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A B S T R A C T   

The presence of urban greenspace may lead to reduced personal exposure to air pollution via several mecha-
nisms, for example, increased dispersion of airborne particulates; however, there is a lack of real-time evidence 
across different urban contexts. Study participants were 79 adolescents with asthma who lived in Delhi, India and 
were recruited to the Delhi Air Pollution and Health Effects (DAPHNE) study. Participants were monitored 
continuously for exposure to PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 μm) for 48 
h. We isolated normal day-to-day walking journeys (n = 199) from the personal monitoring dataset and assessed 
the relationship between greenspace and personal PM2.5 using different spatial scales of the mean Normalised 
Difference Vegetation Index (NDVI), mean tree cover (TC), and proportion of surrounding green land use (GLU) 
and parks or forests (PF). The journeys had a mean duration of 12.7 (range 5, 53) min and mean PM2.5 personal 
exposure of 133.9 (standard deviation = 114.8) μg/m3. The within-trip analysis showed weak inverse associa-
tions between greenspace markers and PM2.5 concentrations only in the spring/summer/monsoon season, with 
statistically significant associations for TC at the 25 and 50 m buffers in adjusted models. Between-trip analysis 
also indicated inverse associations for NDVI and TC, but suggested positive associations for GLU and PF in the 
spring/summer/monsoon season; no overall patterns of association were evident in the autumn/winter season. 
Associations between greenspace and personal PM2.5 during walking trips in Delhi varied across metrics, spatial 
scales, and season, but were most consistent for TC. These mixed findings may partly relate to journeys being 
dominated by walking along roads and small effects on PM2.5 of small pockets of greenspace. Larger areas of 
greenspace may, however, give rise to observable spatial effects on PM2.5, which vary by season.   

1. Introduction 

Long-term exposure to ambient PM2.5 (particulate matter with an 
aerodynamic diameter of less than 2.5 μm) was responsible for 8.8 
million deaths and nearly three years of lost life expectancy per person 
globally in 2015 (Lelieveld et al., 2020). Inhaled PM2.5 can penetrate 
deeply into the lungs and may enter the bloodstream, leading to 
impairment of the respiratory, cardiovascular, metabolic, and neuro-
logical systems via mechanisms of oxidative stress, mutagenicity, and 
inflammation (Feng et al., 2016; Fu et al., 2019). Short-term (daily) 

PM2.5 exposures have been associated with higher mortality (Liu et al., 
2019), increased asthma hospital visits and admissions (Zheng et al., 
2015; Fan et al., 2016), and asthma exacerbations (Orellano et al., 2017) 
in children and adults. Nine of the ten cities with the highest annual 
PM2.5 concentrations in the world are located in India (IQAir, 2021), 
where over 1 million attributable deaths from PM2.5 occur annually 
(Balakrishnan et al., 2019). 

There is increasing evidence that greenspace may be beneficial for 
health, including cardiovascular, respiratory, wellbeing, and other 
health indicators (Kondo et al., 2018; Twohig-Bennett & Jones, 2018; 
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Wendelboe-Nelson et al., 2019; Mueller et al., 2022). Several broad 
themes have been suggested to explain how greenspace may affect 
human health: reducing harm (e.g., mitigating air pollution), restoring 
capacities (e.g., attention restoration), and building capacities (e.g., 
encouraging physical activity), but also potentially causing harm (e.g., 
allergens) (Markevych et al., 2017; Marselle et al., 2021). Thus, an 
important mechanism for greenspace to reduce harm may be lower 
exposure to ambient air pollution – either because green areas have a 
lower density of pollution sources or because of the effect of various 
forms of vegetation in helping to remove some pollutants from the air 
(Salmond et al., 2016). As increasingly more of the world’s population 
inhabits cities, natural areas will become an integral, though con-
strained, component of dense built environments (Haaland & van Den 
Bosch, 2015). Therefore, it is important to promote health benefits of 
urban greenspace and minimise any negative impacts, yet most of the 
existing greenspace research has been undertaken in high income set-
tings, thus representing only a minority of the global population 
(Nawrath et al., 2021). 

Vegetation, predominantly leafy surfaces, can accumulate ambient 
particles through dry deposition (Han et al., 2020), and expanses of 
green open area can aid in dispersing airborne pollutants (Xing & 
Brimblecombe, 2020a), thus reducing ambient concentrations. In a re-
view by Diener and Mudu (2021), greater reductions have been 
observed via dispersion (up to 50% of PM2.5 [Xing & Brimblecombe, 
2020b]) compared to deposition (up to 15% of PM1 [Viippola et al., 
2020]). Coniferous needles, small rough broadleaves, lanceolate or 
ovate shape, and waxy coatings appear to be most effective for PM 
removal via deposition (Corada et al., 2020); however, deposited PM 
may be resuspended into the air without wash-off during periods with 
little precipitation (Pace & Grote, 2020). At the same time, dense tree 
canopies may impede dispersion of dust and traffic emissions on busy 
roads and street canyons (Abhijith et al., 2017), and trees may release 
biogenic volatile organic compounds (BVOCs), leading to the formation 
of PM2.5 as secondary organic aerosols (Lun et al., 2020; Salmond et al., 
2016); these mechanisms could contribute to higher local PM concen-
trations. Many studies have demonstrated the potential for particle 
deposition on different plant species (Cai et al., 2017), including several 
in Indian settings. Road segments with trees in Bangalore were found to 
have significantly lower concentrations of suspended PM than adjacent 
segments without trees (Vailshery et al., 2013). Other environmental 
monitoring studies suggest that leaves have varied capacities to capture 
dust, with higher quantities found on leaves during winter, when higher 
ambient concentrations occur (Das & Prasad, 2012; Chaudhary & 
Rathore, 2018). 

