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Abstract
Inference for the parameters indexing generalised lin-
ear models is routinely based on the assumption that the
model is correct and a priori specified. This is unsatis-
factory because the chosen model is usually the result
of a data-adaptive model selection process, which may
induce excess uncertainty that is not usually acknowl-
edged. Moreover, the assumptions encoded in the cho-
sen model rarely represent some a priori known, ground
truth, making standard inferences prone to bias, but
also failing to give a pure reflection of the information
that is contained in the data. Inspired by developments
on assumption-free inference for so-called projection
parameters, we here propose novel nonparametric def-
initions of main effect estimands and effect modifica-
tion estimands. These reduce to standard main effect
and effect modification parameters in generalised lin-
ear models when these models are correctly specified,
but have the advantage that they continue to capture
respectively the (conditional) association between two
variables, or the degree to which two variables interact in
their association with outcome, even when these mod-
els are misspecified. We achieve an assumption-lean
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inference for these estimands on the basis of their effi-
cient influence function under the nonparametric model
while invoking flexible data-adaptive (e.g. machine
learning) procedures.

K E Y W O R D S

bias, conditional treatment effect, estimand, influence function,
interaction, model misspecification, nonparametric inference

1 INTRODUCTION

Statistical analyses routinely invoke modelling assumptions. These include smoothness assump-
tions, implied by parametric or semiparametric model specifications, for instance, but also
sparsity assumptions that underlie variable selection procedures. Such assumptions are generally
a necessity. The curse of dimensionality indeed forces one to borrow information across strata
of subjects with different covariate values, as well as to reduce the dimensions of the possibly
many measured variables. Modelling assumptions are often also a deliberate choice. With a con-
tinuous exposure, for instance, one would often not be interested in knowing exactly how the
outcome changes with each increase in exposure, but might content oneself with a ‘simple’ and
parsimonious summary of the exposure effect. Models enable one to create such summaries. This
distinction in the nature of the assumptions is rarely made in how we approach a data analysis,
but is nonetheless an essential one that will turn out to be key to the strategy that we advocate.

Regardless of this distinction, modelling assumptions are almost always a pure mathematical
convenience, and not reflecting a priori knowledge that we had prior to seeing the data. Ide-
ally, in such cases, data analyses should therefore only extract information from the data, and
not from the assumptions. This realisation is not new. It became very dominant in the 90s in
work on non-ignorable incomplete data. Rotnitzky and Robins (e.g. Rotnitzky & Robins, 1997;
Rotnitzky et al., 1998; Scharfstein et al., 1999), amongst others, then increased awareness that
modelling assumptions, such as normality and linearity assumptions, may sometimes permit
identification of parameters in the absence of missing data assumptions. There is now a fairly
general agreement that such identification is dishonest when these modelling assumptions are
made for convenience. In spite of this, once we have stated structural assumptions (e.g. missing
data assumptions) needed for identification, we often fall back into our routine. We continue to
rely on modelling assumptions more than we may realise, and treat them as representing some
ground truth in how we approach inference.

For instance, likelihood-based or semiparametric estimation approaches extract information
not only from the data, but also from the model as if it were known to contain the truth. In
fact, maximum likelihood estimators, maximum a posteriori estimators and semiparametric effi-
cient estimators precisely succeed to increase efficiency by taking modelling assumptions as
given, and extracting information from them. This makes the resulting data analysis no longer
purely evidence based. We usually try to make up for this by adopting model or variable selection
procedures. However, the inferences that are commonly provided, continue to pretend that the
model delivered by these procedures was a priori given and known, which can sometimes make
things worse. All of this is raising questions to what extent the data analyses that we produce are
effectively (purely) evidence based.
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Motivated by these concerns, enormous progress has been made over the past several decades
in terms of how to develop an inference that is ‘assumption-free’, across several different
literatures. White (1980) developed the so-called ‘sandwich estimator’ of the standard error for
ordinary least squares (OLS); this delivers a valid measure of uncertainty around the regression
coefficient estimates, even if key model-based assumptions of OLS (linearity, homoscedasticity)
are not met. Freedman (2006) noted that although the sandwich estimator is unbiased under
nonlinearity, the resulting confidence intervals and tests are not useful given that it may be
unclear what the model coefficients represent. Several proposals for restoring meaning to regres-
sion estimates have been made, seeing a model coefficient as a projection parameter (Buja et al.,
2019a,b,c; Kennedy et al., 2019; van der Laan & Rose, 2011; Neugebauer & van der Laan, 2007),
or variable importance measure (Chambaz et al., 2012), both ideas which have gained traction
in high-dimensional statistics (Berk et al., 2013; Wasserman, 2014). In terms of doing causal
inference, Lin (2013) gave a ‘model-agnostic’ approach to the adjustment for baseline covariates
in randomised experiments. He noted that ‘one does not need to believe in the classical linear
model to tolerate or even advocate OLS adjustment’. Related work has explored how OLS esti-
mates can in certain settings be interpreted as weighted averages of treatment effects, even when
the linear model is wrong (Angrist & Krueger, 1999; Angrist & Pischke, 2009; Aronow & Samii,
2016; Graham & Pinto, 2018; Słoczyński, 2020). Many of the above approaches start with a com-
mon estimator of a parameter indexing a parametric regression model. They then characterise to
what estimand (i.e. functional of the data distribution) the estimator converges, without assum-
ing that the model is true. In contrast, Mark van der Laan and collaborators take an alternative
approach in their scientific ‘roadmap’ (van der Laan & Rose, 2011; van der Laan & Rubin, 2006).
They first define an estimand which characterises what we aim to infer from the data, and next
develop estimation and inference based on its efficient influence function (provided the esti-
mand is pathwise-differentiable under the nonparametric model; see Section 5), with all nuisance
functionals estimated nonparametrically (e.g. via machine learning). Reliance on the efficient
influence function is essential to this development, as it enables valid inference even when the
analysis is based on data-adaptive procedures, such as machine learning, variable selection, model
selection, etc. Attention in their work is mainly given to causal inference applications where the
focus is on the average (total or (in)direct) effect of a binary, possibly time-varying treatment on
a binary or continuous outcome.

Key to the latter developments is changing the starting point of the analysis from the pos-
tulation of a statistical model to the postulation of an estimand. This change of focus brings
many advantages. It forces one to work with well-understood estimands that target the scientific
question from the start. It enables one to separate modelling assumptions made for parsimony,
which will be used to define the estimand, from assumptions imposed to handle the curse of
dimensionality. It prevents reliance on these assumptions, as inference for the estimand can be
developed under the nonparametric model. Finally, the resulting analysis can be pre-specified,
which is essential if one aims for an honest data analysis that reflects all uncertainties, including
the uncertainty surrounding the model that is used.

Changing this focus of the analysis is non-trivial, however. It turns the difficulty of postu-
lating a model, to which we have grown to become familiar, into the difficulty of choosing an
estimand, for which infinitely many choices can typically be conceived. While there is some expe-
rience in choosing meaningful estimands in causal inference applications, complications easily
arise when, for example, considering continuous exposures, or when general association mea-
sures (e.g. measures of a time trend) rather than causal effect measures are of interest. It calls
for the development of specific estimands that can be used quite generically (in a sense that
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we will make specific later) and connect to regression parameters that practitioners have grown
to become familiar with. In this way, they can provide an assumption-lean inference for those
standard regression parameters, which uses the underlying model only with the aim to summarise
and to deliver a familiar interpretation, but relates to flexible statistical or machine learning pro-
cedures running in the background to assure valid inference. In this paper, we will show how we
believe this is best done when the aim is to infer regression parameters indexing generalised linear
models. In particular, we propose novel estimands for conditional association measures between
two variables, and for the degree to which two variables interact in their association with out-
come, which are well defined in a nonparametric sense (i.e. regardless of what is the underlying
data-generating distribution). We achieve an assumption-lean inference for these estimands by
deriving their efficient influence function under the nonparametric model and invoking flexible
data-adaptive (e.g. parametric model selection or machine learning) procedures. Since the pro-
posed estimands reduce to standard main effect and interaction parameters in generalised linear
models when these models are correctly specified, we thus generalise standard inference for such
parameters to give a pure reflection of the information that is contained in the data. Our devel-
opments thus provide a novel framework for fitting generalised linear models, and at a broader
level, also shed light on what defines an adequate estimand, and how it can be constructed.

In Section 2, we illustrate the above concerns about parametric and semiparametric methods
with a simple example. This is followed by proposals for novel main effect and interaction esti-
mands in Sections 3 and 4, respectively. Nonparametric inference is developed for these estimands
in Section 5, and the empirical performance of the resulting estimators is assessed in Section 6 via
simulation studies. In Section 7 we apply our framework in an analysis of the effect of the First
Steps program on infant birth-weight, before closing the paper with a discussion in Section 8.

2 ILLUSTRATION

To clarify the points made in the introduction, we provide a simple illustration with artificial,
independent data for n = 50 subjects on a scalar standard normal variate L, a dichotomous expo-
sure A, coded 0 or 1, with P(A = 1|L) = expit(L − L2) and a normally distributed outcome with
mean A − L + 4.5AL + 0.5L2 − 2.25AL2 and unit (residual) variance. The ordinary least squares
estimator for 𝛽 under model

E(Y |A,L) = 𝛼0 + 𝛼1L + 𝛽A,

can be shown to converge to

E[𝜋(L){1 − �̃�(L)}{E(Y |A = 1,L) − E(Y |A = 0,L)}]
E[𝜋(L){1 − �̃�(L)}]

+ E[{𝜋(L) − �̃�(L)}E(Y |A = 0,L)]
E[𝜋(L){1 − �̃�(L)}]

,

where 𝜋(L) = P(A = 1|L) is the so-called propensity score and �̃�(L) denotes the population least
squares projection of A onto 1 and L. This displayed ‘estimand’ consists of two contributions.
The first is a weighted average of the contrasts E(Y |A = 1, L) − E(Y |A = 0, L). It is informative
about the conditional association between A and Y . The second contribution is a weighted average
of the contrasts 𝜋(L) − �̃�(L). It is not informative about the conditional association between A
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and Y and is generally non-zero, except when the linear outcome model is correctly specified or
𝜋(L) happens to be a linear function of L (see e.g. Robins et al., 1992; Vansteelandt and Joffe,
2014). This is disturbing. It makes the estimand targeted by the ordinary least squares estimator a
questionable summary of the conditional association between A and Y , given L, when the linear
model is misspecified.

A more attractive approach is based on the partially linear model

E(Y |A,L) = 𝜔(L) + 𝛽A, (1)

where 𝛽 and 𝜔(L) are unknown. Here, ̂

𝛽 can be obtained as the E-estimator
∑n

i=1{Ai − �̂�(Li)}{Yi − �̂�(Li)}
∑n

i=1{Ai − �̂�(Li)}Ai
, (2)

(Robins et al., 1992), where �̂�(.) and �̂�(.) are possibly data-adaptive estimators of 𝜋(.) and 𝜔(.),
respectively. In the illustration in the next paragraph, for instance, we have based 𝜋(.) and 𝜔(.)
on a logistic and linear additive model, respectively, using smoothing splines. The ability to use
data-adaptive procedures, makes it more plausible to reason under the assumption that �̂�(.) con-
verges to𝜋(.), which we will make. In that case, the above estimator has been shown (Vansteelandt
& Daniel, 2014) to converge to the weighted contrast

E[𝜋(L){1 − 𝜋(L)}{E(Y |A = 1,L) − E(Y |A = 0,L)}]
E[𝜋(L){1 − 𝜋(L)}]

, (3)

of the conditional outcome mean at A = 1 versus A = 0, even when model (1) is misspecified, for
example, because A and L interact in their association with outcome.

It follows from the above reasoning that the E-estimator, as opposed to the ordinary least
squares estimator, is not crucially relying on the restrictions imposed by the outcome model:
it returns a meaningful estimand that is directly informative about the conditional association
between A and L, even when model (1) is misspecified. Even so, caution is warranted as the cal-
culation of standard errors and confidence intervals may still invoke the restrictions of model (1),
thereby resulting in overly optimistic inferences about the conditional association between A and
Y , given L. This is indeed the case. Standard inference is based on standard errors estimated as
1 over root-n times the sample standard deviation of the so-called (estimated) influence function
of ̂

𝛽 under model (1):

{Ai − �̂�(Li)}
{

Yi − ̂

𝛽Ai − �̂�(Li)
}

n−1∕2∑n
i=1 {Ai − �̂�(Li)}Ai

(Robins et al., 1992). This is valid when model (1) is correctly specified, but ignores that when it
is misspecified, then different choices of 𝜋(L) in Equation (3) return estimands of a possibly dif-
ferent magnitude. This explains why excess variability, not expressed by the standard deviation
of these influence functions, may be observed when repeated samples deliver different estimates
of 𝜋(L); Buja et al. (2019a) make a related remark that such excess variability may lead to differ-
ences between fixed- versus random-covariate designs. More formally, as we will see in Section 5,
under model misspecification �̂�(Li) contributes to the first-order bias of the E-estimator. This is
especially worrying when �̂�(Li) converges (in terms of root mean squared error) at a rate slower
than n−1∕2. This may well be the case when smoothing splines are used, and is such that �̂�(Li)
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will then dominate the behaviour of the E-estimator. Accommodating this can be a daunting task
when the behaviour of �̂�(.) over repeated samples is ill understood (e.g. because of being based
on smoothing splines).

