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Schistosomiasis remains the fourth most prevalent parasitic disease affecting over 200

million people worldwide. Control efforts have focussed on the disruption of the life cycle

targeting the parasite, vector and human host. Parasite burdens are highly skewed,

and the majority of eggs are shed into the environment by a minority of the infected

population. Most morbidity results from hepatic fibrosis leading to portal hypertension

and is not well-correlated with worm burden. Genetics as well as environmental factors

may play a role in these skewed distributions and understanding the genetic risk factors

for intensity of infection and morbidity may help improve control measures. In this review,

we focus on how genetic factors may influence parasite load, hepatic fibrosis and portal

hypertension. We found 28 studies on the genetics of human infection and 20 studies

on the genetics of pathology in humans. S. mansoni and S. haematobium infection

intensity have been showed to be controlled by a major quantitative trait locus SM1, on

chromosome 5q31-q33 containing several genes involved in the Th2 immune response,

and three other loci of smaller effect on chromosomes 1, 6, and 7. The most common

pathology associated with schistosomiasis is hepatic and portal vein fibroses and the

SM2 quantitative trait locus on chromosome six has been linked to intensity of fibrosis.

Although there has been an emphasis on Th2 cytokines in candidate gene studies, we

found that four of the five QTL regions contain Th17 pathway genes that have been

included in schistosomiasis studies: IL17B and IL12B in SM1, IL17A and IL17F in 6p21-

q2, IL6R in 1p21-q23 and IL22RA2 in SM2. The Th17 pathway is known to be involved in

response to schistosome infection and hepatic fibrosis but variants in this pathway have

not been tested for any effect on the regulation of these phenotypes. These should be

priorities for future studies.
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INTRODUCTION

Schistosomiasis is caused by digenic trematodes of the genus
Schistosoma with Schistosoma mansoni and Schistosoma
haematobium causing the majority of human infections. Adult
parasites live in the veins around the gut and bladder and eggs
are excreted in feces or urine and infect snails in fresh water.
Parasite numbers are amplified in the snail intermediate host and
human infective stages then emerge that can penetrate human
skin when people enter the water. Schistosomiasis induces
acute, severe, and chronic morbidity among those who are
infected and can cause liver and bladder fibrosis and eventually
bladder or colorectal cancer (1). Although exposure to water
infested with the infective schistosome cercariae is the main
risk factor for schistosomiasis there is considerable variation in
infection intensity between people with similar exposures and
schistosomiasis cases aggregate in families, some of this variation
has been attributed to the genetics of the human immune
response (2–4).

A review of the genetics of human susceptibility to
schistosomiasis related fibrosis has been published recently (5),
but there has been no review of the genetics of schistosome
infection since 2008 (2).

A fundamental understanding of the genetics of
schistosomiasis susceptibility and high worm load may
contribute to rational design of interventions, including vaccines
(6). For example, it has recently been shown that a set of 32 SNPs
in 10 genes can predict susceptibility to severe hepatic disease
among Brazilians with 63% sensitivity and 90% specificity (5).
In the present review of the genetics of human susceptibility
to schistosomiasis we focus on loci associated with egg/worm
burden and hepatic fibrosis.

We therefore present an updated review of the genes and
variants that have been found associated with schistosomiasis
infection intensity and liver disease, together with a review of
genes within QTL that could be prioritized for future analyses.
We have excluded the HLA region since we have only identified
one study of genes in this region since they were was last reviewed
(7, 8).

Epidemiology and Treatment
The disease affects almost 240 million people, and 700 million
are at risk of infection in 74 countries, the majority being in
Africa, Asia and South America (9, 10). Between 3 and 56 million
disability-adjusted life years (DALYs) are lost per annum and
280,000 deaths per annum have been attributed to effects of
schistosomiasis (11–13). Approximately 85% of infections occur
in sub-Saharan Africa and at least 90% of people requiring
treatment for schistosomiasis live in Africa (14). Schistosomiasis
can also be associated with chronic anemia, childhood growth
stunting, protein calorie malnutrition, cognitive disability, and
poor school performance (15–20).

Control of schistosomiasis has continued to rely mainly
on mass drug administration (MDA) of school-aged children
using the anti-schistosomal drug praziquantel (PZQ) (21, 22).
Although this strategy has reduced morbidity, the impact on
prevalence has been more limited, because praziquantel does not

kill immature schistosomes (23, 24), coverage remains restricted
and only school age children are routinely treated. Vaccines are in
development but phase three trials have not been successful (25).

Immune Responses During Schistosome
Infections
Immune responses to penetrating and migrating Schistosoma
larvae (schistosomula) and maturing adults are predominantly
Th1 (26). Excretory/secretory Schistosoma antigens damage host
barrier cells which release alarmins, activate innate cells and
induce proinflammatory cytokines (IL1B, IL6, IL17, TNF, and
IFNG) (27). About 6 weeks after infection, Schistosoma eggs
are deposited in tissues (the liver and the intestine or the
bladder) and trigger an expansion of Th2 cells (28). Schistosoma
egg antigens also directly bind receptors on antigen presenting
cells inhibiting IL12 production and consequently Th1 responses
(29). Th2 responses can also be induced independently of egg
deposition as infection with single sex schistosomes induce pre-
patent IL4 production by CD4T cells (30). Schistosome specific
Th2 responses are downmodulated in long-standing infections
(31) and this is associated with a development of regulatory cells
producing IL10 and transforming growth factor beta (TGFB).
This not only allows the parasite to survive in the host and
minimize host tissue damage but also modulates host immune
responses to unrelated antigens including allergens, self-antigens,
and vaccines.