In high ambient air pollution settings, walking has been associated 
with some of the highest personal exposure to PM2.5 (Lin et al., 2020; 
Peng et al., 2021). In Delhi, India, walking has been related to the 
greatest PM2.5 exposures compared to most other travel modes, except 
rickshaws (Maji et al., 2021), as well as the highest inhaled dose per km 
travelled (Goel et al., 2015). Neither of these studies incorporated 
greenspace, and in fact few studies have examined personal PM2.5 ex-
posures and greenspace across different microenvironments. Research in 
Wuhan, China found a weak negative correlation between both forest 
and green land coverage in commuting paths with PM2.5 concentrations 
using satellite and ground monitoring data (Guo et al., 2019), and von 
Schneidemesser et al. (2019) found lower exposure to particles (size 
range of 10–300 nm) when cyclists travelled through greenspaces or 
parks in Berlin, Germany. In settings such as Delhi, where PM concen-
trations vary greatly within each year, the effect of greenspace on per-
sonal exposure may vary with season (Lei et al., 2021). 

In this study, we quantify the minute-by-minute relationship be-
tween greenspace indicators and personal PM2.5 exposure during normal 
day-to-day walking trips in Delhi, India (i.e., within trips). We also 
investigate this relationship at the trip-level (i.e., between trips) to 
assess overall associations, which allows us to compare and contrast 
results both related to those of greener segments and greener trips. Thus, 

these insights contribute valuable, initial evidence on the role of 
greenspace with personal PM2.5 exposure in a high ambient air pollution 
setting. We hypothesised that personal exposures to PM2.5 would be 
lower along segments in walking journeys (i.e., within trips) with more 
greenspace and for overall walking journeys (i.e., between trips) with 
more greenspace. 

2. Methods 

2.1. Study location 

The study took place in the Delhi-National Capital Region (NCR), 
India. The city of Delhi (28◦ 37′N, 77◦12′E, population 25.8 million in 
2018) is the world’s second most populous city (United Nations, 2018). 
It has a subtropical climate with five distinct seasons: winter (Decem-
ber–January), spring (February–March), summer (April–June), 
monsoon (July–September), and autumn (October–November). Average 
daily temperatures can range from 5 ◦C in winter to 45 ◦C in summer 
(Delhi Tourism and Transportation Development Corporation, 2021). 

Air quality varies substantially across seasons, and often exceeds the 
National Ambient Air Quality Standard of 60 μg/m3 24 h mean for 
PM2.5. Ambient PM2.5 concentrations are typically highest during 
autumn/early winter, in part due to biomass and agricultural crop res-
idue burning: 20% of PM2.5 concentrations is attributable to non-local 
fires during this period, a figure that can reach as high as 75% during 
air pollution episodes (Kulkarni et al., 2020). Fireworks of annual Diwali 
celebrations in October/November can also result in very high spikes in 
PM2.5 (Chen et al., 2020). By contrast, lower concentrations occur dur-
ing the monsoon season assisted by wet deposition. Seasonal mean 
concentrations of PM2.5 range from 76 μg/m3 in the monsoon period to 
around 288 μg/m3 in winter (Tiwari et al., 2014). The top three sources 
of PM2.5 in Delhi during the years 2013–2016 were biomass burning 
(23%), vehicle emissions (16%), and soil dust (13%) (Jain et al., 2020), 
though the contribution from transport has been estimated elsewhere to 
be as high as 45%, excluding resuspended road dust (Sahu et al., 2011). 
PM2.5 in Delhi exhibits diurnal variation, with concentrations at a 
minimum during mid-afternoon (influenced by increased mixing from 
solar radiation) and rising during evening rush hour and remaining 
elevated at night when trucks are permitted to enter the city after 23:00 
(Murthy et al., 2020). 

Delhi has approximately 20% green cover (Ramaiah & Avtar, 2019). 
The centre contains the highest proportion of stable vegetation with 
large, attractive parks and gardens (Paul & Nagendra, 2017) and also 
has a greater range of species and more mature street trees (Bhalla & 
Bhattacharya, 2015). Leaf-fall in Delhi mostly occurs by mid-January to 
March before the hot, dry season; leaves typically reappear by May or 
June, prior to monsoon rains (Krishen, 2006; Paul & Nagendra, 2015). 

2.2. Study participants 

Study participants were recruited as part of the Delhi Air Pollution 
and Health Effects (DAPHNE) study, which aimed to establish quanti-
tative exposure-response relationships with air pollution and maternal 
and respiratory health (https://www.urbanair-india.org/daphne). Par-
ticipants were adolescents who were receiving outpatient care for 
asthma at, and who lived within a 40 km radius of, the paediatric pul-
monology outpatient clinic at the All India Institute of Medical Sciences 
(AIIMS). Asthmatic adolescents were selected for the DAPHNE study 
population, since the prevalence of asthma symptoms in children and 
adolescents is increasing, particularly in low and middle income coun-
tries (LMICs) (Ferrante & La Grutta, 2018); this panel can facilitate 
future examination of air pollution and lung growth, a research gap 
especially relevant for individuals with asthma (Schultz et al., 2017). 
Personal monitoring, involving the completion of exposure and health 
questionnaires and collection of personal exposure data to PM2.5 using 
novel high resolution sensors over 48 h periods, commenced in August 
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2018 and was ongoing until disrupted by the Covid-19 pandemic in 
March 2020. As of that time, 690 asthmatic subjects had been screened, 
with 254 being found eligible (i.e., not excluded by age, distance to 
clinic, individual/school unwilling to participate, or health condition); 
181/254 (71%) provided informed consent for follow-up health and 
exposure measurements. The current analysis is based on a panel of 79 
asthmatic adolescents who provided data on walking journeys (details in 
section 2.5). Participants ranged from ages 10 to 18 (mean = 13) years 
and were mostly (71%) male; a quarter (25%) of households had 
completed studies beyond secondary school (e.g., professional or post-
graduate degree) (Table 1). Ethics approval for the DAPHNE study was 
granted by the Institute Ethics Committee of AIIMS (Reference numbers: 
IEC-256/May 05, 2017, RP-26/2017, OP-13/August 03, 2018). 