In a simulation study under the above data-generating mechanisms, we found the empiri-
cal standard deviation of the E-estimator to be 16.7% larger than estimated, resulting in 87.3%
coverage of 95% confidence intervals for Equation (3), despite the lack of bias in ̂

𝛽. In contrast,
the nonparametric approach that we will develop later in this article, resulted in estimators with
similar bias, and empirical standard deviation of the E-estimator being only 3.0% larger than esti-
mated (and being only 2.6% larger than that of the E-estimator), resulting in 94.9% coverage of
95% confidence intervals for Equation (3), despite the small sample size (n = 50).

3 MAIN EFFECT ESTIMANDS

Suppose that interest lies in the association between a possibly continuous variable or exposure
A and an arbitrary outcome Y , conditional on measured variables L. One logical starting point
would be the generalised partially linear model

g{E(Y |A,L)} = 𝛽A + 𝜔(L), (4)

where g(⋅) is a known link function and 𝛽 and 𝜔(L) are unknown. This model choice reflects
the fact that in many regression analyses only a small subset of the parameters are of key scien-
tific interest, and an analyst may prefer to be agnostic about the nuisance parameters. Model (4)
assumes a linear association as well as the absence of A-L interactions (on the scale of the link
function). It does so for reasons of parsimony, for example, because we may want to summarise
the association between A and Y into a single number, but not necessarily because it reflects the
ground truth. The general question, which we will work out in this paper, is then how to develop
inference for 𝛽 in a way that does not rely on these assumptions.

The starting point of such analysis is to come up with an estimand that is meaningful when
the above model does not hold, but reduces to 𝛽 when the model holds; this then subsequently
allows for nonparametric inference to be developed for that estimand. One relatively simple and
generic strategy would be to define the estimand as a ‘projection’ of the actual data distribution
onto the (semiparametric) model, such as the maximiser of the population expectation of the
loglikelihood or some weighted least squares projection (e.g. Buja et al., 2019b; Kennedy et al.,
2019; van der Laan & Rose, 2011; Neugebauer & van der Laan, 2007). This suggestion is useful,
and we will effectively build on it, but it may deliver estimands that are complicated to interpret. It
is moreover vague as there will often be infinitely many such projection estimands. Indeed, each
consistent estimator under the (semi)parametric model maps into a projection estimand, being
defined as its probability limit under the nonparametric model.

This calls for guidance concerning the choice of estimand in practice. In our development
below, we will use three criteria for choosing an estimand. First, when the parametric assump-
tions hold, it should reduce to the target parameter of interest, in this case the parameter 𝛽

indexing (4), to assure that the proposal does not hinder a familiar interpretation of the final
result. Second, it should be generic, in the sense of being well defined regardless of whether A
is continuous or discrete. Indeed, the fact that parametric methods can flexibly incorporate any
type of regressor no doubt contributes to their continuing appeal. It should also be generic in the
sense that its efficient influence function should not demand the modelling of a (conditional)
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density, as flexible statistical or machine learning techniques are currently not well-adapted to
density estimation, and moreover, density estimators may be slowly converging. This criterion
distinguishes our development from related work in the causal inference literature, where focus
is usually (though not exclusively) given to binary exposures (and effect modifiers). Third, the
estimand must capture what one is aiming for (e.g. a conditional association), which was not the
case for ordinary least squares in Section 2. This is for instance satisfied when it equals some
L-dependent weighted average of the estimand one would choose to report for a subset of individ-
uals with given L (e.g. of the average outcome difference between subjects with A= 1 versus A= 0
and the same level of L), but is not guaranteed by all projection estimands (see the discussion
section).

To distinguish assumptions aimed at parsimony from other, more substantive assumptions,
let us start by assuming that the main difficulty of the problem had already been solved. Suppose
in particular we already knew E(Y |A = a, L) for all levels a in the support of A and all covariate
levels L over the support of L. Then we would generally not be interested in reporting exactly how
E(Y |A = a, L) changes over a and L. We would content ourselves with a parsimonious summary
of the exposure effect. At each level of L, a useful summary would be the population least squares
projection of g{E(Y |A, L)} onto A, given L. This reduces to

g{E(Y |A = 1,L)} − g{E(Y |A = 0,L)},

when A is dichotomous (coded 0 or 1). This is clearly capturing a summary of the conditional
association between A and Y , given L, regardless of whether some model holds. This L-specific
estimand can next be summarised across levels of L by taking a weighted average with weights
given by

Var(A|L)
E{Var(A|L)}

;

this choice of weights will be motivated later in this section. For dichotomous A, this delivers the
estimand

E(𝜋(L){1 − 𝜋(L)}[g{E(Y |A = 1,L)} − g{E(Y |A = 0,L)}])
E[𝜋(L){1 − 𝜋(L)}]

.

More generally, it gives rise to the estimand

E(Cov[A, g{E(Y |A,L)}|L])
E{Var(A|L)}

, (5)

which reduces to 𝛽 under model (4), but remains unambiguously defined when this model is mis-
specified. It will therefore enable us to do inference for 𝛽 in model (4) without relying on this
model restriction. Interpretation of 𝛽 can still be done in the familiar way, relating to model (4), but
with the additional assurance that it continues to represent a summary of the conditional associ-
ation between A and Y , given L, when that model is misspecified. Such assurance is not attained
for standard maximum likelihood estimators, for instance, as we saw in Section 2. We note that
the interpretation of our proposed estimand may be more complicated when the L-specific esti-
mand varies dramatically over levels of L; however, other summary measures would also then
need to be interpreted with care. Summary measures remain of interest in statistics with the aim to
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provide insight, as they may represent all that one can realistically infer with reasonable precision
in the face of the curse of dimensionality.

The estimand (5) with g(.) the identity link has been studied by a number of authors, e.g.
Robins et al. (2008), Newey and Robins (2018) and Whitney et al. (2019). We will here extend
inference for it to arbitrary link functions. Such extension is non-trivial, if one considers the
major difficulties that have been experienced in drawing inference for 𝛽 under the partially lin-
ear logistic model (Tan, 2019; Tchetgen Tchetgen et al., 2010), which have resulted in elegant, but
complex proposals that require the modelling of the conditional density or mean of the exposure,
given outcome and covariates; relying on such models is arguably less desirable when informa-
tion about the conditional density of the exposure, given covariates but not outcome, is a priori
available (as in randomised experiments, for instance). These complications will be avoided with
our choice of estimand (5), which also reduces to 𝛽 under model (4) with g(.) the logit link, for
which we develop nonparametric inference in Section 5. This extension is moreover important
since the probability limits of popular estimators of parameters indexing non-linear models have
no simple closed-form representation (unlike the case for the OLS estimator in Section 2), thus
rendering their behaviour poorly understood when the model restrictions fail to hold. In particu-
lar, estimators for 𝛽 based on the semiparametric efficient score under the logistic partially linear
model will generally fail to converge to (5). We emphasise moreover that our estimand does not
require knowing the ‘true’ link function under which the data was generated, since it is defined
nonparametrically. Standard advice for fitting generalised linear models is that a link should be
chosen that provides a scale where linearity/additivity of the effects of A and L is at least plau-
sible. To maintain the connection between our estimand and the parameter in a semiparametric
generalised linear model (4), following such advice appears reasonable, although the identity link
may yield the simplest interpretation.

When the exposure is dichotomous (taking values 0 and 1), g(.) is the identity link and
moreover L is sufficient to adjust for confounding (in the sense that A is independent of the
counterfactual outcome Y a to exposure level a, given L), then (5) reduces to

E
[
𝜋(L){1 − 𝜋(L)}

(
Y 1 − Y 0)]

E[𝜋(L){1 − 𝜋(L)}]
. (6)

This effect, which was also considered in Crump et al. (2006) and Vansteelandt and Daniel (2014),
gives highest weight to covariate regions where both treated and untreated subjects are found.
It expresses the exposure effect that would be observed in a randomised experiment where the
chance of recruitment is proportional to both the probability of being treated as well as the prob-
ability of being untreated. In that case, subjects with a 10% chance of receiving treatment (or
no treatment) are roughly 10 times more likely to be recruited than subjects with a 1% chance
of receiving treatment (or no treatment), while subjects whose chance of receiving treatment
lies between 25% and 75% are nearly equally likely to be recruited (their chance of recruitment
deviates at most 33% in relative terms). Although such recruitment probabilities are not readily
applied in a real-life setting, the resulting effect may well approximate that which would be found
in a real-life randomised experiment, where the eligibility criteria would exclude patients who
are unlikely to receive treatment or no treatment in practice. Regarding the optimality properties
of this estimand, Crump et al. (2006) consider the class of weighted sample average treatment
effects

∑n
i=1w(Li)(Y 1

i − Y 0
i )∕

∑n
i=1w(Li) where w(L) is a (known) weight. They show that, under

homoscedasticity, the choice w(L) = 𝜋(L){1 − 𝜋(L)} delivers the parameter that can be estimated
with the greatest precision across the entire class.
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The estimand (5) thus generalises the propensity-overlap-weighted effects to more general
exposures and arbitrary link functions. Such generalisation becomes essential when the exposure
is continuous, in view of the need to summarise the (now high-dimensional) exposure effect. For
binary exposures, an alternative approach which prevents excessive extrapolations would be to
consider overlap-weighted effects on other, non-additive scales, for example,

E
[
𝜋(L){1 − 𝜋(L)}Y 1]

E
[
𝜋(L){1 − 𝜋(L)}Y 0

]

(Vansteelandt & Daniel, 2014). Such estimands directly target marginal causal effects, as opposed
to taking a weighted average of conditional causal effects. They may thus be easier to interpret
than (5). However, they do not easily generalise to arbitrary exposures. Moreover, they do not gen-
erally reduce to parameters indexing a well-understood generalised linear model, making them
arguably more difficult to communicate.

4 EFFECT MODIFICATION ESTIMANDS

Suppose next that interest lies in the interaction between two possibly continuous variables A1
and A2 in their association with a continuous outcome Y , conditional on measured variables L.
One logical starting point is the generalised partially linear interaction model (Vansteelandt et al.,
2008)

g{E(Y |A1,A2,L)} = 𝜔1(A1,L) + 𝜔2(A2,L) + 𝛽A1A2, (7)

where 𝛽, 𝜔1(A1,L) and 𝜔2(A2,L) are unknown. The construction of a generic estimand that
reduces to 𝛽 when model (7) is correctly specified, turns out to be a non-trivial task. We are not
aware of existing estimands for interaction parameters that satisfy the criteria in Section 3; even
if we accept estimands whose efficient influence function requires modelling a density, current
proposals are limited to binary A1 and A2 (van der Laan & Rose, 2011).

In this paper, we propose to work with the following estimand:

E
[
Π(A1A2)g {E(Y |A1,A2,L)}

]

E
[
Π(A1A2)2

] , (8)

where Π(.) is an orthogonal projection operator (w.r.t. the covariance inner product), which
projects an arbitrary function of (A1,A2,L) onto the space of functions of (A1,A2,L) with mean
zero, conditional on A1,L as well as conditional on A2,L. Such projection eliminates from
g {E(Y |A1,A2,L)} all main effects of A1 and L (as well as their (additive) interactions) and all main
effects of A2 and L (as well as their (additive) interactions), thus leaving only its dependence on
functions of both A1 and A2 (and L) that cannot be additively separated into functions of (A1,L)
or (A2,L); such functions define additive interactions between A1 and A2 on the scale of the link
function g(.). It follows that (8) reduces to 𝛽 when model (7) is correctly specified. However, a key
advantage in pre-specifying such an estimand (relative to standard inference for interactions) is
that it continues to capture the interaction between both exposures in their association with out-
come, even when this model is misspecified. This is best understood for dichotomous exposures.
From the results in Vansteelandt et al. (2008), it then follows that
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Π(A1A2) =
w(L)

P(A1,A2|L)
{I(A1 = A2) − I(A1 ≠ A2)}

with

w(L) =
{

1
𝜋11(L)

+ 1
𝜋10(L)

+ 1
𝜋01(L)

+ 1
𝜋00(L)

}−1

,

where 𝜋a1a2(L) ≡ P(A1 = a1,A2 = a2|L) for a1, a2 = 0, 1. With this definition, it can now be shown
that (8) reduces to a weighted average of L-conditional interactions. Indeed, for dichotomous
exposures we can always write

g {E(Y |A1,A2,L)} = c0(L) + c1(L)A1 + c2(L)A2

+ {𝜇11(L) + 𝜇00(L) − 𝜇10(L) − 𝜇01(L)}A1A2,

for certain functions cj(L), j = 1, 2, 3 and 𝜇a1a2(L) ≡ g{E(Y |A1 = a1,A2 = a2,L)}. Here,

𝜇11(L) + 𝜇00(L) − 𝜇10(L) − 𝜇01(L),

captures the interaction between both exposures in their association (on the scale of the link
function) with outcome, at the considered level of L. This and the fact that c0(L) + c1(L)A1 +
c2(L)A2 is orthogonal (w.r.t. the covariance inner product) to Π(A1A2) implies that the estimand
(8) reduces to

E [w(L) {𝜇11(L) + 𝜇00(L) − 𝜇10(L) − 𝜇01(L)}]
E{w(L)}

.