Schistosome egg secretions are highly antigenic (31) and
typically induce polarized granulomatous Th2 responses (32).
Granulomas form around eggs lodged in tissues to protect tissue
cells (33) but persistent host CD4 Th2 cell mediated responses
to parasite eggs cause fibrosis (34). The pro-fibrotic Th2 cytokine
IL13 is associated with periportal fibrosis in humans (35). Beyond
Th2 cytokine responses, intensified hepatic granulomatous
inflammation in S. mansoni infected mice is associated with
high levels of IL17 and controlled by IFNG (36). In human
schistosomiasis, IL17 producing CD4T helper cells are associated
with ultrasound textural abnormalities while T regulatory cells
are associated with reductions in this pathology (37).

Phenotypes
Schistosomal Fecal Egg Count and Worm Burden
Studies of the human genetics of susceptibility to schistosomiasis
have focussed on two classes of phenotype; infection associated
phenotypes and pathology related phenotypes. Infection
associated phenotypes are usually egg counts or worm burden
estimates but sometimes total IgE as a marker of the immune
response (38). Eggs counts are obtained by the Kato Katz (KK)
method for S. mansoni and by urine filtration for S. haematobium
and worm burdens are estimated by measuring the circulating
cathodic antigen (CCA) in urine or circulating anodic antigen
(CAA) in plasma (39) that are produced by adult worms.

Approximately 80% of the environmental egg burden from
helminths including schistosomes, derives from ∼20% of the
cases (40). For example 22 out of 119 Kenyan school children had
developed high S. mansoni egg burden (>100 eggs per gram of
feces) 12 months after treatment, whilst 70 children still had low
(<30 epg) egg burdens (41) and this effect was not correlated with
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the amount of water contact. This tendency for some people to
develop high infections even after treatment has been attributed
to variation in genetic risk (42).

Schistosome egg burdens are also highly skewed by age with
egg burdens increasing up to the age of puberty and declining
thereafter (43–46). A study in Brazil found that children under
19 had egg burdens that were over ten times higher than older
adults (42). The higher intensity and frequency of infections in
children may be due to the slow development of immunity to
schistosomes. Possibly, the antigens that are exposed by dying
worms cross react with larval antigens and stimulate a protective
anti-larval IgE response. The long life span of adult worms (5–15
years) means that it takes many years for children to be exposed
to sufficient dying worms to develop an IgE response to the
larvae (47). High anti-parasite IgE levels have been associated
with resistance and high specific IgG4 has been associated with
susceptibility and it has been proposed that the ratio of these two
immunoglobulins controls resistance to schistosomiasis (48–51).

Schistosomiasis Associated Hepatic and Periportal

Fibrosis and Portal Vein Hypertension
Although schistosomes cause a wide range of symptoms and
fibrotic lesions can form around egg granulomas in many tissues,
the main indicator of S. mansoni and S. japonicum pathology is
hepatic fibrosis (HF) and periportal fibrosis (PPF) (52). WHO
guidelines provide scoring scales for HF and PPF (53) and
both scales are used as phenotypes in genetic research (54).
HF and PPF is caused by extracellular matrix forming around
schistosome eggs. In the hepatic portal vein this can lead to portal
hypertension (PH) (55, 56), ultimately, some patients with PH die
of internal bleeding, superinfections, or heart or kidney failure. S.
haematobium is associated with bladder cancer and S. mansoni
may be associated with hepatocellular carcinoma (57) but genetic
studies of the pathology of schistosomiasis have focussed almost
exclusively on hepatic and periportal fibrosis and in this review
all references to pathology are to these closely related conditions
unless otherwise indicated. Fibrosis can be measured by ultra-
sound scan, although there are concerns about the accuracy
and reproducibility of ultrasound (58); additional markers and
protocols for grading pathology are being developed but are not
well-validated (59–61).

GENOME WIDE LINKAGE STUDIES
DISCOVER SCHISTOSOMIASIS
SUSCEPTIBILITY LOCI

The reviews of linkage and candidate gene studies of
schistosomiasis are broken down into two sections by phenotype:
(1) studies of infection status, which is usually determined by
egg count in urine or feces and (2) studies of pathology which is
mainly periportal fibrosis determined by ultra-sound. Relevant
publications were identified by searching PubMed using the
terms in Supplementary Table 1.

Heritability of Schistosomiasis Infection
Risk
Heritability, the proportion of risk attributable to genetic
variation, must be substantial to be detectable. A summary of
heritability estimates for schistosomiasis are shown in Table 1.
Studies in Brazil (62–64); Kenya (46); and China (65, 66)
have each estimated similar proportions of the variance of S.
mansoni egg count that are attributable to genetic variation, with
additive heritability (h2) estimates of 23–31%. However, there
were striking differences in the two estimates for heritability of
infection with S. japonicum in China using variance components
(VC) (0 & 58%) (Table 1), which have been discussed by
others (2).