2.3. Air pollution measurements 

Each participant was given a personal AirSpeck particle sensor 
(Figure S1) and an Android phone with the AirRespeck app (Arvind 
et al., 2016, 2018a, b). The phone and sensor were provided in a satchel, 
which was to be worn by participants whenever possible during each 48 
h monitoring period (up to three monitoring sessions). The sensor’s inlet 
fan was positioned within a gap in the satchel such that air samples were 
pulled directly from the outside air. The AirSpeck device measures 
particle counts using an optical counter in 16 bins of sizes between 0.38 
and 17 μm, as well as temperature and relative humidity (rH), with a 
sampling rate of 30 s. All data are transmitted wirelessly to the App and 
stored as time- and GPS-stamped data. To calibrate each AirSpeck device 
for the aerosol composition of Delhi, the sensors were co-located with a 
continuous particulate reference monitor (FH 62 C14 series, Thermo 
Fisher Scientific Inc., USA) situated at the Indian Institute Of Tech-
nology–Delhi campus. The AirSpeck PM2.5 data were averaged to match 
the sampling interval of the reference monitor PM2.5 data. As high rH 
values can affect the reliability of sensor measurements (Jayaratne et al., 
2018), a piecewise least-squares linear regression model was used to 
calculate two slopes (mlow, mhigh) and intercepts (clow, chigh) (see 
Equation (1)) for periods of high and low rH. The regression model was 
repeatedly run to test a range of rH thresholds (65–95%) until one was 
identified that minimised the squared error between the calibrated and 
reference PM2.5. This tuning process was repeated for each sensor 
individually (see example plots in Figures S2, S3). Calibrated data from 
personal monitoring were converted to 1 min mean concentrations and 
linked to GPS location data. 

PM2.5,calibrated ={
mlow × PM2.5,measured + clow, if rHmeasured < rHthreshold
mhigh × PM2.5,measured + chigh, if rHmeasured ≥ rHthreshold

(1)  

2.4. Greenspace indicators 

We classified each minute of each person’s journey using four in-
dicators of greenspace within commonly used radii of 25, 50, 100, and 
250 m to capture the immediate and neighbourhood microenvironments 
around the participant’s 1 min mean GPS location: the Normalised 
Difference Vegetation Index (NDVI), tree cover (TC), green land use 
(GLU), and parks or forests (PF) (Mueller et al., 2020, 2021). 

NDVI represents the greenness of a given area based on remotely 
sensed spectral reflectance measurements in the red (visible) and near- 
infrared regions of the electromagnetic spectrum (Rhew et al., 2011). 
It has continuous values ranging from − 1 (ice) to 0 (rock, built-up sur-
faces) to +1 (dense vegetation). TC indicates the percentage (0–100%) 
covered by the canopy of trees as visible from satellites. GLU includes 
parks, forests, sports pitches, and other such natural or green types of 
land use. 

NDVI values were calculated using Sentinel-2 satellite images 
available from the Copernicus Open Access Hub at 10 m spatial and five- 
day temporal resolutions (European Space Agency, 2015). To remove 
the influence of bluespaces (e.g., rivers, lakes), NDVI raster data with 

Table 1 
Descriptive characteristics of the trip data (n = 1,817 observations) and study 
participantsa.  

Characteristic n (%) or mean 
(SD) 

PM2.5 (μg/m3) 133.9 (114.8) 
NDVI (-0.1 to 1.0) 

25 m 
50 m 
100 m 
250 m 

0.17 (0.12) 
0.16 (0.10) 
0.17 (0.09) 
0.18 (0.08) 

Tree cover (%) 
25 m 
50 m 
100 m 
250 m 

3.0 (2.0) 
2.9 (1.8) 
3.0 (1.6) 
3.3 (1.5) 

Green land use overlap (proportion)  
25 m 

50 m 
100 m 
250 m 

0.04 (0.17) 
0.04 (0.15) 
0.04 (0.12) 
0.05 (0.09) 

Parks or forest overlap (proportion)  
25 m 

50 m 
100 m 
250 m 

0.03 (0.15) 
0.03 (0.13) 
0.03 (0.10) 
0.04 (0.08) 

Presence of motorway/primary/secondary roads within 
25m (y/n)  

25 m 
50 m 
100 m 
250 m 

80 (4.4%) 
279 (15.4%) 
457 (25.2%) 
806 (44.4%) 

Presence of tertiary roads within 25m (y/n)  
25 m 

50 m 
100 m 
250 m 

171 (9.4%) 
220 (12.1%) 
338 (18.6%) 
707 (38.9%) 

Presence of other roads within 25m (y/n)  
25 m 

50 m 
100 m 
250 m 

1,429 (78.7%) 
1,635 (90.0%) 
1,750 (96.3%) 
1,814 (99.8%) 