Here, the weights w(L) naturally generalise the propensity-overlap-weights

𝜋(L){1 − 𝜋(L)} =
{

1
𝜋(L)

+ 1
1 − 𝜋(L)

}−1

,

to the setting of interactions between two dichotomous exposures. They assign highest weight to
subjects for whom each exposure combination is sufficiently likely, so as to avoid extrapolation
towards covariate strata that carry little or no information about interaction. In particular, they
down-weigh those strata L in which at least one of the four possible realisations of (A1,A2) is
unlikely to be observed. When L is sufficient to adjust for confounding for the effect of both expo-
sures (in the sense that (A1,A2) is independent of the counterfactual outcome Y a1a2 to exposure
(a1, a2), given L) and g(⋅) is the identity link, then estimand (8) can also be written as

E
{

w(L)
(

Y 11 − Y 10 − Y 01 + Y 00)}

E{w(L)}
. (9)

Consider next the special case where A1 and A2 are conditionally independent, given L.
This is relevant in settings where A1 or A2 is under the control of the investigator (such that
A1 is independent of A2 is known to hold by design); for example in summarising how the
effect of a randomised treatment A1 is modified by a continuous covariate A2. It is moreover
relevant in gene-environment interaction studies (where it is usually assumed that genetic and
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environmental factors are independent in the population). Then it further follows from
Vansteelandt et al. (2008) that

Π(A1A2) = {A1 − E(A1|L)} {A2 − E(A2|L)} ,

regardless of whether the exposures are dichotomous or not. In that case, the estimand (8) can
also be written as

E
[
{A1 − E(A1|L)} {A2 − E(A2|L)} g{E(Y |A1,A2,L)}

]

E
[
{A1 − E(A1|L)}2{A2 − E(A2|L)}2] . (10)

When A1 and A2 are dichotomous, this simplifies further to

E [𝜋1(L) {1 − 𝜋1(L)}𝜋2(L) {1 − 𝜋2(L)} {𝜇11(L) + 𝜇00(L) − 𝜇10(L) − 𝜇01(L)}]
E [𝜋1(L) {1 − 𝜋1(L)}𝜋2(L) {1 − 𝜋2(L)}]

, (11)

where 𝜋1(L) = P(A1 = 1|L) and 𝜋2(L) = P(A2 = 1|L).
In the more general case, the projection operator is not obtainable in closed-form but can be

obtained via the alternating conditional expectations (ACE) algorithm (Bickel et al., 1993). This
involves first taking the difference U1 between A1A2 and its conditional expectation given A1 and
L, next taking the difference U2 between U1 and its conditional expectation given A2 and L, next
taking the difference U3 between U2 and its conditional expectation given A1 and L, and so on… ,
eventually delivering the projection U∞. Importantly, this algorithm does not demand knowl-
edge of the entire joint density of both exposures, conditional on L, and moreover avoids inverse
weighting by such density. This is essential for enabling an inference that is generic (e.g. can be
used for continuous exposures), and has been a key challenge in proposing a generic estimand
such as (8).

5 NONPARAMETRIC INFERENCE

In the previous sections, we have shown how modelling assumptions can be invoked
to summarise the (conditional) association between two variables, which may itself be
high-dimensional, or the extent to which two variables interact in their association with an out-
come. To prevent that these convenience assumptions are used as a ground truth, we next develop
inference for the resulting estimands under a nonparametric model.

5.1 Main effect estimands

5.1.1 The plug-in estimator

A natural estimator of the main effect estimand 𝛽, given by Equation (5), is

∑n
i=1

{
Ai − ̂E(Ai|Li)

}
g
{
̂E(Yi|Ai,Li)

}

∑n
i=1

{
Ai − ̂E(Ai|Li)

}
Ai

. (12)
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We call it a ‘plug-in’ estimator, as it equals the sample analogue of Equation (5) with estimators
̂E(A|L) and ̂E(Y |A,L) of the unknown conditional expectations ‘plugged in’. In the spirit of being
‘assumption-free’ (or at least, assumption-lean) it is natural to learn these conditional expecta-
tions without pre-specification of parametric models. One could therefore adopt variable/model
selection procedures, or use traditional nonparametric estimators (e.g. kernel methods, sieve esti-
mators, regression trees) or even machine learning approaches (random forests, neural networks,
support vector machines) which are particularly effective when the dimension of the covariates
is large. Machine learning techniques learn a (potentially very complex) ‘model’ from the data,
while using regularisation (in combination with cross-validation) to minimise issues of overfitting
and optimise out-of-sample predictive performance. The analyst does not need choose between
different estimators now available in statistical software; ensemble learners, such as the Super
Learner (van der Laan et al., 2007), aim to take the optimal weighted combination of candidate
(parametric and nonparametric) estimators.

Traditionally, statisticians have been hesitant to routinely incorporate machine learning when
analysing data. This is in part because the tuning parameters used to control the degree of reg-
ularisation in the data-adaptive estimators ̂E(A|L) and ̂E(Y |A,L) are typically chosen to balance
bias and variance in a way that is optimal for prediction purposes. Unfortunately, this choice is
usually suboptimal for estimation of the target parameter; the ‘plug-in’ estimator of 𝛽 given in
Equation (12) can inherit the potentially large biases from ̂E(A|L) and ̂E(Y |A,L). The consequence
is that the bias of the naive estimator may be of the order n−1∕2 or larger, and hence the use of
standard confidence intervals is not justified. A further issue is that even if parametric-rate confi-
dence intervals could be constructed, it is unclear how one would account for the uncertainty in
the estimation of the nuisance parameters, given that these may follow a complex distribution.

5.1.2 The efficient influence function

To overcome the problems associated with plug-in estimators, we will develop inference for the
estimand under a nonparametric model based on its so-called efficient influence function (Bickel
et al., 1993; Pfanzagl, 1990). Technically, this is mean zero functional of the observed data and the
data-generating distribution, which characterises the estimand’s sensitivity to arbitrary (smooth)
changes in the data-generating law. The efficient influence function for the proposed estimand is
given below.

Theorem 1 Under the nonparametric model, the main effect estimand 𝛽, defined by Equation (5),
has efficient influence function

{A − E(A|L)}[𝜇(Y ,A,L) − 𝛽{A − E(A|L)}]
E
[
{A − E(A|L)}2

] (13)

where g′(x) = 𝜕g(x)∕𝜕x and

𝜇(Y ,A,L) = g′{E(Y |A,L)}{Y − E(Y |A,L)} + g{E(Y |A,L)} − E[g{E(Y |A,L)}|L].

The proof of this and all other results is given in Section 1 of the Supplemental Materials.
If the conditional expectations indexing the efficient influence function were known, then it

would follow from its mean zero property that a consistent estimator ̃

𝛽 of 𝛽 could be obtained
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as the value of 𝛽 that makes the sample average of the influence functions zero. The resulting
estimator’s asymptotic distribution would be governed by this influence function in the sense that

√
n
(
̃

𝛽 − 𝛽

)
= 1

√
n

n∑

i=1

{Ai − E(Ai|Li)} [𝜇(Yi,Ai,Li) − 𝛽 {Ai − E(Ai|Li)}]
E
[
{A − E(A|L)}2] + op(1). (14)

The fact that the difference between the estimator and the truth can be approximated by the sam-
ple average of a mean-zero random variable implies that ̃

𝛽 is asymptotically normally distributed
with bias that shrinks to zero faster than the standard error, and with a variance that can be esti-
mated as the sample variance of the efficient influence function (where population expectations
and the value of 𝛽 can be substituted by consistent estimates).

The fact that the efficient influence function involves unknown conditional expectations,
makes the estimator ̃

𝛽 suggested in the previous paragraph infeasible. As in the previous section,
we will therefore substitute these by consistent estimators and denote the resulting estimator ̂

𝛽.
The power of basing the estimator on the efficient influence function is that it behaves the same
asymptotically whether it be based on known conditional expectations or consistent estimators
thereof, provided that these converge sufficiently fast in a relatively weak sense (made specific
in the following theorem). Throughout this section, Pn denotes the empirical measure (i.e. sam-
ple average) and for a function f (O) of the data O we use the notation P{f (O)} = ∫ f (O)P(O)dO
where P(O) denotes the density of the data; for an estimator ̂f , P{̂f (O)} averages over O but not ̂f .

Theorem 2 Let ̂

𝛽 refer to the proposed estimator of 𝛽 based on estimators ̂E(A|L) and �̂�(Y , A, L)
which are consistent for E(A|L) and 𝜇(Y , A, L), respectively (see details in the Appendix). Sup-
pose that the weak positivity assumptions at both the population and sample level hold that
P
[
{A − E(A|L)}2]

> 𝜎, Pn
[
{A − E(A|L)}2]

> 𝜎 and Pn
[
{A − ̂E(A|L)}2]

> 𝜎 for some 𝜎 > 0.
Suppose furthermore that at least one of the following two conditions hold:

1. (Sample-splitting) ̂E(A|L) and �̂�(Y ,A,L) are obtained from a sample independent from the
one used to construct ̂

𝛽.
2. (Donsker condition) The quantity

{A − ̂E(A|L)}[�̂�(Y ,A,L) − ̂

𝛽{A − ̂E(A|L)}]
Pn

[
{A − ̂E(A|L)}2

]

falls within a P-Donsker class with probability approaching 1.

Finally, assume that A − ̂E(A|L) = Op(1) and that sufficient rates of convergence are
attained so that the following terms are op(n−1∕2):

P

[{
E(Y |A,L) − ̂E(Y |A,L)

}2
]

,

P

[{
E(A|L) − ̂E(A|L)

}2
]

,

P

[{
E(A|L) − ̂E(A|L)

}2
]1∕2

P

{(
E
[
g
{

E(Y |A,L)
}
|L
]
− ̂E

[
g
{
̂E(Y |A,L)

}
|L
])2

}1∕2
,

Then it follows that (14) holds with ̂

𝛽 in lieu of ̃

𝛽.

A detailed discussion of the above assumptions is saved for later on in this section. A conse-
quence of this result is that the variance of ̂

𝛽 can be estimated as previously suggested, namely
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as 1 over n times the sample variance of the efficient influence functions, as if these conditional
expectations were given. It implies in particular that the uncertainty that the estimators of the
conditional expectations add to the analysis can be ignored when drawing inference about 𝛽, even
when these are based on variable selection or machine learning procedures, whose uncertainty
is difficult to quantify.

We can thus obtain an estimator and confidence interval via the simple recipe below:

1. Obtain estimates ̂E(A|L) and ̂E(Y |A,L), e.g. using machine learning.
2. If A is binary, estimate E[g{E(Y |A,L)}|L] as

̂E
[
g
{
̂E(Y |A,L)

}
|L
]
= g

{
̂E(Y |A = 1,L)

}
̂E(A|L) + g

{
̂E(Y |A = 0,L)

}{
1 − ̂E(A|L)

}

otherwise, use an additional data-adaptive fit (with g{ ̂E(Y |A,L)} as outcome).
3. Fit a linear regression of

�̂�(Y ,A,L) = g′
{
̂E(Y |A,L)

}{
Y − ̂E(Y |A,L)

}

+ g
{
̂E(Y |A,L)

}
− ̂E

[
g
{
̂E(Y |A,L)

}
|L
]

on the sole predictor A − ̂E(A|L) (without an intercept) using OLS in order to obtain an
estimate ̂

𝛽 of 𝛽.

The variance of ̂

𝛽 can be consistently estimated as

̂V( ̂𝛽) =
n−2∑n

i=1
{

Ai − ̂E(Ai|Li)
}2[

�̂�(Yi,Ai,Li) − ̂

𝛽

{
Ai − ̂E(Ai|Li)

}]2

[

n−1∑n
i=1

{
Ai − ̂E(Ai|Li)

}2
]2 .

It is readily obtained by requesting that the software provide a sandwich estimator in step (c).

A confidence interval can be constructed as ̂

𝛽 ± 1.96
√

̂V( ̂𝛽).
The rate conditions required in Theorem 2 will hold if all nuisance parameters are con-

sistently estimated at a rate faster than n1∕4; under certain smoothness∕sparsity assumptions,
these are attainable for many data-adaptive methods (see Chernozhukov et al. (2018) for a sum-
mary). The Donsker condition, which restricts the complexity of the estimators involved, is
unlikely to be satisfied for very flexible machine learning methods. A simple solution is to use
sample-splitting; split the data in half, estimate the nuisance parameters in the ‘training’ split,
and perform inference on 𝛽 in the ‘validation’ sample. This has a disadvantage of halving the
sample size. However, efficiency can be asymptotically recovered via cross-fitting (Chernozhukov
et al., 2018; Zheng & van der Laan, 2011); for example, one can reverse the training and valida-
tion samples, construct a second estimate of 𝛽 and average the pair. Confidence intervals can be
constructed by combining the estimated influence functions across the different splits, replacing
𝛽 with the averaged rather than split-specific estimate. As before, one can then estimate the vari-
ance of cross-fit estimator of 𝛽 as 1 over n times the sample variance of the (estimated) influence
functions.

The combination of efficient influence function-based estimators with cross-fitting facilitates
the use of machine learning to estimate parts of the data distribution of no scientific interest.
These important results have only been highlighted relatively recently (Chernozhukov et al., 2018;
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Zheng & van der Laan, 2011), and many open questions remain. Firstly, there is yet to be firm
guidance on the number of splits to use in the cross-fitting. Moreover, since the machine learn-
ing methods typically perform better with more data, it may be that no splitting can sometimes
yield estimators of the target parameter with smaller bias (though potentially more biased stan-
dard errors) compared to cross-fitting. At the other extreme, due to the similarity of our estimator
to that of Robinson (1988), it may be possible to obtain much sharper results on the nuisance
estimators by using a more specific variant of cross-fitting in combination with so-called ‘under-
smoothing’ (Newey & Robins, 2018). This is left to future work. For now, if cross-fitting is adopted,
we recommend 10-fold cross-fitting, each time using nine tenths as training sample and the
remainder as validation sample.