Linkage Studies for Schistosoma Egg Count
The initial study of the genetics of human schistosomiasis used
segregation analysis, which determines whether the distribution
of the disease on family pedigrees is consistent with the presence
of a major gene (3). This study demonstrated the presence of
a major gene which was subsequently named SM1 and located
on chromosome five by parametric linkage analysis (4). A major
gene has alleles that cause a difference in phenotype between
family members that is large enough to be able to categorize
individuals as carriers or non-carriers on the basis of phenotype
alone (67) and parametric linkage analysis requires estimates of
the disease allele frequency and penetrance of the phenotype for
the three possible genotypes.

The SM1 quantitative trait locus (QTL) on chromosome 5
5q31-q33 for S. mansoni fecal egg count was the first QTL to be
mapped in humans for any infectious disease (Table 2, Figure 1)
(4). The great success of this study was partially attributable to
the very large effect size of the SM1 locus (66% of the variance
after accounting for water contact, age and sex). This is in striking
contrast to the very modest proportions of the variance explained
by most loci identified by GWAS in which loci rarely explain
more than 10% of the variance of the trait that is not attributable
to covariates (96). Three further loci (1p22.2, 7q36 and 21q22–
22-qter) had evidence of association and contained genes known
to be involved in the response to schistosomes but did not achieve
genome wide significance (68). A reanalysis of the same data
controlling for SM1 genotype identified additional genome wide
significant loci at 1p21-q23 and 6p21-q21 (Table 2, Figure 1)
(69), since the effect of these loci was small in comparison to
the effect of SM1, they were only identifiable when using SM1
genotype as a parameter of the model.

A further study on a Senegalese population, by the same
group that conducted the original study in Brazil, confirmed
an association at the SM1 locus. However, the effect was not
as strong and the association could only be demonstrated by
non-parametric pedigree tests for an effect at the SM1 locus
(70). Non-parametric analysis requires no prior knowledge of
the disease allele frequency or the disease penetrance of the
different genotypes.
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TABLE 1 | Heritability estimates for genetic component of risk of schistosomiasis in different populations.

Parasite Phenotype Country and district Heritability estimate

and method eg h2

References

S. mansoni Egg count Brazil, Minas Gerais 23% (h2) (62)

S. mansoni Egg count Brazil, Minas Gerais 27% (VC) (63)

S. mansoni Egg count Brazil, Bahia 31% (VC) (64)

S. mansoni IgE Brazil, Bahia 59% (VC) (64)

S. haematobium Egg count Kenya, Coast 9% (h2) (46)

S. haematobium Bladder morbidity Kenya, Coast 14% (h2) (46)

S. japonicum Infection China, Jiangxi 58% (VC) (65)

S. japonicum Infection China Sichuan 0% (VC) (66)

h2 additive heritability, VC variance components.

TABLE 2 | Loci associated with S. mansoni infection discovered by linkage studies.

Phenotypes Locus name 5’ Marker

(Position)

3’Marker

(Position)

References Candidate genes,

Tested (Untested)

Egg count SM1 5q31-q33 D5S642

(128Mb)

D5S412

(158Mb)

(4, 68–70) IL4, IL5, IL9, IL13,

(IL3, CXCL14, CD14,

1IL17B, IL12B)

Egg count 1p21-q23 D1S236

(95Mb)

D1S196

(168Mb)

(69) (IL6R, CRP)

Egg count 6p21-q21 D6S271

(43Mb)

D6S283

(67Mb)

(69) (VEGFA, IL17A, IL17F)

Hepatic fibrosis SM2 6q22-q23 D6S1009

(137Mb)

D6S310

(142Mb)

(71) CTGF, IFNGR1,

IL22RA2

Egg count 7q35-q36 D7S483

(152Mb)

D7S550

(156Mb)

(69) (TRB, NOS3, SHH)

Marker positions are shown in GRCh37 co-ordinates. Candidate genes that have been found associated with the phenotype are shown in bold (Tables 3, 4). Other plausible candidates

(See Figure 2) in the regions are in brackets. Genes associated with the Th17 response are underlined. These loci are shown graphically in Figures 1, 2.

Linkage Studies Identify QTL for Pathology That Are

Independent of QTL for Parasite Burden
A study in Sudan found that 12% of the study population
had moderate or advanced fibrosis and that half of these
also had portal hypertension (97). A linkage study of four
candidate gene regions in the same population identified a locus
(SM2) on chromosome six near the interferon-gamma receptor
(IFNGR1) associated with hepatic fibrosis (Table 2, Figure 1)
(98). Fifty percentage of people with risk alleles at SM2 had
some continuous thickening of periportal vein branches within
19 years of coming to live within the study area. IFNG is
strongly anti-fibrogenic and polymorphisms in IFNGR1 could
plausibly regulate fibrosis. No linkage was found with the SM1
locus suggesting that control of infection and pathology were
independent. The SM2 locus at 6q22-q23 did not overlap either
the HLA region on chromosome six or the 6p21-q21 region
that was associated with S. mansoni worm burden in Brazil (69)
(Table 2, Figure 1).