Population density (persons/km2) 13,301 (8,539) 
Season  
Winter 

Spring 
Summer 
Monsoon 
Autumn 

649 (35.7%) 
125 (6.9%) 
241 (13.3%) 
628 (34.6%) 
174 (9.6%) 

Time of day  
06:00–11:59 

12:00–17:59 
18:00–22:59 

574 (31.6%) 
728 (40.1%) 
515 (28.3%) 

Day of the week  
Weekday 

Weekend 
1,615 (88.9%) 
202 (11.1%) 

Year  
2018 

2019 
2020 

200 (11.0%) 
1,328 (73.1%) 
289 (15.9%) 

Temperature (◦C) 25.8 (8.9) 
Relative humidity (%) 67.9 (16.0) 
Precipitation (any) 44 (2.4%) 
Wind speed (m/s) 2.2 (1.4) 
Wind direction  
None 

North 
East 
West 
South 

123 (6.8%) 
411 (22.6%) 
428 (23.6%) 
588 (32.4%) 
267 (14.7%) 

Gender  
Male 

Female 
56 (70.9%) 
23 (29.1%) 

Age (years) 13.1 (1.9) 
Highest household education  
Professional/Honours 5 (6.3%) 
Graduate/Postgraduate/Diploma 15 (19.0%) 

(continued on next page) 
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values of < -0.1 were excluded from greenness calculations. Images with 
cloud coverage of <10% were identified on February 9, April 10, June 
29, and October 17, 2019 to reflect specific vegetation levels during 
different seasons. Mean NDVI values were calculated from the image 
closest to when the journey occurred. Average annual tree cover of 
woody vegetation of height in excess of 5 m in 2015 was extracted from 
the Landsat Vegetation Continuous Fields tree cover layer (30 m spatial 
resolution) (Sexton et al., 2013). GLU was based on open-sourced vector 
data (OpenStreetMap (OSM) data downloaded from www.geofabrik.de 
on February 25, 2020), and a shapefile was created to include all 
polygons categorised as allotments, cemetery, forest, grass, heath, 
meadow, nature reserve, orchard, park, recreation ground, or scrub; 
farms were excluded from the GLU layer (See Figure S4 for greenspace 
maps). A separate PF shapefile was generated based on a subset of the 
GLU layer, which included only park and forest polygons. Mean values 
of NDVI, TC, and the proportion of GLU, and separately PF, were 
calculated for 25, 50, 100, and 250 m radii around personal GPS 
coordinates. 

2.5. Identification of walking journeys 

We identified walking journeys by minute-by-minute analysis of 
personal mobile phone GPS data. Walking trips were defined as se-
quences of at least 5 min’ duration where individuals travelled >100 m 
in 2 min at a speed of <10 km/h (Stewart et al., 2017; Van Hecke et al., 
2018). We allowed interruptions of up to 5 min in the travel record to 
account for brief breaks en route (e.g., to wait for traffic lights) (Carlson 
et al., 2015). We excluded data where the GPS accuracy was recorded as 
being poorer than 200 m, journeys made between 22:59 and 6.00, and 
where recorded PM2.5 concentrations were <1 or ≥2,000 μg/m3. Home 
and school addresses were geocoded by the study team during personal 
monitoring periods; all trips were included regardless of origin/-
destination. We then visually inspected each selected journey to confirm 
that it appeared to be a real journey with a linear sequence of locations 
along roads and paths using OSM (www.openstreetmap.org). 

2.6. Other covariates 

For each journey location, we also assembled data on the presence 
and total length of motorways, primary, secondary, tertiary roads, and 
railways calculated using the OSM data, and the mean population 
density calculated using 1 × 1 km estimates for 2020 (CIESIN, 2018). 
Three-hourly temperature, relative humidity, precipitation, and wind 
speed and direction (over the previous 10 min) data (Yadav et al., 2019) 
were obtained from a single meteorological monitoring station at Saf-
darjung airport in Delhi (28◦35′04′′N, 077◦12′21′′E) (www.rp5.ru). 

2.7. Data analysis 

We analysed the association of the natural logarithm of the 1 min 
mean concentration of PM2.5 with each of the four indices of greenspace 
and four radii of averaging using various levels of covariate control. The 
logarithm of exposure was selected to account for the skewed distribu-
tion of PM2.5 concentrations, as evidenced previously in an Indian 
setting (Milà et al., 2018). 

Within-trip analysis of changes in PM2.5 in relation to greenspace 
markers at 1 min resolution was based on a fixed effects regression 
model of time-varying panel data within individual trips (Gunasekara 
et al., 2014). Results by season (autumn/winter or spring/-
summer/monsoon) were determined by fitting an interaction term. 
Models were fitted without adjustment for other covariates (model 1) 
and adjusting for time-varying location-specific markers of the type of 
road within the 25 m radius (see ‘traffic analysis’ in supplementary 
material), presence of railways, and population density (model 2). All 
models included robust standard errors. Greenspace coefficients are 
reported as the average percentage change in PM2.5 concentration for an 
interquartile range (IQR) increase of NDVI and TC, or a 0.1 increase in 
the proportion of overlapping GLU and PF determined for each 1 min 
time segment of the walking trip. 