5.1.3 Illustration - inference under the partially linear model

We return to the case study in Section 2. So long as the partially linear model (1) holds, it
turns out that there are several different ways of constructing estimators of 𝛽 that are desensi-
tised to ‘plug-in’ bias of machine learners. Chernozhukov et al. (2018) propose using either the
E-estimator (2) described in Section 2 or the ‘partialling out’ estimator

∑n
i=1

{
Ai − ̂E(Ai|Li)

}
{Yi − ̂E(Yi|Li)}

∑n
i=1

{
Ai − ̂E(Ai|Li)

}2 , (15)

(Robinson, 1988), where all nuisance parameters are estimated via machine learning. So long
as the semiparametric model restriction holds, under standard conditions both estimation
approaches discussed in the previous paragraph are first-order equivalent. The E-estimator has
an influence function

{A − E(A|L)}{Y − 𝛽A − E(Y |A = 0,L)}
E
[
{A − E(A|L)}2

]

that coincides with the influence function

{A − E(A|L)}[Y − E(Y |L) − 𝛽{A − E(A|L)}]
E
[
{A − E(A|L)}2

]

for the ‘partialling out’ estimator when model (1) holds. The latter reduces to (13) for the identity
link, given in Theorem 1; indeed, the estimators proposed in the previous subsection generalise
the ‘partialling out’ estimator to arbitrary link functions. Further, assuming the residual variance
of Y conditional on A and L is a constant 𝜎2, both estimators have an asymptotic variance equal
to the semiparametric efficiency bound 𝜎

2∕E{var(A|L)}. The asymptotic bias of both approaches
depends in part on the product of two errors - either

{
E(A|L) − ̂E(A|L)

}{
E(Y |A = 0,L) − ̂E(Y |A = 0,L)

}

for the E-estimator or

{
E(A|L) − ̂E(A|L)

}[
E(Y |L) − ̂E(Y |L) − 𝛽

{
E(A|L) − ̂E(A|L)

}]
(16)
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for the ‘partialling out’ estimator. As long as each estimator converges to the truth, then the prod-
uct of two errors will tend to shrink at least as fast (and usually much faster) than an individual
error.

However, the situation is quite different when restriction (1) fails (Whitney et al., 2019). The
asymptotic bias of the E-estimator, relative to estimand (5), is now proportional to

E
[{

E(A|L) − ̃E(A|L)
}{

E(Y − 𝛽A|L) − ̃E(Y |A = 0,L)
}]
,

where ̃E(A|L) is the probability limit of ̂E(A|L) and ̃E(Y |A = 0,L) is the probability limit of
̂E(Y |A = 0,L); note that E(Y |A = 0, L) = E(Y − 𝛽A|L) under the partially linear model but
not otherwise. Because the error E(Y − 𝛽A|L) − ̂E(Y |A = 0,L) will no longer shrink to zero,
the bias of the E-estimator will be determined by E(A|L) − ̂E(A|L). As discussed above, the
situation may be much worse for semiparametric estimators in nonlinear models, since the
bias w.r.t (5) may now even diverge. By considering (16), it follows that the same issues are
not true for the ‘partialling out’ estimator, which makes the sample average of the influ-
ence functions for the estimand (5) evaluated at the machine learning predictions equal
to zero. This highlights the benefits of estimation using the influence function obtained
under a nonparametric model; it incorporates an implicit bias-correction, as the bias of the
estimator of the target parameter is usually smaller in magnitude than that of the first
stage estimators. Moreover, this property is not dependent on any semiparametric modelling
assumptions.

Note also that when model (1) is misspecified, each change of 𝜋(L) also changes the esti-
mand targeted by the E-estimator. In particular, different estimates of the propensity score may
then be viewed as targeting different effect estimands. The resulting excess variability is not
acknowledged when basing inference on the influence function of the E-estimator, as this is
assuming model (1) to be correctly specified. This was indeed what was observed in the simu-
lation study described in Section 2. As Buja et al. (2019c) note, for certain choices of nuisance
parameter estimators (specifically, series methods or twicing kernels) the E-estimator and the pro-
posed influence function-based estimator can exactly coincide. However, since we wish to work
in greater generality, and in the following section consider arbitrary machine learners for the
nuisances, we do not consider this subtlety any further.

5.2 Effect modification estimands

The following theorem gives the efficient influence function for the effect modification estimand
𝛽, given by Equation (8), under the nonparametric model.

Theorem 3 Under the nonparametric model, the effect modification estimand 𝛽, defined by
Equation (11), has efficient influence function

Π(A1A2)
E
{
Π(A1A2)2

} {𝜇(Y ,A1,A2,L) − 𝛽Π (A1A2)}

where

𝜇(Y ,A1,A2,L) ≡ g′ {E(Y |A1,A2,L)} {Y − E(Y |A1,A2,L)} + Π
[
g {E(Y |A1,A2,L)}

]
.
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A root-n consistent estimator of 𝛽 can thus be obtained as

̂

𝛽 =

{

1
n

n∑

i=1

̂Π2(Ai1Ai2)

}−1
1
n

n∑

i=1

̂Π(Ai1Ai2)�̂�(Yi,Ai1,Ai2,Li),

where

�̂�(Y ,A1,A2,L) = g′
{
̂E(Y |A1,A2,L)

}{
Y − ̂E(Y |A1,A2,L)

}
+ ̂Π

[
g
{
̂E(Y |A1,A2,L)

}]
.

Here, ̂E(Y |A1,A2,Li) denotes a data-adaptive prediction (e.g. obtained using machine learn-
ing or a flexible parametric model building procedure). Furthermore, the projection ̂Π(Ai1Ai2)
can be obtained via the ACE algorithm (Bickel et al., 1993). This involves first data-adaptively
predicting Ai1Ai2 on the basis of Ai1 and Li and taking the residuals; next, data-adaptively pre-
dict these residuals on the basis of Ai2 and Li and take the residuals; next, data-adaptively
predict these residuals on the basis of Ai1 and Li and take the residuals; and so forth.
This process can be aborted when the variance of the predicted residuals reaches a value
very close to zero. To ensure a decreasing variance, we recommend in each step tun-
ing the obtained predictions of the residuals by substituting these by the ordinary least
squares prediction of those residuals onto the obtained data-adaptive predictions. The pro-
jection ̂Π

{
̂E (Y |Ai1,Ai2,Li)

}
is likewise obtained, starting from ̂E (Y |Ai1,Ai2,Li). The following

theorem outlines the necessary conditions on the nuisance parameters, in order to obtain valid
inference.

Theorem 4 Suppose that estimators ̂Π(.) and ̂E(Y |A1,A2,L) are consistent for Π(.) and
E(Y |A1,A2,L), respectively (see details in the Appendix). Suppose that the weak positiv-
ity assumptions at both the population and sample level hold that P

{
Π(A1A2)2

}
> 𝜎,

Pn
{
Π(A1A2)2

}
> 𝜎 and Pn

{
̂Π(A1A2)2

}
> 𝜎 for some 𝜎 > 0. Suppose furthermore that

at least one of the following two conditions hold:

1. (Sample-splitting) ̂Π(A1A2), ̂E(Y |A1,A2,L) and ̂Π[g{ ̂E(Y |A1,A2,L)}] are obtained from a
sample independent to the one used to construct ̂

𝛽.
2. (Donsker condition) The quantity

̂Π(A1A2)
Pn

{
̂Π(A1A2)2

}
{
�̂�(Y ,A1,A2,L) − ̂

𝛽
̂Π (A1A2)

}

falls within a P-Donsker class with probability approaching 1.

Further, assume that ̂Π(A1A2) = Op(1) and that sufficient rates of convergence are attained
so that the following terms are op(n−1∕2):

P
[
{E(Y |A,L) − ̂E(Y |A,L)}2]

,

P

[{
Π(A1A2) − ̂Π(A1A2)

}2
]

,

P

({
Π(A1A2) − ̂Π(A1A2)

}2
)1∕2

P
(
[Π[g{E(Y |A,L)}] − ̂Π[g{ ̂E(Y |A,L)}]]2

)1∕2
,
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where, for a random variable V , ̂Π∗(V) ≡ V − ̂Π(V). Then it follows that

√
n( ̂𝛽 − 𝛽) = 1

√
n

n∑

i=1

Π(Ai1Ai2)
E
{
Π(Ai1Ai2)2

} {𝜇(Yi,Ai1,Ai2,Li) − 𝛽Π (Ai1Ai2)} + op(1).

The variance of both considered estimators is obtained as 1 over n times the variance of
the corresponding influence function, with conditional expectations substituted by data-adaptive
predictions, marginal expectations by sample averages and 𝛽 by ̂

𝛽.

6 SIMULATION STUDIES

To provide insight into different aspects of the proposal, we provide results on 4 sets of simula-
tion experiments. In all experiments, we report Monte Carlo bias and standard deviation (SD),
as well as standard errors (SE) estimated as 1 over root-n times the sample standard deviation of
the estimated influence functions and coverage of corresponding 95% Wald confidence intervals.
Throughout, we will refer to the proposal as ‘AL’ for ‘Assumption-Lean’.

6.1 Main effects, binary exposure

In the first experiment, we study inference for the main effect estimand (5) with g(.) the
logit link. The aim of this experiment is to contrast our proposal based on random forest
regression with 3 competing estimators. In particular, we considered the maximum likeli-
hood estimator (MLE) of 𝛽 obtained by fitting the logistic regression model logit{E(Y |A,L)} =
𝛽A + 𝛼0 + 𝛼

T
1 L. We also included two estimators designed for the partially linear logistic model

logit{E(Y |A, L)} = 𝛽A + 𝜔(L); the first estimator ‘ES’ solves the semiparametric efficient score
equations e.g. in Kosorok (2007):

0 =
n∑

i=1

⎛
⎜
⎜
⎜
⎝

Ai −
̂E
[

Ai ̂E(Yi|Ai,Li){1 − ̂E(Yi|Ai,Li)}
|
|
|
Li

]

̂E
[
̂E(Yi|Ai,Li){1 − ̂E(Yi|Ai,Li)}

|
|
|
Li

]

⎞
⎟
⎟
⎟
⎠

×
(

Yi − expit
[
𝛽Ai + logit{ ̂E(Yi|Ai = 0,Li)}

])

whereas the second is the simple doubly robust (DR) estimator proposed in Tchetgen Tchetgen
(2013), which solves the equations

0 =
n∑

i=1

{
Ai − ̂E(Ai|Yi = 0,Li)

}{
Yi − ̂E(Yi|Ai = 0,Li)

}
exp(−𝛽AiYi).

For this purpose, we generated a 10-dimensional covariate L ∼ N(0, Σ), where Σ was (once) ran-
domly generated with variances between 2 and 10 and correlations up to 0.72 in absolute value
and then fixed across simulations; and A ∼ Bern(𝛾TL − 0.15L2

1), where 𝛾 is the 10-dimensional
unit vector scaled by 1∕

√
40 and Lk is the kth entry of L. For generating the outcome Y , we con-

sidered 4 separate settings: (1) Y ∼ Bern(expit(0.3A + 𝛿

TL[1∶5])) where 𝛿 is a 5-dimensional unit
vector scaled by 1∕10; (2) Y ∼ Bern(expit(0.3A + 𝛿

TL[1∶5] + 0.1L2
1)); (3) Y ∼ Bern(expit(L1(1.5A −

1) + 𝛿

TL[1∶5])); and (4) Y ∼ Bern(expit(0.1∕(1 + exp(0.1L3 − 0.1L2)) + 0.3A∕(1 + exp(−0.1L2)) +
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0.5AL6 + 0.025L2
1)). Only in the first two settings does the partially linear logistic model restric-

tion hold; the fourth setting is especially challenging, in light of the complex functional form of
the interaction between A and L.

For the ES estimator as well as the proposal, random forests (via the ‘grf’ package described in
Athey et al. (2019)) were used to learn E(Y |A, L) and E(A|L) and yield predictions. These could
then be plugged into the relevant estimating equations via application of the law of total proba-
bility. For the DR estimator, random forests were used to learn E(A|Y , L) so that predictions of
E(A|Y = 0, L) could be obtained, as this reflects how this conditional expectation would likely be
estimated in practice using machine learning. In experiments 3 and 4, in order not to privilege
the proposed estimand, we chose to report bias and coverage relative to the population limit of
the estimator. The latter was approximated by generating 500 datasets with sample size 100,000,
using the true conditional expectations for the nuisance functionals where possible, and taking
the average of the resulting estimates.

In Table 1, we see that the MLE does not always target an estimand that summarises the con-
ditional association of scientific interest. This is confirmed in experiment 2, where the limit of the
MLE is in a different direction to the parameter in the partially linear model, which is especially
worrisome. We see that the two semiparametric approaches perform well when the model restric-
tion holds. In experiment 3 and 4 however we see that outside of the model, coverage can sharply
decrease as sample size increases. This is the result of excess variability not reflected by standard
errors when the model is misspecified. This is particularly the case for the DR estimator, where
the bias inherited from the random forests appears to be substantial. Our proposal had better cov-
erage than competing approaches in experiment 3 across the different sample sizes; this is due
to both lower bias, and estimated standard errors that at least in large samples more accurately
reflect the variability of the estimator. Reassuringly, despite our inferences being assumption-lean,
the empirical standard deviations show that this does not come with a loss of precision.