The SM2 locus was replicated in a linkage study of 11
candidate gene regions in Egypt where 32.7% of individuals 11
years and older had significant fibrosis and rs1327475 in IFNGR1
was significantly associated with severe PPF. In contrast to the
earlier study in Sudan, this study found a weak association with

the Th2 cytokine cluster (IL4, IL13) in SM1 (54), suggesting
that worm burden does contribute to risk of pathology. There is
evidence for a potentially protective role of a high IFNG response
to schistosome infection, consistent with the anti-fibrogenic
properties of IFNG [reviewed by Abath et al. (99)] and a SNP in
IFNG has been associated with time to reinfection (Table 3) (72).
Consequently, it appears that the variation in the IFNG system
is involved in both the outcome of infection and pathology.
Variation in IFNGR1 has only been shown to be involved in the
development of pathology but it has yet to be tested in a candidate
gene study for effect on infection response.

ANNOTATION OF GENES IN QTL REGIONS

Very few genes were known in the 5 QTL regions for
schistosomiasis (Table 2) at the time that the QTL were
discovered, and we are not aware of any attempts to identify the
genes that are responsible for the QTL effect. Hundreds of genes
are now known in these loci, each of which could potentially
regulate the phenotype and we prepared a short list of the most
likely candidates in each region. In order to discover which genes
in each schistosomiasis QTL region might be involved in the
response to schistosomiasis we used a custom Perl script to search
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FIGURE 1 | Genes and quantitative trait loci associated with schistosomiasis plotted on a human karyotype. Blue lines indicate QTL, with reported −log p-value for

association shown on the y axis. Genes containing SNP associated with schistosomiasis infection (Table 3) are shown in blue, genes associated with pathology

(Table 4) are shown in red and genes associated with both pathology and infection are shown in black. Genes are arranged vertically on the plot for clarity and their

position on the y axis is arbitrary.

PubMed with terms for schistosomiasis and each gene name and
its aliases and obtained a count of the number of publications
returned as detailed in Supplementary Table 4.

We assumed that the genes that are most likely to be the QTL
genes will already have been shown to be involved in the response
to schistosome infection. In order to identify these genes, we
systematically searched PubMed for papers that included terms
for schistosomiasis and each of the gene names in the 5 QTL
regions in Table 2 or their synonyms (Supplementary Table 4).
The genes that have been mentioned most frequently in the

abstract of a paper that also mentions schistosomiasis and that
are in one of the QTL are shown in Figure 2, Table 2. A complete
list of all genes that are in the QTL and that have been studied
in the context of schistosomiasis is in Supplementary Table 4.
The number of papers shown in Figure 2 is an indicator of
the genes most commonly associated with schistosomiasis in
these regions. The genes with the largest literature were the Th2
cytokine genes originally identified by Marquet (4) in SM1 (IL3,
IL4, IL5, IL9, and IL13), that each had between 17 and 511
publications associated with schistosomiasis. OnlyCSF1 and TRB
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TABLE 3 | SNP which have been found to be associated with schistosomiasis infection phenotypes in candidate gene studies.

SNP Gene Phenotype Parasite Neg refs Pos refs

rs2430561 IFNG T2R Sm none (72)

rs3024495 IL10 FEC Sm None (38)*

rs1800896 IL10 IgE Sm None (38)

rs1800871 IL10 IgE Sm None (38)*

rs1800872 IL10 IgE Sm None (38)*

IL10(-1082/-8

19/-592)

IL10 UEC Sh (73) (74)*

rs20541 IL13 FEC Sm (75, 76) (77)

rs2066960 IL13 FEC Sm (78) (77)

rs7719175 IL13 UEC Sh (73) (79)*

rs2069743 IL13 UEC Sh (78) (80)

rs1800925 IL13 UEC, FEC, T2R Sh, Sm None (72, 77–79)*

rs2243250 IL4 UEC, T2R Sh (80) (73), (72)*

rs2079103 IL5 IF Sj None (75)*

rs2706399 IL5 IF Sj None (75)*

rs3024974 STAT6 UEC Sh None (73)*

rs324013 STAT6 UEC Sh None (78)*

rs733618 CTLA4 UEC Sh None (81)

rs11571316 CTLA4 UEC Sh None (81)

rs231775 CTLA4 UEC Sh None (81)

rs3124952 FCN2 UEC Sh None (82)

rs17514136 FCN2 UEC Sh None (82)

rs7567833 COLECC11 UEC Sh None (83)

COLEC11*TCCA COLECC11 UEC Sh None (83)

Blood group O ABO FEC,UEC Sh,Sm None (84)

rs746822072 RNASE3 FEC Sm None (85)

Loci that have been found associated with schistosomiasis in more than one study are shown in bold. * Loci that are not significant after Bonferroni correction. IL10 (−1082/−819/−592)

= a haplotype of rs1800870, rs1800871 and rs1800872. COLEC11*TCCA is a haplotype of rs1864480 (−676T/C), rs4849953 (−472T/C), rs6714770 (−469C>G), and (−276C>T).

Blood Group O is most commonly defined by genotypes at three SNP rs8176719, rs8176746(CC), rs8176747(GG). IF, Infection Frequency; T2R Time to Reinfection; UEC, Urine Egg

Count; FEC, Fecal Egg Count: Sh, S. haematobium; Sm, S. mansoni; Sj, S. japonicum. “Pos refs” column contains citations for the studies that showed a significant association with

phenotype and “Neg refs” column contains citations of studies that failed to show a significant association at that locus.