Between-location (between-trip) analysis of trip-mean PM2.5 in 
relation to greenspace markers was based on a mixed effects regression 
model of trip-level averaged data with a random intercept for partici-
pant and personal monitoring period (i.e., removing any ‘within-trip’ 
effects [Bell et al., 2019]). Results by season (autumn/winter or 
spring/summer/monsoon) were again determined by fitting a season 
interaction term. Models were fitted without adjustment for covariates 
(model 1); with adjustment for the busiest type of road within a 25 m 
buffer anywhere on the journey, presence of railways, and population 
density (model 2); adjustment for time of day (morning [6:00–10:59], 
afternoon [11:00–17:59], evening [18:00–22:59]), weekday/weekend 
day, year, temperature, precipitation, rH, wind speed, and wind direc-
tion as a categorical variable (model 3); and adjustment for the cova-
riates of both models 2 & 3 (model 4). The coefficients represent the 
percentage increase in PM2.5 for the trip-mean level of greenspace 
marker as defined above under the within-trip analyses. 

2.8. Sensitivity analysis 

We also report separate analyses for the within-trip analyses using 2 
min averaging of personal PM2.5 concentrations (to smooth the vari-
ability of the minute-by-minute data), and adjusting for a marker of 
average visibility at each trip location in the between trip analysis (as an 
indicator of obstruction from physical structures in the built environ-
ment - see ‘visibility analysis’ in supplementary material). 

Statistical analysis included only trips with complete data for all 
covariates. Geospatial analysis was undertaken in QGIS v.3.10.1 (QGIS, 
2014) and statistical analysis in Stata v16 (StataCorp, 2019). 

3. Results 

There were 79 participants who provided data on a total of 199 
walking trips, with between 1 and 10 trips per person (approximate 
locations shown in Fig. 1). The mean trip duration was 12.7 (standard 
deviation [SD] = 9.2; maximum = 53) min and the mean distance was 
733 (SD = 580; maximum = 3361) m. Slightly more than half of the 
walking journeys started/ended within 100 m of home (105/199, 53%), 
school (48/199, 24%), or the AIIMS clinic (43/199, 22%); the large 
majority (164/199, 82%) of trips involved at least one of these locations. 

Mean NDVI values were <0.20 at all radii of averaging (highest in 
February [mean = 0.19] and lowest in June [0.14] [25 m radius]), but 
showed appreciable variation within and between trips, as did the 
percent of TC, which had an overall mean of 3% (Table 1, Fig. 2). NDVI 
and TC IQRs ranged from 0.11 to 0.17 and 2.4%–3.0%, respectively 
(Table S1). The percent of GLU was very low for the large majority of 
trips but reached 100% for some locations of a proportion of trips (at 
radii up to 100 m, or radii up to 50 m for park or forest land) – Fig. 2. 

There was a strong correlation (r ≥ 0.85) between NDVI and TC, but 
only weak correlations between both NDVI and TC and GLU (r < 0.30) 
(Table S2, Figure S5). Correlations among other covariates were mainly 
weak with the exception of a moderate negative relationship between rH 
and temperature (r = − 0.59) (Table S2). 

Table 1 (continued ) 

Characteristic n (%) or mean 
(SD) 

Intermediate/Secondary school 20 (25.3%) 
High School Certificate 17 (21.5%) 
Middle School Certificate 7 (8.9%) 
Primary School/Literate 6 (7.6%) 
Illiterate 9 (11.4%)  

a n = 79 participants; n = 199 trips. 
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The overall mean concentration of PM2.5 was 133.9 μg/m3, with 
variation both between (SD = 104.9 μg/m3) and within (SD = 53.5 μg/ 
m3) trips (Fig. 2). Concentrations were higher in autumn/winter (mean 
= 172, SD = 126 μg/m3) and lower in the spring/summer/monsoon 
season (mean = 102, SD = 93 μg/m3) (Figure S6). 

In Fig. 3, we map as illustrative examples two individual walking 
trips and the co-variation in their minute-by-minute PM2.5 and green-
space indicators. Trip 1 shows a gradual rise in PM2.5 concentration and 
fall in NDVI over the journey, with appreciable minute-to-minute vari-
ations. Some local increases in NDVI appear to be associated with 
modest reductions in PM2.5, and there is a moderate negative correlation 
(r = − 0.50) between NDVI and PM2.5. Trip 2 is a shorter trip (in the 
monsoon season), much of which occurs in areas classified as GLU. 
Again, there appears to be an increase in PM2.5 as the walker leaves the 
area of very high GLU and a moderate negative correlation (r = − 0.44) 
between PM2.5 and NDVI. 

The results of regression analyses for all greenspace markers are 
shown in Figs. 4 and 5 and Supplementary Tables S3 & S4. In unadjusted 
models of the within-trip analysis, confidence intervals all included 0. In 
the spring/summer/monsoon season, point estimates were below 0 for 
NDVI, TC, and GLU; despite these relationships being non-significant, 
there was a tendency of stronger (negative) associations at larger radii 
of averaging. In the autumn/winter season, there was no clear general 
pattern of association, although there were only positive associations 
with GLU and PF. Coefficients were similar in adjusted models, with TC 
(25, 50 m) including confidence intervals below 0. Additional co-
efficients were nominally statistically significant using 2 min averaged 
PM2.5 data (Figure S7). 

The patterns of inverse association observed in the unadjusted be-
tween-trip analyses were broadly similar to those of the within-trip ana-
lyses for NDVI and TC (Fig. 5). Point estimates became progressively 

more negative at larger radii of averaging in the spring/summer/ 
monsoon season. By contrast, the results for GLU and PF in the spring/ 
summer/monsoon season suggested positive associations with personal 
PM2.5 exposure at all radii of averaging (with confidence intervals 
excluding 0, except at the 250 m radius). The results for the autumn/ 
winter season were all fairly flat (i.e., no association for any marker) and 
showed no clear pattern of change in point estimates across the radii of 
averaging. NDVI and TC coefficients in spring/summer/monsoon season 
were attenuated in adjusted models; GLU and PF coefficients were less 
affected (Table S4). 