6.2 Effect modification, binary exposure

In a second set of simulation experiments, we considered inference for effect modification
estimand (8), with g(.) the identity link and without making the assumption of conditionally inde-
pendent exposures. We generated a 10-dimensional covariate L ∼ N(0, Σ), where Σ was (once)
randomly generated as before. The exposure was generated as in the previous section, and the out-
come as Y ∼ N(3∕(1 + exp(L3 − L2)) + A∕(1 + exp(L1 − L2)), 1). This data-generating mechanism
is inspired by Nie and Wager (2017), but made more complicated by means of a non-randomised
exposure A.

Our aim was to assess evidence for modification of the effect of A by L3. Since such effect
modification is absent, we here studied the performance of different estimation methods w.r.t.
their ability to retrieve zero effect modification (thus also giving us a different perspective than
in the previous section, where we contrasted each estimator with its limit in experiments 3 and
4). The simulation results in Table 2 demonstrate favourable results for the proposal, based on
random forests (via the ‘grf’ package described in Athey et al. (2019)) as compared to OLS based
on a linear model that includes all main effects along with the interaction between A and L3. In
particular, we observe smaller bias and better coverage at the expense of an increase in standard
errors (around 30% larger).

In a second set of simulation experiments, we made the data-generating mechanism even
more challenging by changing the outcome model to Y ∼ N(3∕(1 + exp(L3 − L2)) + A∕(1 +
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T A B L E 1 Simulation results on main effects: empirical bias (Bias) and standard deviation (SD), sample
average of the estimated influence-function based standard errors (SE), and coverage of 95% Wald confidence
intervals (Cov). Bias and coverage taken w.r.t. the truth 0.3 in experiments (Exp.) 1 and 2, and w.r.t. the limiting
values of each estimator in experiment 3 (0.33 (MLE) 0.43 (ES), 1.00 (DR) and 0.50 (AL)) and in experiment 4
(−0.08 (MLE), 0.19 (ES) 0.37 (DR) and 0.21 (AL))

n = 500 n = 1000 n = 2000

Exp. Est. Bias SD SE Cov Bias SD SE Cov Bias SD SE Cov

1 MLE 0.00 0.21 0.21 95 0.00 0.15 0.15 95 0.00 0.11 0.10 94

ES 0.04 0.20 0.19 93 0.03 0.15 0.14 92 0.02 0.11 0.10 92

DR 0.06 0.21 0.23 96 0.05 0.15 0.16 96 0.03 0.11 0.11 95

AL 0.02 0.19 0.20 95 0.02 0.14 0.14 95 0.01 0.10 0.10 94

2 MLE −0.59 0.22 0.22 26 −0.59 0.15 0.16 3 −0.59 0.11 0.11 0

ES −0.14 0.21 0.20 86 −0.04 0.16 0.14 90 −0.02 0.12 0.10 91

DR −0.11 0.22 0.24 90 −0.01 0.17 0.18 96 0.01 0.12 0.13 95

AL −0.17 0.20 0.21 89 −0.07 0.15 0.15 92 −0.04 0.11 0.11 93

3 MLE 0.01 0.26 0.23 92 0.01 0.18 0.16 94 0.00 0.13 0.12 94

ES 0.04 0.28 0.23 88 0.05 0.22 0.18 88 0.02 0.17 0.14 88

DR −0.60 0.21 0.19 16 −0.50 0.16 0.14 7 −0.40 0.13 0.10 6

AL −0.05 0.28 0.23 88 0.00 0.22 0.19 91 0.01 0.17 0.15 92

4 MLE −0.01 0.20 0.21 95 0.00 0.15 0.15 95 0.00 0.10 0.10 96

ES −0.11 0.20 0.19 91 −0.06 0.16 0.14 90 −0.04 0.12 0.11 91

DR −0.29 0.21 0.21 69 −0.25 0.16 0.15 61 −0.22 0.11 0.11 48

AL −0.12 0.19 0.20 92 −0.07 0.15 0.14 91 −0.04 0.12 0.11 92

exp(L1 − L2)) + 5AL6, 1). The inclusion of an interaction between A and L6 now makes it increas-
ingly difficult to demonstrate the absence of effect modification between A and L3 (which has a
correlation of −0.54 with L6). The simulation results demonstrate drastically favourable results
for the proposal with a much smaller bias as well as standard errors (up to 4 times smaller than
for OLS), resulting in much better coverage.

To demonstrate the behaviour under conditions where the linear regression model is cor-
rectly specified, we additionally generated a continuous exposure A ∼ N(𝛾TL, 1), where 𝛾 is the
d-dimensional unit vector scaled by 1∕

√
40, and the outcome as Y ∼ N(𝛾TL + 5AL3, 1). Both

methods give good performance in this setting, with the proposal not surprisingly delivering
larger standard errors (roughly up to 2.5 times larger) in view of the poorer ability of random for-
est regression to pick up linear trends. Here, better performance can be expected with the use of
ensemble learners.

6.3 High-dimensional variable selection, continuous exposure

In a third set of simulation experiments, we considered inference for the main effect estimand (5)
with g(.) the logit link in the presence of high-dimensional covariates using the data-generating
mechanism in Belloni et al. (2013). In particular, we generated a 250-dimensional covariate
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T A B L E 2 Simulation results on effect modification: empirical bias (Bias) and standard deviation (Emp
SD), sample average of the estimated influence-function based standard errors (Mean SE), and coverage of
95% Wald confidence intervals (Cov)

n = 500 n = 1000 n = 2000

Exp. Est. Bias SD SE Cov Bias SD SE Cov Bias SD SE Cov

1 OLS −0.047 0.051 0.051 84 −0.046 0.037 0.036 76 −0.046 0.027 0.025 55

AL −0.034 0.067 0.073 95 −0.016 0.051 0.050 93 −0.015 0.036 0.035 92

2 OLS −2.92 0.24 0.23 0 −2.92 0.17 0.16 0 −2.92 0.11 0.11 0

AL −0.31 0.15 0.16 49 −0.12 0.077 0.085 77 −0.057 0.044 0.052 88

3 OLS 0.00 0.015 0.015 94 0.00 0.010 0.010 95 0.00 0.007 0.007 97

AL 0.019 0.042 0.043 93 0.013 0.027 0.029 95 0.002 0.018 0.021 97

L ∼ N(0, Σ), where Σ is an autoregressive correlation matrix with correlation parameter 0.5. The
exposure was normally distributed with mean given by

∑10
j=1Lj∕j and unit residual variance. The

outcome was dichotomous with mean given by expit
[

0.2A +
∑5

j=1Lj∕(2j) +
∑15

j=11Lj∕{2(j − 10)}
]

.
We evaluated the performance of the standard lasso and elastic-net estimators under a main

effect logistic regression model, as well as the post-lasso (P-lasso) estimator obtained by refitting
that model using the selected variables. In each case, the penalty was chosen as the largest value
for which the cross-validated prediction error is within 1 standard error of the minimum. We
moreover evaluated the proposed assumption-lean procedure (AL) based on these fitting strate-
gies for both the outcome and exposure, assuming that these obey main effect logistic and linear
models, respectively. We finally also included a plug-in estimator (SL) and the proposed estima-
tor (AL SL) based on SuperLearner fits for E(Y |A, L), for E[g{E(Y |A, L)}] and for E(A|L). The
SuperLearner library included two lasso procedures and two elastic-net procedures, using penal-
ties equal to either the above suggested penalty or the one that minimises the cross-validated
prediction error. It additionally included a screening procedure based on running lasso on only
the variables selected in a first lasso run.

Table 3 shows that the post-lasso estimator was heavily biased with downwardly biased stan-
dard error estimators (given by the default model-based standard errors) as a result of ignoring
variable selection uncertainty. The proposal based on post-lasso reduced bias in the estimator, as
well its variability, but did not result in a convincing improvement in standard errors. Much bet-
ter results were found with standard use of the lasso and elastic-net, where the proposal was able
to remove bias completely, while also reducing variability further relative to the use of post-lasso.
It moreover provided unbiased standard error estimators (which are not available for standard
lasso and elastic-net procedures in view of the complex distribution of the estimators they return),
leading to nominal coverage of the Wald confidence intervals being attained. The standard lasso
and elastic-net estimators were less variable, but this is largely due to shrinkage bias, with coeffi-
cients often being set to zero. The use of SuperLearner worsened performance. While less bias was
observed with the plug-in estimator, standard errors were very poorly estimated resulting in poor
coverage of confidence intervals. Results indicate that larger sample sizes are needed for the pro-
posed estimator based on SuperLearner to perform well in settings with such high-dimensional
covariates. In the Supplementary Materials, we provide additional simulation results under com-
plex data-generating mechanisms with misspecified link function, in which we also study the
performance of cross-fitting.
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T A B L E 3 Simulation results on variable selection: empirical bias (Bias) and standard deviation (Emp SD),
sample average of the estimated influence-function based standard errors (Mean SE), and coverage of 95% Wald
confidence intervals (Cov) for post-lasso (P-lasso), Lasso, elastic-net and SuperLearner (SL), and the proposed
variants thereof (AL)

n = 200 n = 400

Est. Bias SD SE Cov Bias SD SE Cov

P-lasso 0.15 0.21 0.13 65 0.095 0.14 0.099 73

AL P-lasso 0.072 0.21 0.13 75 0.039 0.13 0.093 83

Lasso −0.031 0.088 0.010 0.072

AL Lasso −0.00011 0.15 0.14 93 −0.00096 0.10 0.099 94

Elastic-net −0.073 0.051 −0.042 0.041

AL Elastic-net −0.0085 0.14 0.14 93 −0.011 0.098 0.096 95

SL −0.19 0.17 0.019 30 0.0048 0.078 0.00033 0.4

AL SL 0.42 0.22 0.11 13 0.096 0.11 0.096 79

6.4 Complementary log-log link function

In a final set of simulations, we considered the same main effect estimand (5) with a logit
link as in Section 6.1, but now included a complementary log-log link in the data-generating
model. The exposure A and L were generated as in Section 6.1 and Y was generated in 4
different ways: (1) Y ∼ Bern

(
1 − exp

(
− exp(0.3A + 𝛿

TL[1∶5])
))

where 𝛿 is a 5-dimensional
unit vector scaled by 1/10; (2) Y ∼ Bern

(
1 − exp

(
− exp(0.3A + 𝛿

TL[1∶5] − 0.025L2
1)
))

; (3)
Y ∼ Bern

(
1 − exp

(
− exp(0.1L1A + 𝛿

TL[1∶5])
))

; and (4) Y ∼ Bern(1 − exp(− exp(0.025∕(1 +
exp(0.1L3 − 0.1L2)) + 0.075A∕(1 + exp(−0.1L2)) + 0.125AL6 − 0.025L2

1))).
For each setting, we fitted a generalised linear model with a complementary log-log link func-

tion, that was linear (on the complementary log-log scale) in A and the covariates L; the maximum
likelihood estimator of the main effect of A is referred to as ‘MLE-cloglog’. Only in the first set-
ting was this model correctly specified; the maximum likelihood estimator is inconsistent for
the parameter 𝛽 indexing a (correctly specified) partially linear complementary log-log model
cloglog{E(Y |A, L)} = 𝛽A + 𝜔(L) in the second setting. In the third and fourth, this estimator con-
verges to a population limit which was approximated via simulation, and which may not be easily
interpretable.

We also implemented the same estimator from Section 6.1, developed for the estimand (5)
with a logit link. We emphasise that although the link function for generating the data was differ-
ent to the one used in the considered estimand, nevertheless the estimand remains well defined.
For comparison, we also considered the maximum likelihood estimator of the main effect for A in
a logistic regression model that was linear (on the logit scale) in A and L (MLE-logit). The logistic
model was misspecified in each of the experiments, so bias and coverage of the maximum likeli-
hood estimator were again reported relative to the estimator’s population limit (approximated via
simulation). From the results in Table 4, one can see that even when the complementary log-log
link was used in the data-generating model, our estimator continues to infer a weighted aver-
age of the conditional association of interest (on the log-odds scale) with relatively low bias, and
with confidence intervals that possess close to their advertised coverage. This is reassuring, given



VANSTEELANDT and DUKES 679

T A B L E 4 Simulation results with a misspecified link function: empirical bias (Bias) and standard
deviation (SD), sample average of the estimated influence-function based standard errors (SE), and coverage of
95% Wald confidence intervals (Cov). Bias and coverage taken w.r.t. the limiting values of each estimator in
experiment 1 (0.3 (MLE-cloglog), 0.51 (MLE-logit), 0.55 (AL)), experiment 3 (0.04 (MLE-cloglog), 0.03
(MLE-logit) and 0.1 (AL)) and experiment 4 (0.29 (MLE-cloglog), 0.42 (MLE-logit) and 0.12 (AL)); in
experiment 2, bias∕coverage were taken w.r.t. the truth for MLE-cloglog and w.r.t the population limits for the
other estimators (0.83 (MLE-logit), 0.52 (AL))

n = 500 n = 1000 n = 2000

Exp. Est. Bias SD SE Cov Bias SD SE Cov Bias SD SE Cov

1 MLE-cloglog 0.01 0.14 0.13 94 0.01 0.10 0.09 93 0.00 0.07 0.07 96

MLE-logit 0.02 0.25 0.24 94 0.01 0.17 0.17 94 0.00 0.12 0.12 96

AL −0.02 0.21 0.20 94 −0.03 0.16 0.15 92 −0.03 0.11 0.11 93

2 MLE-cloglog 0.24 0.14 0.14 58 0.23 0.10 0.10 33 0.23 0.07 0.07 8

MLE-logit 0.03 0.24 0.23 94 0.01 0.17 0.16 95 0.00 0.11 0.11 95

AL 0.10 0.21 0.20 90 0.06 0.16 0.14 88 0.03 0.12 0.10 91

3 MLE-cloglog 0.00 0.15 0.14 95 0.00 0.10 0.10 94 0.00 0.07 0.07 95

MLE-logit 0.00 0.24 0.23 95 0.00 0.16 0.16 95 −0.01 0.11 0.11 95

AL 0.02 0.21 0.20 94 0.01 0.15 0.14 94 0.01 0.11 0.10 93

4 MLE-cloglog 0.00 0.13 0.14 96 0.01 0.09 0.10 95 0.00 0.07 0.07 95

MLE-logit 0.01 0.20 0.21 96 0.01 0.14 0.15 95 0.00 0.10 0.10 95

AL 0.10 0.19 0.20 93 0.06 0.14 0.14 93 0.02 0.10 0.10 94

that often data analysts may prefer to report results on the log-odds (rather than complemen-
tary log-log) scale, since the interpretation may be more familiar. While also the results for the
other estimators appear favourable because bias is defined relative to their population limit for
these estimators, a key drawback of these estimators is that it is not well understood what their
population limit represents.