(beta T cell receptor) were identified as candidate genes by the
original authors in the 1p21-q23 and 7q35-q36 egg burden loci
(69) and IFNGR1 was the candidate gene that was used for the
linkage study at SM2 (98). The large literature on Th2 cytokines
and schistosomiasis is expected given the important role of this
pathway in response to egg antigens and the development of
pathology. The Th2 cytokines in SM1 are therefore credible
candidate genes at this locus.

Our annotation of these QTL also revealed the presence of
Th17 related genes in four of the five QTL: IL17B and IL12B
in SM1, IL22RA2 in SM2, IL17A and IL17F in 6p21-q21 and
IL6R in1p21-q23. Although IL12B (IL12p40) in SM1 is primarily
known as a Th1 cytokine it is also a component of the hetero-
dimeric IL23 cytokine which is important for Th17 maintenance
and expansion (100) and IL6 is important in Th17 T helper cell
differentiation (101). IL17 cytokines are involved in regulation
of worm and egg burdens as well as the development of fibrosis
and granuloma in response to eggs (102). The presence of
Th17 related cytokines in four of the five QTL suggests that
variation in this system may also contribute to variation in

outcome of infection in addition to that caused by variation in
the Th2 system.

CANDIDATE GENE STUDIES

Infection Status and Intensity
We have identified 28 candidate gene studies of Schistosoma
infection or worm burden that reported associations between
24 loci in eleven candidate genes and seven different
phenotypes (Table 3, Supplementary Tables 2, 3). The genes
with associations were IFNG, IL10, IL13, IL4, IL5, STAT6,
CTLA4, FCN2, COLECC11, ABO, and RNASE3. These genes
were all chosen because their protein products were known to
be involved in the response to infection. One study of MASP2
(103) and one on LTA (104) only reported negative results and
are not included in Table 3. We have not attempted any formal
meta-analysis since few loci were replicated and there were
important differences in study design and data reporting in the
studies of loci that were replicated, making any meta-analysis
hard to interpret.
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FIGURE 2 | Schistosomiasis QTL and numbers of publications mentioning each gene in each QTL regions. (A) SM1 region 5q31-q33; (B) 6p21-q21; (C) SM2

6q23-q24; (D) 1p21-q23. Negative log p-values for associations between markers and schistosomiasis are shown on the left-hand axis. Counts of publications which

mention both schistosomiasis and genes in the QTL are shown by the blue columns and on a log scale on the right-hand y axis. Markers used in mapping are shown

in red on the top axis (including genes used as markers). Genes for which there was only one publication are omitted for clarity and positions of genes and markers

have been adjusted by up to 1Mb for clarity. Note the cluster of Th2 cytokine genes (IL3, IL4, IL5, IL9, IL13) in SM1 with large numbers of publications between 131

and 135Mb but low LOD scores. However, in a reanalysis of the same data using weighted pairwise correlations the peak of the QTL shifted toward this cytokine

cluster (69).

Schistosome eggs induce granulomatous Th2 responses (IL4,
IL5, IL9, IL10, and IL13) (32) and antigen-specific IgG1, IgG4,
and IgE (105). The SM1 region on chromosome five identified
by Marquet et al. (4) (Figure 1) included the prototypical Th2

cytokines IL4, IL5, IL9, and IL13, these are strong candidates
for the QTL gene(s) and SNP and all except IL9 have been
found associated with schistosomiasis in candidate gene studies
(Table 3). IL13 and IL4 regulate STAT6 expression which in turn
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regulates IgE class switching (106) and STAT6 variants are also
associated with schistosomiasis (Table 3). IL13, IL4, IL5, and
STAT6 are also involved in regulation of the Th2 response to
schistosomiasis (72, 75, 77–80).

Th1 cytokines and IFNG in particular are involved in the
resistance to the immature worms. Studies of mice and ex vivo
human PBMC have shown that IFNG levels increase in response
to schistosome antigens and are correlated with resistance or
tolerance to infection (27, 107, 108) and a candidate gene study
found an association between the IFNG SNP rs2430561 and
time to reinfection (72). IL10 and CTLA4 downregulate immune
responses in long standing infections (31). COLECC11 and FCN2
are involved in the innate immune response, they both bind to
specific pathogen-associated molecular patterns (PAMPs) on the
pathogen surface and stimulate the complement lectin cascade,
thereby clearing the pathogens by opsonization (82, 83). ABO
regulates blood group and a meta-analysis found evidence for a
protective effect for blood group O (84). RNASE3 also known
as eosinophil cationic protein (ECP) is a secretory protein of
eosinophil granulocytes that efficiently kills the larval stage of
S. mansoni (85).

The Ensembl Variant Effect Predictor was used
to provide functional annotations for these variants
(Supplementary Table 5). In the functional annotation only
rs231775 inCTLA4 and rs20541 in IL13were predicted to have an
effect on function. Both of which were non-synonymous variants
and were classified as risk factors by ClinVar (109), although
SIFT (110), and Polyphen (111) predicted the effect of these
SNP would be benign. Other SNP had no predicted effects on
function, possibly because they are not functional but are linked
to functional SNP nearby. However, the functional annotation
cannot detect all functional variants and experimental work has
shown that IL13 expression is regulated by rs1800925 (112).
Further detailed studies will be required to determine which of
the SNP are truly functional and which are not functional but
still potentially useful markers for risk of schistosomiasis.