An analysis of average visibility across each trip found TC was 
associated with reduced PM2.5 concentrations only where there was high 
visibility, with no statistically significant findings with the other 
greenspace markers (Table S5). 

4. Discussion 

Reduction of exposure to air pollution is one of the possible pathways 
by which greenspace may have beneficial effects on health. Our study 
provides insight into this relationship in the high-pollution setting of 
Delhi, India. This contrasts with the majority of research in this field, 
which has focused on lower pollution environments in mainly high- 
income settings. 

Overall, our findings suggest generally weak patterns of association, 
which are season-specific. The results of the within-trip analysis were 
suggestive of lower concentrations of personal PM2.5 exposure with 
higher levels of greenspace, notably NDVI and TC (although most con-
fidence intervals overlapped 0), but only during the spring/summer/ 
monsoon season. Point estimates of the size of the effect increased with 
the radius of averaging, possibly suggesting the importance of larger 
scale greenness, rather than small pockets. The results of the trip-level 

Fig. 1. Heatmap showing the density (darker red) of trip locations around Delhi, India, with locations of trip examples in Fig. 3a & b indicated as such. Basemap from 
© Stamen Design, under a Creative Commons Attribution (CC BY 3.0) license. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 2. Within- and between-trip variation in a) PM2.5 concentrations (μg/m3, log-scale), b) NDVI, c) tree cover (%), and d) proportion overlap of green land use 
(GLU) based on data for the 25 m radius of averaging around 1-min trip locations. Vertical bars indicate the interquartile range for individual trips and the dots 
indicate outliers. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Two example walking trips: a) Trip 1, in winter and b) Trip 2, in the monsoon season indicating different road type categories. For each trip we show: (i) map 
data ©Google Maps, (30th December 2016) with a trace of the walk route and (ii) line graphs of the minute changes in PM2.5 concentrations and greenspace in-
dicators at the 25 m radius. Numbers on the maps indicate minutes from the start of the journey (same as the x-axis of the PM2.5 vs time plots). 
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averages (i.e., between journeys) with NDVI and TC produced similar 
findings of reduced exposure to that of the within journey analysis; 
however, coefficients related to GLU and PF showed positive associa-
tions with personal PM2.5 exposure. These results may suggest higher 
overall exposure on walking trips that include GLU or PF. A possible 
explanation for this finding is that the built environment around parks 
may have elevated PM2.5 concentrations attributed to busy roads either 
circumventing or leading to the park (Su et al., 2011). 

There are limited other studies that have examined the relationship 
between personal PM2.5 exposures and greenspace, some of which 
identify inverse associations. Hart et al. (2020) used a bicycle-based 
sampling method in Dallas, USA to measure PM2.5 and derived an 
NDVI-based vegetation footprint and height using Light Detection and 
Ranging (LiDAR) data. These authors found a negative relationship 

between PM2.5 and the amount of vegetation, but a positive link with 
vegetation height, suggesting taller trees may have hindered air pollu-
tion dispersion. von Schneidemesser et al. (2019) used cycling moni-
toring data from routes around Berlin, Germany to sample particle 
number concentrations in the <PM1 range and found reductions of 22% 
compared to the ambient average when cycling in parks or large 
greenspaces not directly next to a road. PM2.5 reductions of up to 50% 
were identified while walking inside a park in Madrid, Spain, when 200 
m from a major road (Gómez-Moreno et al., 2019). Roberts & Helbich 
(2021) assessed exposures in the Netherlands for both residential and 
mobile environments and found a negative correlation between NDVI 
and land use regression-based PM2.5; however, they did not differentiate 
between travel mode, nor indoor or outdoor settings. Guo et al. (2019) 
found weak negative correlations (r < − 0.2) between green land use and 

Fig. 4. Plots of regression coefficients for (i) the 
spring/summer/monsoon season and (ii) the autumn/ 
winter season of within-journey changes in 1 min 
averaged PM2.5 in relation to markers of greenspace. 
Coefficients represent an interquartile range (IQR) 
increase in Normalised Difference Vegetation Index 
(NDVI) and tree cover (TC), and a 0.1 increase in the 
proportion of green land use (GLU) or parks or forests 
(PF). All are presented at averaging radii of 25, 50, 
100, and 250 m around the point location of the in-
dividual. Models include an interaction term for sea-
son. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 5. Plots of regression coefficients for (i) the 
spring/summer/monsoon season and (ii) the 
autumn/winter season of between-location (between- 
trip) analysis of trip mean PM2.5 concentrations in 
relation to markers of greenspace. Coefficients 
represent an interquartile range (IQR) increase in 
Normalised Difference Vegetation Index (NDVI) and 
tree cover (TC), and a 0.1 increase in the proportion 
of green land use (GLU) or parks or forests (PF). All 
are presented at averaging radii of 25, 50, 100, and 
250 m around the point location of the individual. 
Models include an interaction term for season. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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modelled PM2.5 concentrations using data based on commuters’ expo-
sure in Wuhan, China; similarly, this study also did not distinguish 
exposure between travel modes. 