7 DATA ANALYSIS

The First Steps program was set up in 1989 in Washington State, United States, in order to serve
low-income pregnant women and children. A specific goal was to reduce the risk of low birth
weight. Using data obtained from birth certificates from 2,500 children born in King County,
Washington in 2001, we sought to evaluate the effects of the First Steps program on infant birth-
weight, as well as its association with maternal age. We were also interested in the possible
interaction between the two exposures considered.

We first carried out a more traditional analysis using parametric models. Specifically, we fit a
linear model for infant birth weight (in grams), with an indicator of participation on the First Steps
program and maternal age as predictors, as well other baseline covariates (child’s sex, mother’s
age, race (asian, black, hispanic, white or other), number of previous live born infants, weight
prior to pregnancy, education, smoking status and marital status). This model yielded estimates
of −13.57 (95% CI: −76.34 to 49.20) for First Steps participation. Assuming that we have adjusted
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for all common causes of First Steps participation and birth weight, and additionally that the lin-
ear model is correctly specified, then the first regression coefficient suggests that participation in
the program led to an average reduction of−13.57 grams in birth weight (although the confidence
interval contained the null). For comparison, fitting a linear model unadjusted for covariates
yielded an estimate of −66.18 (95% CI: −125.79 to −6.57), such that ignoring confounding gives
the impression that the intervention was harmful. We then refit the linear model with an interac-
tion term; it was estimated that the association between program participation and birth weight
increased by 2.7 units per year increase in maternal age (95% CI:−6.99 to 12.33). We fit a separate
linear model, adjusted for all other covariates except program participation, to assess the effect
of age which was estimated as 0.037 (95% CI: −4.40 to 4.47). We did not adjust for participation
given that it was an externally introduced factor that may be predicted by age.

We repeated this analysis after dichotomising the outcome (an infant was considered to have
low birth weight if they weighed <2,500 g). The estimated log-odds ratios for low birth weight
were −0.038 (95% CI: −0.55 to 0.45) for First Steps participation and 0.037 for age (95% CI: 0.00,
0.07), again taken from separate models.

We re-analysed the data using the methods proposed in this article; first we estimated the
propensity-overlap weighted effect of First Steps participation on birth weight using the influ-
ence function-based estimator in Equation (15). The nuisance functionals E(A|L) and E(Y |L)
(along with all others described in the section) were estimated using the SuperLearner. The Super-
Learner library included a generalised linear model with main effects only, a generalised linear
model with main effects and pairwise interactions, random forests regression, support vector
machines, k-nearest neighbours and the default generalised additive model procedures as well
as 8 additional variants of it with degrees of freedom fixed at 3, … , 10. We obtained an esti-
mate of −5.91 (95% CI: −85.12 to 73.31), which was smaller in magnitude than in the previous
analysis, and reflects our a priori belief that program participation is unlikely to lead to a strong
decrease in infant birth weight. In looking at the weighted effect of maternal age, we again did
not adjust for program participation. The proposal yielded an estimate of −1.39 (95% CI: −6.32
to 3.54). By construction, these can be interpreted as the main effects of First Steps participa-
tion and age, regardless of the presence of possible interactions. In a subsequent analysis, we also
re-estimated the interaction between First Steps participation and maternal age without making
assumptions about possible dependencies between these exposures, and found the interaction to
be more pronounced. We obtained an estimate of 6.96 (95% CI: −6.90 to 20.82) based on Super-
Learner. Repeating this analysis for the weighted average difference of log-odds of low birthweight
gave the effect of program participation as 0.01 (95% CI: −0.43 to 0.44) and maternal age as 0.055
(95% CI: 0.03 to 0.08).

8 DISCUSSION

We have emphasised that most data analyses rely on modelling assumptions in more intricate
ways than we may realise. They extract information from those assumptions, rather than from the
data alone. This may result in estimators for, for instance, a conditional association that are not
guaranteed to summarise that association well (e.g. that cannot be viewed as a weighted average
of covariate-specific conditional association measures) when those modelling assumptions fail. It
may moreover deliver overly optimistic uncertainty assessments, even when based on sandwich
standard errors, that are only justified when those modelling assumptions hold. With others, we
therefore recommend that the starting point of a data analysis becomes the choice of an estimand,
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as opposed to the choice of a model. This ensures that the analysis’ aim is unambiguously clear
at all times, regardless of issues of model misspecification. It moreover assures that uncertainty
assessments, by virtue of being obtained under the nonparametric model, reflect solely the infor-
mation that is contained in the data. To prevent this rendering interpretation more complicated,
we have chosen to focus on estimands that can be interpreted as familiar regression parameters
when corresponding models hold, but continue to capture what these parameters aim to sum-
marise when these models are misspecified. The proposal thereby addresses the usual tension
between the need for possibly complex models versus the desire to obtain easy-to-communicate
results (Breiman, 2001).

The idea of starting the analysis with the choice of an estimand, has become well integrated
in causal inference research (Hernan & Robins, 2020). Here, estimands are typically chosen with
a view on specific interventions, whose impact one aims to assess. This literature has primarily
focused on the average causal effect, E

(
Y 1 − Y 0), which expresses how different the expected

outcome would be if all subjects in the population were treated versus untreated. This is useful -
in fact, often more useful than the estimands we consider - if such interventions can be conceived.
For a continuous exposure, contrasts of E (Y a) for different exposure levels a are arguably less
meaningful as interventions that force each one’s exposure to take on level a may not be realistic
(consider e.g. the effect of fixing everyone’s BMI at 25) and demand enormous extrapolations.
Continuous exposures moreover demand a greater need to summarise, which is naturally done
by means of so-called marginal structural models in the causal inference literature (Robins et al.,
2000), such as

E(Y a) = 𝛼 + 𝛽a,

for all a. Weighted least squares regression of Y on A, using so-called stabilised weights
f (A)∕f (A|L), then delivers an estimator for 𝛽 whose probability limit equals

∫ {a − E(A)}E(Y |A = a,L = l)f (a)f (l)dadl
Var(A)

.

This expression shows that while the starting point of a causal analysis is often an explicit
estimand, also here, the desire to summarise high-dimensional information leads one to
working with estimands that are implicitly defined by the estimation procedure. In partic-
ular, adjustment for baseline covariates C is rather common in marginal structural mod-
els and has lead one to consider projection estimands for the parameters indexing models
like

E(Y a|C) = 𝛼 + 𝛽a + 𝛾C.

These have for instance been defined, for dichotomous exposure, as the minimiser to

E
[
(Y 1 − 𝛼 − 𝛽 − 𝛾C)2

]
+ E

[
(Y 0 − 𝛼 − 𝛾C)2

]

(Neugebauer & van der Laan, 2007). When stabilised weights are used or a non-linear link func-
tion is involved, then this raises similar concerns as in Section 2 when the dependence of Y a on C
is misspecified, for then the minimiser for 𝛽 may no longer be guaranteed to capture the exposure
effect on outcome.
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In causal inference applications, this explicit need for summarisation can be avoided by
focussing on estimands that depend on the natural value of treatment (Hubbard & van der Laan,
2008; Muñoz & van der Laan, 2012; Young et al., 2014), for instance, that consider the effect of
shifting the exposure with one unit:

E
(

Y A+1 − Y A)
.

This estimand, which also reduces to 𝛽 in model (4) with identity link when that model is cor-
rectly specified, is directly relevant if interest lies in the effect of interventions that aim to increase
the exposure by one unit. In such settings, it is easier to interpret than the estimand (5). It has the
drawback, however, that such specific interventions may be rare in practice and that the estimand
is very specific to the chosen intervention. In particular, since E

(
Y A+2 − Y A) will not generally

equal twice E
(

Y A+1 − Y A), a need to summarise the effects E
(

Y A+a − Y A)∕a for different lev-
els of a may remain when there is no convincing reason to consider a = 1. In this paper, we
have therefore opted to work with more generic estimands, that are also relevant when no spe-
cific interventions are considered (e.g. when describing the association of an outcome with age,
when measuring time trends,… ), and whose efficient influence function under the nonpara-
metric model does not involve inverse weighting by the conditional density of A, given L. Such
inverse weighting complicates the use of flexible data-adaptive procedures when, for example,
the exposure is continuous (it may require the need for binning, as in Muñoz and van der Laan
(2012)), as conditional density estimation is a difficult problem which has received little atten-
tion in the machine learning literature. Inverse weighting also reflects a change of measure,
and thus signals extrapolations being made (e.g. the fact that a one-unit increase in exposure
may be very unlikely for subjects in certain covariate strata) and thus estimators that rely on
it may exhibit erratic behaviour, even when the density is known. We have therefore focussed
on estimands with a generic definition (regardless of whether the exposure is discrete or con-
tinuous, and regardless of whether one aims to answer a causal question or not), for which
inference can be developed in a generic way (regardless of whether the exposure is discrete or
continuous). Such generic estimands are important to enable broadly accessible data analyses.
Nevertheless, we acknowledge that in specific circumstances, other estimands may be of greater
interest.

Arguably, a drawback of the estimands considered in this paper is that they depend on the
exposure distribution, as is for instance seen in Equation (6). This may be considered undesir-
able (in a similar way that the partial likelihood estimator of the hazard ratio under a Cox model
has been criticised for its limit depending on the censoring distribution in a complicated man-
ner (van der Laan & Rose, 2011); however, it is the unavoidable consequence of working with
estimands that eschew inverse weighting and thus avoid strong extrapolations away from the
observed exposure distribution.

In our attempt to come up with generic estimands for regression parameters, we have expe-
rienced a need for clear principles for choosing estimands, as opposed to letting them be mere
projection parameters (Buja et al., 2019b). In the considered context, we have found it useful to
start from the premise that E(Y |A, L) is known for all levels of A and L, and to consider how
to best summarise this information when the aim is parsimony. This is best done with some
regression model in mind, to ensure that the estimand coincides with a familiar regression param-
eter when that model is correctly specified, and thus remains well interpretable. To prevent that
the assumptions embodied in the entire regression model dominate the choice of estimand, we
have focussed on (generalised) partially linear models, which merely specify the conditional
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association or effect modification term of interest. The population limit of semiparametric esti-
mators under such model may then serve as a template for a choice of estimand. Such choice is
non-unique. In our work, we have aimed for simplicity, realising that other estimands (e.g. that
involve inverse weighting by the conditional outcome variance) can be inferred more efficiently.
For instance, when g(.) is the logit link, it may be advantageous to define the main effect estimand
instead as

E
(

𝜎

2(A,L)
[

A − E{𝜎2(A, L)A|L}
E{𝜎2(A, L)|L}

]

g{E(Y |A,L)}
)

E
(

𝜎

2(A,L)
[

A − E{𝜎2(A, L)A|L}
E{𝜎2(A, L)|L}

]

A
) ,

for 𝜎

2(A,L) = E(Y |A,L){1 − E(Y |A,L)}. Further work is needed to develop inference for this
estimand, and insight in its interpretation.

In future work, we will make similar developments for parameters indexing proportional
hazard models for time-to-event data and marginal models for repeated measures data. We will
moreover study how the dependence of E(Y |A = a, L = l) for continuous a can be described in a
less restrictive way by focussing on the estimand

E[Var(A|L)g{E(Y |A = a,L)}]
E{Var(A|L)}

as an unrestricted function of a.
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1 |  TWO CONTRASTING PHILOSOPHIES

Traditional  statistical  modelling  starts  from  a  family   of  observed  data  laws  indexed  by  un-
known parameters of  interest β. The goal  is  to make  inference about β under  the assumption 
that  contains the true law. By labelling β ‘of interest’, it is implied that  can be expressed such 
that β naturally encompasses the main scientific goal, which is not always the case. Furthermore 
(e.g. ch.1 Cox & Hinkley, 1979) if  does not contain the truth then the inferential theory loses 
relevance and the interpretation of β is obscure. Such concerns sensibly lead to model checking 
procedures, which themselves raise further concerns, as VD describe.