Pathology: Hepatic and Periportal Fibrosis
It has been noted since at least 1974 that the development of
severe fibrosis is clustered in families and is not well-correlated
with intensity of infection suggesting that the mechanisms
regulating infection intensity and pathology are not closely
coupled (5). We found 20 studies which identified associations
with schistosomiasis related pathology at 46 candidate SNP
or haplotypes in 21 genes outside the HLA complex (Table 4,
Supplementary Table 2). Few of the studies applied any multiple
testing corrections and 15 out of the 43 associations would not be
significant after a Bonferroni correction (Table 4).

There are sixteen genes for which an effect has only been
reported for fibrosis and not for infection: APOE, CCN2, HSPA5,
IFNGR1, IL22RA2, MAPKAP1, IL1RL1, TNFA, mTOR, AKT2,
TGFB1, TGFBR1, TGFBR2, ACVRL1, SMAD9, and SMAD3
(Tables 3, 4). Five genes have been associated with both fibrosis
and intensity of infection (RNASE3, IL4, IL10, IFNGI, and IL13).
Four genes were associated with fibrosis in more than one
population: IFNGR1, IL22RA2, CCN2, andMAPKAP1 (Table 4),
the two former genes are also in the SM2 QTL (55, 71, 86,

90, 93). Although these sixteen genes have not been tested for
associations with infection status or intensity it is plausible
that some of them are only associated with pathology. All of
these genes except APOE and IL1RL1 have been associated with
the regulation of fibrosis (Table 4) and variation in these may
regulate risk of pathology irrespective of intensity of infection.

The Ensembl Variant Effect Predictor was used to
provide functional annotations for the SNP in Table 4

(Supplementary Table 5). Two non-synonymous SNP in
APOE (rs7412 and rs429358) were predicted by ClinVar to
be a risk factor, pathogenic and involved in drug response
(109), the rs7412 SNP was also predicted to be deleterious or
damaging by SIFT (110) and Polyphen (111). A non-coding
SNP in LTA (rs1800629) was predicted to be involved in drug
response by ClinVar (109) and a non-coding SNP (rs1800872)
in IL10 was predicted to be risk factor by ClinVar. Other SNP in
Table 4 did not have functional annotations, and many may be
marker SNP that are linked to functional variants rather than
functional themselves.

A recent study found that just 32 SNPs could predict who
gets severe hepatic fibrosis in Brazil with 63% sensitivity and
90% specificity (5). This review emphasized the importance
of TGFB signaling pathway and IL22. TGFB is also involved
in the differentiation of Th17 cells (113), and together with
SMAD regulates Th17 in response to another worm infection
Echinococus multilocularis (114) providing further justification
for systematic investigation of the role of variants in the
Th17 pathway in differences in response to infection. IL22
and IL17 are co-expressed by Th17 CD4+ T cells and
polymorphisms have been associated with hepatic fibrosis in
the IL22 receptor IL22RA2 (5, 90). IL22 also has protective
effects on the intestinal epithelium against toxic bacterial
products (5).

Associations With the HLA Region
The HLA region is associated with response to many
communicable and non-communicable diseases. The importance
of CD4+ T helper cells in the response to schistosomiasis, and
the role of HLA class II alleles in recruiting these, suggests that
variation in the HLA region may play an important role in
control of schistosome infections. However, associations were
not found in this region in the whole genome linkage scans either
for worm burden or pathology (4, 68, 71).

Two reviews reported 17 and 18 studies, respectively, of
associations of HLA markers with schistosomiasis induced PPF
(7, 8), but surprisingly we could not find any studies of HLA
genes and worm burden (Table 3, Supplementary Table 3). We
have found only one study of genes in the HLA region and
schistosomiasis that has been published in the 9 years since
those reviews. A SNP in Major histocompatibility complex class
I chain-related A (MICA) was associated with liver fibrosis in a
Han Chinese population (76).

It has been emphasized that the problems of extensive linkage
disequilibrium within the HLA region, the small sizes of the
studies reviewed, the allelic diversity and large variations in allele
frequencies between populations mean that these studies may not
replicate in different populations and need further confirmation
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TABLE 4 | SNP which have been found to be associated with schistosomiasis pathology related phenotypes in candidate gene studies.

SNP Gene Phenotype Species Not associated Associated References

rs1327475 IFNGR1 HF Sm NA Egypt (54)

rs2243250§ IL4 HF Sm NA Egypt (54)

rs1056854 TGFB1 HF Sm NA Egypt* (54)

rs373880612 IFNG PPF, HF, PH Sm NA Sudan* (55)

rs1861494 IFNG PPF, HF, PH Sm NA Sudan* (55)