Along with these personal exposure studies, research has also iden-
tified lower PM2.5 concentrations with higher greenspace exposure in 
fixed locations (Dadvand et al., 2012; Dadvand et al., 2015; Cai et al., 
2020; Mueller et al., 2020). Nevertheless, there are several reasons that 
may have contributed to the lack of consistent or larger reductions in 
PM2.5 in the present study. As observed in other research with personal 
sensors (Chatzidiakou et al., 2019), walking in high traffic outdoor 
settings entailed high variation in minute-to-minute PM2.5 exposure 
within trips, thus presenting a challenge to disentangle potentially 
subtle effects of particulate removal in urban areas (Nemitz et al., 2020). 
In addition to the high variation within trips, there were relatively low 
levels of all four greenspace indicators in the trip microenvironments. 
Research suggesting PM2.5 reductions associated with similar indicators 
in residential locations has been conducted in the presence of greater 
vegetation (Mueller et al., 2020); such levels in the present study may 
have been too low to detect a strong effect. Our greenspace exposure 
metrics were based on satellite images for overall greenness and tree 
cover. These data would better capture wider canopies (e.g., broadleaf 
trees), which are more pertinent for particulate removal by deposition, 
but would poorly represent denser trees with smaller canopies (e.g., 
evergreen trees); the latter structure may be more relevant for concen-
tration reductions by dispersion (Han et al., 2020). There were few 
walking trips that occurred in the interior of GLU. Research suggests 
detectable PM2.5 reductions in parks do not occur for at least 100 m 
(Xing & Brimblecombe, 2019), and ideally 400 m, in such areas (Chen 
et al., 2019). Further, there was poor correlation between greenness 
(and tree canopy) and GLU, implying such areas did not always incor-
porate vegetation; thus, its presence did not always represent higher 
greenspace exposure. In hot climates, like Delhi, high temperatures can 
increase the release of BVOCs in trees, thereby creating higher concen-
trations of secondary aerosols (Churkina et al., 2017). Trees can also 
provide valuable shade and more comfortable temperatures, providing a 
preferable location for street vendors (Basu & Nagendra, 2020); spikes 
in PM2.5 concentrations related to, for example, cooking activities, may 
be more likely to coincide with tree-lined locales in such instances. 

Ambient PM2.5 concentrations in Delhi demonstrate strong seasonal 
trends, with much higher concentrations in October–January, when 
biomass burning is an important contributor, than during July–Sep-
tember, when rains scavenge ambient particles (Jain et al., 2020). While 
only borderline statistically significant, we did find more negative co-
efficients in spring/summer/monsoon seasons across radius sizes for all 
greenspace indicators within trips. Although particle deposition tends to 
increase with higher ambient concentrations (Cai et al., 2017), the 
observed associations could indicate the potential of particle deposition 
during periods when vegetation is closer to important sources (e.g., 
traffic) (Janhäll, 2015), compared to a higher contribution from more 
distal sources in winter, such as crop residue burning from surrounding 
agricultural areas (Jain et al., 2020). More generally, it has been esti-
mated that up to 60% of ambient PM2.5 in Delhi originates from outside 
the city (Amann et al., 2017); in this case, urban greenspaces, as mi-
croenvironments with relatively fewer PM2.5 sources and the capacity to 
capture nearby particle emissions, may be less effective to reduce per-
sonal exposures. The autumn/winter months also coincide with the 
period when deciduous trees start to shed leaves, and thus would be less 
effective for particle deposition (Xu et al., 2020); nevertheless, tree bark 
and branches can also accumulate particulates (Xu et al., 2019). Alter-
natively, these seasonal trends may indicate that mitigation mechanisms 
related to greenspace may be more effective, or detectable, during pe-
riods of lower ambient concentrations. A study of monitoring stations in 
Nanjing, China found correlations between green cover and lower PM2.5 
concentrations; however, this relationship was not apparent when 
ambient concentrations were in excess of 75 μg/m3, which also typically 
occurred in the winter (Chen et al., 2016). 

4.1. Overall interpretation 

Overall, our results do not indicate a strong relationship between 
exposure to different types of urban greenspace and personal exposure 
to PM2.5 in walking journeys in Delhi, a high air pollution setting in a 
LMIC context. Nevertheless, our findings provide some suggestive evi-
dence for modest reductions in personal PM2.5 exposure during seg-
ments of walking trips with more overall greenness and TC in spring, 
summer, and monsoon seasons. Greenness and TC on a neighbourhood 
scale may be more relevant, as larger radius sizes were linked to stronger 
PM2.5 reductions, albeit these estimates entailed greater uncertainty 
than those based on smaller areas. At the same time, smaller radius sizes 
would have entailed less spatial overlap and thus may have reflected 
more greenspace variation at each location along the walking path 
(Labib et al., 2020). Walking trips with greater average NDVI and TC 
measures were suggestive of lower personal PM2.5 exposures; by 
contrast, GLU and PF were associated with higher concentrations. 
Nevertheless, further support for the potential role of trees in modifying 
personal PM2.5 exposure was provided by results of the trip-level visi-
bility analysis, for which statistically significant PM2.5 reductions were 
identified only for TC exposure and only in areas with high visibility (i. 
e., where pollution dispersion was less likely to be obstructed by the 
built environment). 

