0.75 0.69 0.78 0.5 0.85 

8 Dragon 0.72 0.73 0.72 0.71 0.73 0.72 0.44 1 
Dragon-AD 0.76 0.67 0.84 0.86 0.69 0.75 0.54 0.92 

9 MACCS 0.76 0.73 0.78 0.79 0.74 0.75 0.52 1 
MACCS-AD 0.77 0.64 0.88 0.91 0.71 0.74 0.57 0.98 

Binary model for eye corrosion generated with MuDRA algorithm 

Model Descriptor CCR Se PPV Sp NPV F1 MCC Coverage 

10 Multi 0.85 0.84 0.86 0.86 0.83 0.85 0.69 1 

Table 3 

Statistical characteristics of multiclass QSAR models for eye irritation and eye corrosion. 

Multiclass models generated with RF modeling method 
Model Descriptor CCR Se PPV Sp NPV F1 MCC Coverage 

11 RDKit 0.62 0.61 0.62 0.63 0.62 0.51 0.21 1 
RDKit-AD 0.60 0.60 0.60 0.60 0.61 0.52 0.22 1 

12 Dragon 0.63 0.66 0.63 0.61 0.64 0.52 0.31 1 
Dragon-AD 0.60 0.61 0.61 0.58 0.58 0.52 0.31 1 

13 MACCS 0.65 0.63 0.65 0.66 0.64 0.55 0.38 1 
MACCS-AD 0.64 0.67 0.64 0.62 0.64 0.56 0.39 1 

14 Morgan 0.63 0.67 0.63 0.60 0.64 0.50 0.39 1 
Morgan-AD 0.60 0.71 0.62 0.49 0.60 0.51 0.39 1 

Multiclass model generated with MuDRA modeling method 

Model Descriptor CCR Se PPV Sp NPV F1 MCC Coverage 
15 Multi 0.74 0.60 0.84 0.87 0.89 0.62 0.57 1 
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ld. It is important to note that all metrics shown in Table 2 were cal-
ulated using each class’s mean. The statistical characteristics showed
hat all models performed poorly when classifying compounds on GHS
lasses 2A and 2B This class has also been shown to have the lowest re-
roducibility when analyzing replicate animal tests, demonstrating the
otential unreliability of classifications that are based solely on one re-
ult. However, the MuDRA method was able to handle the complexity
f the data better by exploring the neighborhood of each compound and
lassifying them based on the nearest neighbor compound. 

We have shown that MuDRA models were the best performing mod-
ls in this work. As an external evaluation of model performance, we
ave predicted a set of 118 compounds extracted from Yamaguchi and
olleagues’ study [68] . After dataset curation and preparation to remove
ompounds that were also present in our dataset, 107 compounds could
e predicted. All 73 corrosive compounds and the 38 irritant compounds
n the dataset were correctly classified, as well as the remaining 6 NC
ompounds. To further validate our approach, we made predictions of
hree compounds found in the literature and not included in our mod-
ling set, that had been reported as capable of triggering moderate to
 t  

8 
erious issues in human eyes [69] . The compounds are glutaraldehyde
70] , Paraquat [ 71 , 72 ], and glyphosate [73] . All three were correctly
redicted as being irritants. This reinforces the predictive power of the
uDRA approach and its applicability to important toxicological end-

oints such as eye irritation/corrosion. 

irtual screening 

As a further application of our models, we have retrieved and care-
ully curated 4780 compounds from the CosIng database and predicted
heir effects on eye corrosion / irritation using the MuDRA models; com-
lete details of the results are available in the supplementary material. In
ummary, our prediction identified 2003 compounds with the potential
o cause eye irritation. We also predicted the effects on eye irritation and
orrosion of the Inactive Ingredients Database (IID) containing 4673 in-
ctive ingredients using MuDRA based model. The subset of compounds
sed in the ophthalmic route of administration had 181 entries consist-
ng of 76 unique ingredients. Among them, 24 were predicted as poten-
ial eye irritants and 12 as corrosive, where most of these are reported
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s a component of formulations such as ointments, solutions, suspen-
ions, and eye drop products. The list of compounds predicted by our
odels as eye irritants and corrosion is available in the Supplementary
aterials of the paper. 

onclusions 

Eye irritation and corrosion are important toxicological endpoints for
ssessing chemical safety in humans and animals and respective tests are
andated by many regulatory agencies for the approval of a variety of
roducts. The standard animal test for the evaluation of this endpoint is
till the in vivo rabbit Draize test, a method developed decades ago and
onsidered cruel, unreliable, and with questionable biological relevance
o human exposure scenarios. Therefore, we aimed to develop predictive
omputational models using thoroughly curated data that could serve
s NAMs for predicting eye irritation/corrosion potential of chemicals.
ata curation is an extremely important factor in the development of

obust and predictive ML models and a considerable amount of time
as devoted to curating the ECHA dataset to ensure high quality train-

ng/test data and to optimize the predictive power of the models gener-
ted. All the curated data and developed models are available in KNIME
orkflows within the Supplementary Materials. These models presented
igh statistical characteristics. We have applied our models to predict
 large publicly available cosmetics dataset (CosIng) as well as an Inac-
ive Ingredient Dataset of chemicals commonly found in cosmetics and
rugs. From CosIng database, 2003 compounds were predicted to cause
amage to the eyes as corrosive/irritants; on the other hand, among 76
nique compounds from the Inactive Ingredients Dataset related to the
phthalmic route, 12 were predicted as corrosive, and 24 were predicted
s irritants. The predictions for these chemicals are publicly available in
he Supplementary Materials that accompanies this publication. More-
ver, the models generated here are publicly available at the STopTox
eb portal ( https://stoptox.mml.unc.edu/ ). These models can be em-
loyed as reliable alternatives to animal testing for identifying potential
ye irritant/corrosive compounds. 
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