IFN-gR1 6q22-q23 IFNGR1 HF, PH Sm NA Sudan (71)

rs3037970 CCN2(CTGF) HF, PH Sj

Sm

China

Sudan

Brazil

China (71)

rs1257705 CCN2(CTGF) HF, PH Sj

Sm

Sudan

Brazil

China

China* (86)

rs2151532 CCN2(CTGF) HF, PH Sj

Sm

China

Egypt

China* (54, 86)

rs9402373 CCN2(CTGF) HF, PH Sj

Sm

NA 2 China*

Sudan

Brazil*

(86)

rs9399005 CCN2(CTGF) HF, PH Sj China China* (86)

rs6918698 CCN2(CTGF) HF, PH Sj

Sm

China

Sudan

China*

Brazil*

(86)

rs1931002 CCN2(CTGF) HF, PH Sj China China (86)

rs12526196 CCN2(CTGF) HF, PH Sj

Sm

Sudan

Brazil

2 China* (86)

rs1800925C-

rs20541A§
IL13 HF, PH Sj NA China (87)

rs1800925§ IL13 HF PH Sj NA China* (87)

rs12712135 ST2 (IL1RL1) IL1RL1 Sj

Sm

NA China

Brazil

(88)

rs1420101 ST2 (IL1RL1) IL1RL1 Sj

Sm

NA China

Brazil

(88)

rs6543119 ST2 (IL1RL1) IL1RL1 Sj

Sm

NA China

Brazil

(88)

rs7412, rs429358

APOE3

APOE TC, LDL Sm Brazil NA (89)

rs6570136 IL22RA2 HF, PH Sj

Sm

NA China

Brazil*

Sudan*

(90)

rs7774663 IL22RA2 HF, PH Sj

Sm

China Sudan

Brazil*

(90)

rs2064501 IL22RA2 HF, PH, IL22 Sj

Sm

NA China*

Brazil*

Sudan*

(90)

rs11154915 IL22RA2 HF, PH, IL22 Sj

Sm

China

Brazil

Sudan* (90)

rs7749054 IL22RA2 HF, PH, IL22

level

Sj

Sm

China

Sudan

Brazil* (90)

rs1800870 IL10 PPF Sm NA Brazil (91)

IL10

(-1082/-819/-592)§
IL10 PPF Sm NA Brazil (91)

rs1800629 TNFA PPF, TNFA Sm NA Brazil (92)

rs10118570 MAPKAP1 HF, infection Sj NA 2 China (93)

rs391957 HSPA5 HF, infection Sj NA China (93)

rs17025963

rs185882198

rs71093915

TGFBR2 HF Sm NA Brazil (5)

(Continued)
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TABLE 4 | Continued

SNP Gene Phenotype Species Not associated Associated References

rs1690215

rs56368010

ACVRL1(ALK1) HF Sm NA Brazil (5)

rs114046193

rs12345675

TGFbR1 (ALK5) HF Sm NA Brazil (5)

rs138079455

rs10555873

rs77414361

SMAD9 HF Sm NA Brazil (5)

rs12913547

rs12914140

rs12439500

SMAD3 HF Sm NA Brazil (5)

rs746822072 RNASE3 (ECP) HF Sm NA Uganda (85)

rs1800629 TNFA PPF regression

after treatment

Sm NA Brazil (94)

rs2295080 mTOR HF, infection Sj NA China (95)

rs7254617 AKT2 HF, infection Sj NA China* (95)

Loci that have been found associated with schistosomiasis in more than one population are shown in bold. *Loci that are not significant after Bonferroni correction. §SNP which are also

associated with infection (Table 3). Studies of classical HLA loci have been excluded since they have been fully reviewed elsewhere (7, 8). Sh, S. haematobium; Sm, S. mansoni; Sj,

S. japonicum. The “Associated” column shows the locations of studies where a significant association has been found and the “Not Associated” column shows the location of studies

that failed to show a significant association. PPF Periportal Fibrosis; PH Portal Hypertension; PT Portal thickness, including portal vein diameter and portal vein branch point thickness,

HF Hepatic Fibrosis; AHSD Advanced HepatoSplenic Disease, TC Total Cholesterol, HDL High Density Lipoprotein, TNFA Median levels TNFA higher in patients with PPF, IL22 level of

IL22 in plasma, IL1RL1 level of soluble IL1RL1 in plasma. IL-10 (−1082/−819/−592) represents a haplotype of rs1800870, rs1800871, and rs1800872. NA, Not applicable.

from larger studies (7). However, some alleles of HLA class II
loci DQA1, DQB1 and DRB1 and HLA class I HLA-A and HLA-
B were associated with PPF in a meta-analysis that combined
evidence from 2 to 3 studies for each allele evaluated (8) and these
associations may be robust.

DISCUSSION

Replication of Candidate Gene Studies for
Infection
Few of the candidate gene studies shown in Tables 3, 4

applied correction for testing multiple SNPs and the 32
associations that would not remain significant after such a
correction are indicated by asterisks. The lack of Bonferroni
corrections suggests that some of these studies will not
replicate and, for some of these loci, there are studies
that have not replicated the association (Tables 3, 4),
although this is often when using a different phenotype.
Notably, half of these studies that did not replicate an
association were at loci that were significant after a
Bonferroni correction.

There are many instances of failures to replicate candidate
gene studies. One review found that only 6 out of 166 associations
replicated in more than 75% of studies, although 97 of the
166 associations (58%) were reproduced in at least one study
(115). Failure to replicate can be due to the initial observation
being due to random variation in allele frequencies between
test and control samples (a type one error). However, genuine
associations can fail to replicate because of linkage between
the marker SNP and the functional SNP varying between
populations, small study sizes, variable penetrance, population
variation at modifier loci, (occult) population stratification

within study populations or differences in allele frequencies
between populations leading to type two errors. In addition,
it is also possible for different SNP in the same gene to be
most important in regulating a response in different populations
or individuals (116). Therefore, most of these observations
should be considered provisional until adequately poweredmeta-
analyses can be conducted.