The causal inference and targeted learning schools (Hernán & Robins, 2020; van der Laan & 
Rose,  2011)  start  instead  from  an  estimand,  chosen  to  reflect  the  scientific  question,  without 
reference to any statistical model. Subsequent estimation and inference are tailored to this es-
timand, sometimes using a parametric model , but not  to define  the estimand. The  targeted 
learning  framework  advocates  replacing   with  machine  learning  algorithms,  using  the  esti-
mand’s influence function and accompanying theory to derive estimators with well- understood 
asymptotic behaviour.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited.
© 2022 The Author. Journal of the Royal Statistical Society: Series B (Statistical Methodology) published by John Wiley & Sons Ltd on 
behalf of Royal Statistical Society.

Vansteelandt and Dukes (henceforth VD) propose a practical resolution to an important tension between two 
philosophies of statistical inference. I summarise these aspects before discussing how we might revise our 
understanding of ‘bias– variance trade- off’ in statistical modelling in the light of VD’s work.  
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Although the hygiene of the latter approach is eminently attractive,  its  implementation re-
quires  statistical  expertise.  In  principle,  each  bespoke  estimand  demands  that  all  subsequent 
steps be derived afresh, with no guarantees that the resulting estimator has good properties (e.g. 
when the estimand is too ambitious given the available data). Practical applications of targeted 
learning thus tend to focus on simple estimands (e.g. the marginal effect of a binary exposure) 
where off- the- shelf implementations are readily available. This leaves users in a quandary when 
their scientific question is more complex, for example when the exposure is continuous, as in the 
settings considered by VD.

2 |  THE BEST OF BOTH WORLDS

VD start, as in the traditional approach, from a generalised linear model  indexed by β. This has 
the advantage of restricting attention to quantities that are plausibly reliably estimable from the 
data. For any estimator �̂, consistent under , their philosophy is to consider its probability limit 
�∗ under , the set of all possible data laws. The honest estimand �∗ is only considered acceptable 
if it corresponds (under ) to a weighted average of parameters � l, where each � l has the interpre-
tation of β restricted to levels l of some covariates L, not of primary interest.

VD  set  high  standards  for  making  inference  about �∗,  namely  consistent  estimation  and 
parametric convergence rates under  ‘lean’  regularity assumptions, honest  inference after al-
gorithm/variable  selection,  and  no  density  estimation  for  continuous  variables.  They  argue 
convincingly that such demands are necessary for the data to speak for themselves about �∗,  
and describe a general procedure that meets these standards in the case of any parameter mo-
tivated by a GLM.

3 |  PRECISION IS BOUGHT WITH BLUNTNESS NOT BIAS

That VD propose essentially non- parametric estimation may seem alarming in the light of the 
curse  of  dimensionality  (Stone,  1985).  Indeed,  the  traditional  approach  based  on  one  simple 
model is often justified on the grounds of a bias– variance trade- off: we assume a simple (‘wrong 
but useful’) model since it buys precision in modest- sized data sets. The simulation studies pre-
sented  by  VD  illustrate  that  this  intuition  is  faulty:  their  assumption- lean  estimators  are  also 
relatively precise, but then at what cost?

Our intuition was developed in the context of the traditional approach in which  plays the 
two roles described by VD: (i) estimand definition, and (ii) representing the set of possible data 
laws. Traditionally, choosing a more complex model  leads simultaneously to a less parsimoni-
ous estimand and a larger set of possible data laws. VD, on the other hand, propose a parsimo-
nious estimand, coupled with only very lean restrictions on the set of data laws: parsimony in 
the first sense but not the second. Figure 1 gives a simple illustration of how parsimony in both 
senses increases efficiency, but with parsimony of type (i) having a greater impact than type (ii).

Since consistent estimation is guaranteed under very lean assumptions, and thus bias essen-
tially avoided,  the  sacrifice made by VD’s parsimony  (in  the  first  sense) with which  they buy 
precision is, I believe, not bias but bluntness. A more nuanced (less blunt) understanding of, say, 
a continuous exposure’s effect on an outcome, could be gained by choosing a less parsimonious 
summary, for example one that separately summarises the effect in more sub- groups, but at the 
cost of increased variance.
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4 |  CONCLUDING REMARKS

VD start from the viewpoint that the two approaches in Section 1 are unsatisfactory. The tradi-
tional well- trodden path offers a comfortable ride but often to an unknown and uninteresting 
destination  with  a  dishonest  account  of  how  we  got  there.  On  the  other  hand,  the  targeted 
learning path, in aiming admirably for the summit of a yet- to- be- conquered mountain, is often 
too perilous to navigate with our modest equipment and abilities. VD offer a third way, which 
feels  on  the  surface  much  like  the  first,  but  leads  to  a  well- defined  destination  that  is  both 
practically reachable and at least somewhere in the foothills of scientific interest. Beneath the 
surface lies much of the sophisticated technology from the targeted learning journey, but as 
passengers we need not necessarily know how to operate it, thanks to their general- purpose 
solution.

I conclude by congratulating Vansteelandt and Dukes on their innovative yet pragmatic pro-
posal presented in a wonderfully didactic fashion that provokes us to rethink fundamental as-
pects of statistical modelling. I enthusiastically propose the vote of thanks.

F I G U R E  1   This graph shows the increase in relative standard error for the estimator of two different 
types of estimands after subdividing a covariate L into progressively more strata. The 3000 simulated 
datasets each with sample size 1000 are from a hypothetical observational study with a continuous 
confounder L ∼ N(0, 1), a binary exposure A with Pr(A = 1 | L) = expit(L) and a binary outcome Y with 
Pr(Y = 1|A, L) = expit( − 2 + 0.2AL2). Each dataset is divided into an increasing number s of approximately 
equally- populated strata based on the observed quantiles of L. We first plot the empirical standard deviation 
of the stratum- specific estimator of the average causal effect in each stratum separately, when splitting into 
s = 1, … , 30 strata relative to 1 (i.e. no stratification). Since the SE varies by stratum, the plot in fact takes the 
average of the SE over the s strata. We then plot the relative empirical standard deviation of the estimator of 
the average causal effect (marginalised over the strata) when the data analysis model is stratified into s strata 
relative to 1. Since the true model for Y given A and L has the same  form regardless of the value of L, the models 
with and without stratification are all correctly specified. This allows us to explore, on the one hand, the impact 
of needless flexibility in  in the sense described in (ii) in the text (the slowly increasing lower line) compared 
with the additional impact of decreasing parsimony in the estimand of interest, i.e. sense (i) in the text (the more 
steeply increasing upper line)

0
2

4
6

8
10

0 10 20 30
No. of strata

1-Y0|L-stratum=k)) (averaged over k)
1-Y0))



      |  689DISCUSSION CONTRIBUTION

REFERENCES
Cox, D.R. & Hinkley, D.V. (1979) Theoretical statistics. Boca Raton: CRC Press.
Hernán, M.A. & Robins, J.M. (2020) Causal inference: what if. Boca Raton: Chapman & Hall/CRC.
Stone, C.J. (1985) Additive regression and other nonparametric models. The Annals of Statistics, 13(2), 689– 705.
van der Laan, M.J. & Rose, S. (2011) Targeted learning. Berlin: Springer.

How to cite this article: Daniel, R.M. (2022) Proposer of the vote of thanks to 
Vansteelandt and Dukes and contribution to the Discussion of ‘Assumption- lean 
inference for generalised linear model parameters’. Journal of the Royal Statistical Society: 
Series B (Statistical Methodology), 84, 686–689. Available from: https://doi.org/10.1111/
rssb.12513

DOI: 10.1111/rssb.12514  

Seconder of the vote of thanks to Vansteelandt 
and Dukes and contribution to the Discussion 
of ‘Assumption- lean inference for generalised 
linear model parameters’

Vanessa Didelez1,2

1Leibniz Institute for Prevention Research and Epidemiology -  BIPS, Bremen, Germany
2Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany

Correspondence
Vanessa Didelez, Leibniz Institute for Prevention Research and Epidemiology -  BIPS, Bremen, Germany.
Email: vdidelez@uni-bremen.de

In my view, one of the most important contributions of the field of causal inference has been to 
place the target of inference, the desired estimand, at the centre of the analysis. The estimand is 
chosen in view of the research question, and typically reflects what decision problem we need to 
solve or what our ideal (target) trial would be. Crucially, the (causal) estimand is not automati-
cally a parameter that happens to parametrise a chosen model. The role of models is mostly as 
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a mere tool. For instance, with a survival outcome we may employ hazard regressions but still 
obtain effects in terms of survival probabilities.

This is in some contrast to traditional ‘statistical modelling’, where the model often appears 
to be the starting point, somehow suggested by the data (e.g. a logistic regression for a binary 
outcome), and the natural coefficients are reported (e.g. log- odds- ratios). However, it has become 
abundantly clear that, as far as prediction is concerned, default regression models are regularly 
outperformed by machine learning methods such as random forests and similar flexible methods 
in competitions. The former are then typically defended with the argument of being more inter-
pretable and their parameters being useful summaries of (conditional) dependence.

The thoughtful proposal of Vansteelandt and Dukes (V&D) addresses many of these issues with 
an important lesson right at the start: models, even when only used as tools, may implicitly affect 
the meaning of our estimands and the desired summaries may be invalidated under misspecifi-
cation. V&D therefore place a (particular) estimand at the core, aiming at a simple summary of a 
(high- dimensional) conditional dependence such that the estimand remains sensible regardless of 
whether a specific model holds. The influence function- based estimation method then uses flexi-
ble machine learning for the nuisance functions in a way that ensures valid inference.

While I agree with many of V&D’s points, I am (very slightly) concerned that they might 
distract from asking scientifically relevant questions, which would conflict with the authors’ 
intention. Their proposal restricts our choice of estimand. For example, when the exposure A 
is continuous, V&D make the entirely valid point that the potential outcome Ya (and thus an 
estimand as E(Ya

− Ya�)) typically represents an unrealistic intervention of setting A to exactly 
a even for people whose ‘natural’ value of A would be very different from a. But, such an esti-
mand can be scientifically meaningful, for example when A is the dosage of a drug; in contrast, 
it is less meaningful when A is BMI or income, for example. However, the proposed alternative 
estimand does not solve this problem— only when we actually formulate a scientifically relevant 
question will we (possibly) find scientifically relevant answers. Giving less weight to problematic 
covariate regions does not achieve this— and it does not absolve us from trying harder to elicit 
what a scientifically relevant estimand might be instead, for instance for the effect of BMI on an 
outcome. Moreover, it is a useful feature of approaches like IPW or propensity score matching 
that they alert us to problems, for example when we carry out diagnostics and find that there is a 
lack of overlap and then go on to characterise regions of sufficient overlap; or even when we just 
have extreme weights and confidence intervals get very wide, this rightly indicates that no useful 
statement can be made about our estimand because there is too little information in the data. I 
worry that such aspects are perhaps lost with V&D’s approach, or it would be interesting to know 
if it could be supplemented by something analogous.

In motivating the proposed estimands, V&D further refer to our ‘familiarity’ with main effects 
and interactions in GLMs. However, familiarity is not per- se a relevant criterion: it does, again, 
not ensure scientific relevance. There are plenty of examples, for instance the problematic causal 
interpretation of hazard ratios despite many medical statisticians being extremely familiar with 
them. Besides, what exactly is it that we think we are familiar with? When regression models are 
used to describe conditional dependencies, the correct interpretation of regression coefficients 
as just a measure of conditional dependence, and not as an effect, is rare. A clear distinction 
between covariates included to adjust for confounding and those included as potential ‘effect’ 
modifiers is also rare, typically no rationale for the inclusion of particular covariates is given at 
all— what then motivates the choice of L in the basic quantity E(Y|A, L)?

In summary, I very much welcome V&D’s proposal as a huge improvement on traditional 
statistical regression modelling; but with regard to causal analyses there is still room for further 
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research into combining the truly impressive results on assumption- lean valid inference with the 
quest for more scientifically meaningful estimands. No doubt, V&D will lead the way.

It is with greatest pleasure that I second the vote of thanks for this most stimulating and im-
portant paper.
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I want to congratulate the authors on a thought- provoking paper on statistical inference with 
misspecified models. It deepens our understanding of the role of models in causal inference. I 
offer two comments.

First, the conditional estimands proposed in this paper can be misleading even in randomised 
experiments. With a binary exposure A, the authors propose the conditional estimand 

where wo(L) = �(L){1 − �(L)}∕E[�(L){1 − �(L)}] is the weighting function depending on the pro-
pensity score π(L) = P(A = 1|L). With the identify link g(z) = z, it reduces to the average treatment 
effect for the population under the overlap weight (Li et al., 2018). This form of weighting appeared 
in different settings (e.g. Angrist, 1998; Crump et al., 2006; Vansteelandt & Daniel, 2014; Wallace & 

�conditional = E
(
wo(L)

[
g{E(Y |A = 1,L)} − g{E(Y |A = 0,L)}

])
,
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Moodie, 2015; Ding, 2021). With non- linear log or logit links for a binary Y, it reduces to a weighted 
average of the conditional risk ratio or odds ratio, which does not equal to the standard marginal 
estimand 

The authors point out this well- known issue in their paper. Figure 1 compares �conditional and �marginal 
as well as their analogues for interaction under a completely randomised experiment with a binary 
L. In general, �conditional ≠ �marginal and they may not have the same sign. The authors argue that an 
advantage of �conditional is that it reduces to β under model (4). In contrast, �marginal ≠ � under model 
(4) unless g(z) = z or g(z) = log z. However, β may not be of interest even if model (4) is correctly 
specified and even if the data arise from a randomised experiment. It measures the conditional risk 
ratio or odds ratio given L, but the policy- relevant estimand is often the marginal risk difference, risk 
ratio or odds ratio. Freedman (2008) gave a critical assessment of logistic regression in randomised 
experiments.