4.2. Strengths and limitations 

Our study benefitted from the use of high spatial and temporal res-
olution personal monitoring of real-time PM2.5 data across different 
seasons in Delhi, India, a high ambient air pollution environment. 
Routes were determined by participants and therefore represented 
realistic exposure scenarios. We used four indicators of greenspace at 
four spatial radius sizes to examine associations with particulates at 
local and neighbourhood scales, and we analysed separately the asso-
ciations with greenspace within and between trips. The results of our 
study represent initial quantification of the air quality associations with 
greenspace in Delhi: a setting where the concentrations, sources, and 
contributions of PM2.5 vary widely across the year. Nevertheless, there 
were several limitations. We were not able to obtain a reliable dataset of 
urban morphology, specifically buildings, for which increased height on 
narrow streets may have adversely affected ambient particulate con-
centrations (Farrell et al., 2015). However, our additional analysis of 
visibility at the trip level suggested that associations with reduced PM2.5 
may be stronger in more open areas, as suggested elsewhere (Abhijith 
et al., 2017). Although we did not quantify characteristics of green-
spaces, such as shape or density, research that did (in Zhengzhou, China) 
found no such associations with PM2.5 concentrations (Lei et al., 2021). 
We did not capture trees at the species level, for which particle depo-
sition and dispersion may have varied; adding this information may 
have refined our estimates. We were also not able to distinguish pollen 
from anthropogenic PM sources, which may have under estimated 
particulate reductions associated with tree cover. Nevertheless, pollen 
grains are typically larger (17–58 μm), although some pollen fragments 
may have been included in the measured PM2.5 concentrations (Mor-
akinyo et al., 2016). It was apparent in the dataset that many of the 
walking trips did not traverse GLU; it is possible that asthmatic partic-
ipants may have avoided certain areas if exposure to certain species (e. 
g., grasses) triggered asthma symptoms (Aerts et al., 2020). More 
broadly, asthmatic participants in a high air pollution setting may have 
avoided walking trips when possible (Tainio et al., 2021). The GPS 
signal in Delhi was often weak and thus unreliable to link to high res-
olution spatial data, which reduced the potential sample size of the 
study. Further, the suspension of personal monitoring in the wake of 
Covid-19 also served to restrict the study sample size. The NDVI and TC 
data were obtained from satellite images and were complete, unlike the 
user-generated data of OSM that we used for GLU. To assess complete-
ness, we calculated the overlap of each radius size with any land use (i. 
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e., not just GLU and excluding the well-defined road network) and points 
of interest and found 9% (250 m) to 29% (25 m) of personal GPS points 
did not intersect with any such identified areas (data not shown); 
therefore, some GLU areas may have been omitted. Ultimately, due to 
the completeness of satellite imagery compared to user-generated 
datasets, we have a higher degree of confidence in the results for the 
NDVI and TC markers than those for GLU and PF. 

To extend the findings in the current study, future research should 
focus on additional air quality monitoring of personal exposures 
particularly inside, but also outside of, greenspaces in Delhi, and other 
high ambient air pollution contexts, across seasons, ideally with 
enhanced detail on plant species and greenspace morphology. At the 
same time, ambitious, multi-pronged emission reduction policies and 
interventions are urgently required to address the multiple sources of 
PM2.5 in Delhi (Amann et al., 2017). 

5. Conclusion 

Our study found weak evidence of reductions in personal exposure to 
PM2.5 in areas of higher greenspace, notably tree cover, within walking 
trips only in the spring, summer, and monsoon season. By contrast, 
higher PM2.5 exposure was associated with those trips having more 
overall green land use (e.g., parks, forests, recreation grounds) during 
this same time of year. This period excludes autumn and winter, when 
Delhi experiences the poorest air quality, suggesting little association 
with greenspace when PM concentrations are high and there are larger 
contributions from distant sources. Our results warrant further in-
vestigations with larger sample sizes into the role of greenspace in high 
ambient air pollution environments, particularly in relation to different 
vegetation types and greenspace morphology. Nevertheless, the rela-
tively small effect of urban vegetation on personal PM2.5 exposure 
concentrations suggests measures beyond exposure avoidance are 
necessary, such as significant emissions control, to minimise the harmful 
impacts on health of ambient PM2.5. 
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Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., Münzel, T., 2020. Loss of life 
expectancy from air pollution compared to other risk factors: a worldwide 
perspective. Cardiovasc. Res. 116 (11), 1910–1917. 

Lin, C., Hu, D., Jia, X., Chen, J., Deng, F., Guo, X., Heal, M.R., Cowie, H., Wilkinson, P., 
Miller, M.R., Loh, M., 2020. The relationship between personal exposure and 
ambient PM2. 5 and black carbon in Beijing. Sci. Total Environ. 737, 139801. 

Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Guo, Y., Tong, S., Coelho, M.S., 
Saldiva, P.H., Lavigne, E., Matus, P., Valdes Ortega, N., 2019. Ambient particulate 
air pollution and daily mortality in 652 cities. N. Engl. J. Med. 381 (8), 705–715. 

Lun, X., Lin, Y., Chai, F., Fan, C., Li, H., Liu, J., 2020. Reviews of emission of biogenic 
volatile organic compounds (BVOCs) in Asia. J. Environ. Sci. 95, 266–277. 

Maji, K.J., Namdeo, A., Hoban, D., Bell, M., Goodman, P., Nagendra, S.S., Barnes, J., De 
Vito, L., Hayes, E., Longhurst, J., Kumar, R., 2021. Analysis of various transport 
modes to evaluate personal exposure to PM2. 5 pollution in Delhi. Atmos. Pollut. 
Res. 12 (2), 417–431. 

Markevych, I., Schoierer, J., Hartig, T., Chudnovsky, A., Hystad, P., Dzhambov, A.M., De 
Vries, S., Triguero-Mas, M., Brauer, M., Nieuwenhuijsen, M.J., Lupp, G., 2017. 

Exploring pathways linking greenspace to health: Theoretical and methodological 
guidance. Environ. Res. 158, 301–317. 

Marselle, M.R., Hartig, T., Cox, D.T., De Bell, S., Knapp, S., Lindley, S., Triguero-Mas, M., 
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