Associations with infection were replicated at two SNP (IL13
rs1800925; IL4 rs2243250), and both of these SNP and also
the IL10 (−1082/−819/−592) haplotype were also found to be
associated with pathology (Tables 3, 4), despite the studies using
different phenotypes and in one case different parasite species.
The IL13 rs1800925 SNP was associated with schistosomiasis
in four infection related studies and one pathology study and
all studies that included this SNP found an association with it,
despite the association not being significant after a Bonferroni
correction in any of these studies. The high level of replication at
this SNP suggests that these associations may be robust despite
the lack of significance in individual studies. Functional data
also supports a role for rs1800925, which is in the promoter of
IL13, and is associated with increased expression of IL13 from
stimulated cells in vitro (112). Since IL13 regulates IgE levels via
STAT6 (106), there is a plausible mechanism for a role for this
SNP in response to infection, increasing the confidence that it is
a genuine association. Although IL4 expression is also associated
with IgE levels, the rs2243250 SNP is not (117), so its impact on
intensity of infection must be via some other mechanism.

The Th17 Pathway Has Been Neglected in
Schistosomiasis Association Studies
Since the Th2 pathway is the dominant response to helminth
infections and is the main pathway for response to egg antigens
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(28, 30), genes in this pathway have been well-represented in
association studies (Tables 3, 4) and these have confirmed the
importance of variation in this pathway for outcome of infection.
However, the Th1 and Th17 pathways are also important,
particularly in the early stages of the infection (26, 29, 36, 37).
Variants in IL17F and IL17RA have been found associated with
cerebral malaria (118) and similar variation may contribute
to the outcome of schistosome infection. Our annotation of
QTL, with the genes that have published associations with
schistosomiasis, revealed an excess of Th17 pathway genes in
these QTL (Figures 1, 2). There have been no association studies
to test candidate gene hypothesis for three out of the five QTL
(Table 2) and there are Th17 genes in four of the five QTL
(underlined in Table 2), which could be priorities for future
association studies.

It is possible that variation in other Th17 pathway genes
outside of the QTL also contribute to variation in response to
infection. A KEGG pathway diagram of Th17 cell differentiation
and a list of 108 genes in this pathway is shown in
Supplementary Table 6.We have obtained a list of the 1,742,019
SNP in these genes from dbSNP and kept the 1,052 SNP that
were predicted to be “pathogenic” by ClinVar, irrespective of
minor allele frequency (Supplementary Table 7). We also kept
SNP with minor allele frequency > 5% and that had any of the
following functional classifications: splice acceptor variant, stop
gained, initiator codon variant, stop lost, splice donor variant,
missense variant, terminator codon variant, frameshift variant.
This left a list of 2,701 SNP in the Th17 pathway which are most
likely to have an effect on function and that could be priorities for
further testing (Supplementary Table 7).

Which Are the Optimal Study Designs to
Discover Susceptibility Loci?
Approaches for discovering susceptibility loci for parasitic
infections have been reviewed previously (119). The major
approaches are association studies in unrelated individuals and
linkage studies within families, the merits of which have been
evaluated by Abel and Dessein (120). We noted in this review
that family based designs were the first to discover QTL loci in
schistosomiasis (4), and these were followed up with considerable
success by candidate gene studies in these QTL. Schistosomiasis
affected communities are frequently geographical clusters of
related individuals where case control studies can be confounded
by cryptic relatedness. In contrast family-based association
studies exploit this relatedness by estimating disequilibrium in
transmission of alleles within families.

Schistosomiasis is also an excellent setting for family-based
linkage studies of infection intensity because children are the
most heavily infected; therefore, parents are often available
for genotyping to create complete families, unlike adult onset
diseases. However, it is more difficult to collect full families for
complications of chronic schistosomiasis such as fibrosis that
affect adults. Whole genome linkage studies have only been
undertaken on two populations, one in Brazil and one in Senegal,
further studies to identify loci regulating intensity of infection in
additional populations should be undertaken and could enlarge
our understanding of the mechanisms of response to infection. It
has already been shown that 32 SNP can be used to identify those

at highest risk of developing pathology after S. mansoni infection
(5). If the 20% of the people that shed 80% of the eggs could also
be identified they could be targeted for regular treatment which
could dramatically reduce the number of eggs in the environment
and the pressure of infection on the whole community.

CONCLUSION

Despite the remarkable success of the early linkage studies that
identified major QTL loci, no further whole genome scans for
association have been conducted and the QTL genes underlying
these loci have not been definitively identified. All subsequent
studies have been candidate gene linkage and association studies
focussing on genes within the QTL regions SM1, SM2, and
the Th2 pathway that are hypothesized to play a role in
schistosomiasis progression. No candidate gene studies have
attempted to identify QTL genes in three of the QTL for
S. mansoni egg count (Table 2). This review has presented
evidence that the Th17 pathway has been overlooked in studies of
the genetics of schistosomiasis and should be prioritized in future
investigations of susceptibility genes.

The rapid development of genotyping technologies makes
large scale genomic studies easier than ever, provided that
well-characterized samples can be obtained. The studies of
Dessein et al. (86) on populations from China, Sudan and Brazil
have demonstrated the value of replicating analyses in multiple
populations and similar replication is needed for other candidate
SNP and genes.
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