Second, with two binary exposures A1 and A2, we may be interested in the main effects and 
interaction simultaneously. Although model (7) is a convincing motivation for the novel interac-
tion measure, it is not for the main effects measures. Let  = {(1, 1), (1, 0), (0, 1), (0, 0)}. Section 4 
motivates to define the general weighted contrast 

�marginal = g
[
E{wo(L)E(Y |A = 1,L)}

]
− g

[
E{wo(L)E(Y |A = 0,L)}

]
.

F I G U R E   1  Comparison of the conditional and marginal estimands based on 105 Monte Carlo samples. The 
parameters of the distributions of L and Y are all drawn independently from Uniform(0, 1)
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 where wo(L) is the normalised 

also called the general overlap weight (Li & Li, 2019). With c(1, 1) = 1, c(1, 0) = −1, c(0, 1) = −1, 
c(0, 0) = 1, it reduces to the interaction measure proposed in Section 4; with c(1, 1) = 1/2, c(1, 0) = 1/2,  
c(0, 1) = −1/2, c(0, 0) = −1/2, it reduces to a measure of the main effect of A1; with c(1, 1) = 1/2, 
c(1, 0 ) = −1/2, c(0, 1) = 1/2, c(0, 0) = −1/2, it reduces to a measure of the main effect of A2. Following 
Zhao and Ding (2022), it is straightforward to extend the definition of �c to the setting with multiple 
factors A1,…,AK (K ≥ 2). It is a curious question to find the corresponding working model for a 
contrast �c, and more interestingly, for multiple contrasts �cm (m = 1,…,M) simultaneously.

The authors provide inspiring derivations of the novel average effect and interaction measures 
under possibly misspecified models. I am wondering how general their strategy is beyond these 
two measures.
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We congratulate Vansteelandt and Dukes (V & D) with their innovative and interesting article. 
Here we further explore the interpretation of V & D’s main effects estimand.

An algorithm for causal inference. There has been tremendous progress in causal infer-
ence by approaching causal queries in the following way (Hernan & Robins, 2020; Richardson & 
Robins, 2013; Robins, 1986):

1. Choose a causal target: an estimand that corresponds to a scientific question of interest 
(usually a causal parameter).

2. Specify a set of (reasonable) assumptions to define a model, and deduce a functional that 
equals the causal target at every law in the model.

a. If the functional is fully comprised of observed data parameters, then we have full 
identification.

b. If the functional is partially comprised of observed data parameters, then we have partial 
identification.

3. Implement an estimator of the observed components of the identification functional.

An analysis that results in partial identification, that is, it goes through 2.b, might be considered 
the classical ‘assumption- lean’ approach. The assumptions and the causal target are fixed. The 
investigators leverage their (limited) assumptions to derive bounds, that is ‘worst- cases’, for the  
value of the causal target.
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V & D do not follow this algorithm. Their algorithm fixes a functional of observed data— what 
they call an ‘estimand’. Then they consider an assumption (a parametric modelling assumption) 
that may or may not hold, and they derive what we might call a lower bound on the interpreta-
tion of their ‘estimand’.

For example, V & D’s Expression (5) corresponds to an average treatment effect under usual 
identification assumptions and a strong parametric assumption. In the absence of the strong para-
metric assumption, it corresponds to a variance weighted treatment effect (Robins et al., 2008).

But, those who make decisions based on data cannot avoid discrete commitments about as-
sumptions in their analyses. V & D’s algorithm does provide novel information (in the form of 
a worst- case interpretation) when the investigator is not willing to commit to the (parametric) 
model assumption. However, in this case decision- makers must be aware of the implications of 
the worst- case interpretation and how it differs from a causal target that more naturally corre-
sponds to their scientific question of interest. Failure to do so could lead to wrong conclusions, as 
illustrated in the following example.

A simple illustration. Following V & D, consider a binary treatment A ∈ {0, 1}, a binary co-
variate L ∈ {0, 1} and an outcome Y ∈ ℝ. Let P (L = 1) = 0.5, π(1) = p and π(0) = q. Suppose that 
Y is determined by the structural equation

For � ∈ ℝ and β > 0, the average treatment effect (ATE) is

regardless of p and q. However, V & D's main effects estimand is

Thus

• VD(p, q) > 0 when |q − 0.5| < |p − 0.5|, and
• VD(p, q) < 0 when |q − 0.5| > |p − 0.5|.

This example illustrates a more general point. V & D’s main effects estimand does not neces-
sarily correspond to an ATE, even when the ATE is 0 and even when there is no unmeasured con-
founding. In more complex settings, with higher dimensional treatments and non- linear link 
functions, these issues can still exist.
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For situations in which there is uncertainty over the underlying probabilistic model, there are 
at least three broad approaches. One is to seek reliable inference for interest parameters or 
perhaps, as the authors advocate, for quantities retaining at least a degree of interpretability 
under misspecification. Another is to acknowledge more explicitly the model uncertainty. A 
third approach, loosely connected to the first, is to encapsulate uncertainty over the model in 
a possibly large number of nuisance parameters, to be eliminated in the analysis by suitable 
conditioning arguments or other problem- specific manoeuvres (e.g. Bartlett, 1937). A helpful 
example is the use of partial likelihood to evade the baseline hazard function (an infinite- 
dimensional nuisance parameter) of a proportional hazards model. The appropriateness of 
each of the three approaches depends largely on context. I will constrain my discussion to the 
first two.

If the interpretation of an interest parameter is stable over models, it appears that first- order 
reliable inference via maximum likelihood estimation is possible in spite of considerable mis-
specification in the nuisance part of the model only when the interest parameter is orthogo-
nal (in the sense of Jeffreys, 1948, pp. 158– 184) to the notional nuisance parameters, whose 
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interpretation then has to be in terms of Kullback– Leibler projection. This would be a necessary 
condition rather than a sufficient one. Note that the true model is also implicit in the definition 
of parameter orthogonality. It is, as far as I am aware, an open problem to characterise the class of 
models whose interest and notional nuisance parameters are orthogonal under arbitrary model 
misspecification, perhaps after interest- respecting reparameterisation. The second- order proper-
ties are always affected, sometimes severely, which is problematic beyond point estimation. On a 
historical point, the limit in probability of the maximum likelihood estimator under model mis-
specification and its connection to the Kullback– Leibler divergence was derived by Cox (1961, 
1962), who also noted the failure of Bartlett's second identity and gave a generalisation of the 
result (Cox, 1961, equations (28)– (43)) which later became known as the sandwich formula. A 
more rigorous discussion of regularity conditions was given by Huber (1967). Similar results 
were obtained independently by White (1982a,b).

It could be argued, contrary to the paper under discussion, that when the effects of interest 
are represented by parameters whose interpretations differ according to the model used, the ap-
propriate approach is to acknowledge the model uncertainty rather than seek inference on a 
quantity whose interpretation is stable but perhaps only tangentially relevant when the assumed 
model is false. The role of sufficiency in assessment of model adequacy, implicit in R. A. Fisher's 
work is perhaps best approached via Barndorff- Nielsen and Cox (1994, p.29). When the ideas 
can be operationalised, there are no difficulties associated with double use of the data for model 
assessment and parametric inference. The conclusion may be that some, all or none of the a 
priori plausible representations are compatible with the data. If multiple models with different 
interpretations are not significantly contradicted, it is sometimes appropriate to report as many 
as feasible, a point emphasised repeatedly by D. R. Cox (e.g. Cox, 1968, 1995; Cox & Snell, 1974, 
p. 55; 1989, p. 193). See also Davison (1995). This underpins the development of confidence sets 
of models (Cox & Battey, 2017).
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There is a tendency in statistics to talk about model assumptions in a misleading way. Most of us 
probably agree with George Box's ‘all models are wrong but some are useful’, yet there is much 
communication that implies that for applying methods ‘assuming’ certain models, these models 
have to be true. If this were so, no model- based method could ever be used!

Generally model assumptions do not have to be fulfilled. A model assumption just means that 
certain theoretical results regarding a statistical procedure hold assuming the model. A proce-
dure may well deliver useful results if its model assumptions do not hold. This can be addressed 
by investigating what happens if other models hold. The advantage of ‘assumption- lean’ methods 
is that they come with theory that applies under a wider range of models, so we know more, but 
none of this wider range of models will ultimately be ‘correct’ either, and the theory does not 
necessarily guarantee a good behaviour in practice.

The authors shift the focus on estimands rather than models, although their theory and even 
their very definition still assumes a model, be it ‘big’ and non- parametric. Tukey (1997) rather 
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put a focus on procedures, to be challenged by studying their behaviour under different models, 
without assuming any of them to be true. An important issue not treated by Tukey is addressed 
by discussing estimands, namely whether what we estimate is what we really want to know. This 
requires arguments other than evidence from the data.

It may not be enough to choose an estimand so that its estimator fulfils nice asymptotic theory. 
The expected value E is central for the authors' estimands. Concentrating on one- dimensional 
location, standard robustness theory (Huber & Ronchetti, 2009) teaches that E is a non- robust 
functional. Looking at a model such as P�,�1,�21,�2,�22 = (1 − �) (�1, �

2
1
) + � (�2, �

2
2
) with very 

small �, theoretically all is fine with estimating E, but  (�2, �
2
2
) may model irregular outliers, 

and the interest maybe in estimating µ1. But EP�,�1,�21,�2,�22 can be arbitrarily far away from µ1.

The influence function of E is unbounded (as is (13) in the paper, due to the key role of E in 
the estimand), which is a problem from the robustness point of view. Paraphrasing Buja et al. 
(2019), having a general nonparametric theory for an estimand does not necessarily imply that 
the estimand behaves well over the range of models covered by the theory. Whether an estimand 
is well chosen requires more than being ‘assumption- lean’.
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The authors propose an ingenious way to improve on providing inference for the main and in-
teraction effects for generalised linear model parameters. With the use of the efficient influence 
function, they can extend the allowable bias introduced by machine learning estimators up to 
op(n−1/4). Noting that cross- fitting has been suggested to counter the Donsker condition, it may 
be a useful alternative to contrast with machine learning estimates, averages over sample splits 
or even averages over several models.

The idea that the work seamlessly applies to continuous exposures without the need for con-
ditional density estimates is indeed appealing. I am curious how this can be extended to import-
ant econometric or policy questions such as in difference- in- differences, where for dichotomous 
exposures, the estimand reduces to

A minimiser of the Kullback– Leibler divergence style model selection procedure of the ‘best’ 
model within the class of considered models has the advantage of having a model available at 
disposal. This may be useful in explaining to applied collaborators or providing out- of- sample 
estimates or prediction intervals. The philosophy of addressing model misspecification used in 
this work loses that connection. It could be not very clear, a priori, how to choose between the 
main effect versus an interaction effect estimand. Suppose there is an interest in the main effect. 
However, it is expected for the linear model to have interaction terms; how would one interpret 
the main effect estimand in the interaction model?

Although a little far- fetched, practitioners are often interested in testing the interaction effect 
of a group of covariates, say, the interactions of a policy and socioeconomic factors on health out-
come; a model then aids in simpler joint statistical tests. Analogously, simultaneous intervals or 
confidence sets will be useful here. Furthermore, in the spirit of the recommended ‘hierarchical 
principle’, how would we interpret estimated effects when the confidence interval (CI) for the 

E{w(L)[Ew(L)]−1[(Y 11
− Y 10) − (Y 01

− Y 00)]}.
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interaction estimand does not include the null and the CI for the main effect includes zero or no 
effect?

Further, to connect the dots well, it will be great to understand the causal identifying condi-
tions, considering that inference rather than prediction is the goal, an edge that will greatly help 
declutter the uses of black- box methodologies. Thereafter, connecting to unmeasured confound-
ing either via Rosenbaum’s sensitivity or VanderWeele's E- value will be beneficial. However, the 
inferential nature of the causal estimand, either testing or providing valid confidence intervals, 
should remain.
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I commend Vansteelandt and Dukes for (a) advocating that statistics move beyond well- specified 
assumptions and (b) providing a practical estimator to address this for generalised linear mod-
els (GLMs). Furthermore, their derivation of theoretical guarantees for this estimator is highly   
attractive. However, the theorem assumptions exclude many standard machine learning meth-
ods, which may violate the spirit of ‘assumption- lean’ inference guarantees.

Theorems 2 and 4 assume that the three (non- parametric) conditional mean estimates have 
expected square loss converging at rate strictly faster than n−1/2. Theorem 7 of Rakhlin et al. 
(2017) can be extended to show that if the empirical L2 entropy of the model class depends on the 
scale ε ∈ (0, 1) at rate ε−p for some p > 0, then the minimax expected square loss is lower bounded 
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by n−2/(p+2) even in the well- specified setting. That is, in order for the theory of Vansteelandt and 
Dukes to apply without additional assumptions, the three conditional mean models must each 
be strictly Donsker (p  <  2), and this cannot be readily side- stepped using sample splitting as 
Vansteelandt and Dukes do elsewhere.

The strict Donsker assumption is satisfied by models with the number of ‘parameters’ (e.g. 
weights of a neural network) growing strictly slower than n. However, a fixed number of param-
eters is exactly a parametric assumption, and in practice the number of parameters in machine 
learning models is often larger than n (corresponding to the interpolation regime, see Belkin et al., 
2019). In the interpolation regime, such models are better understood from a non- parametric 
perspective; unfortunately, this means that they suffer from an exponential dependence on the 
dimension of the inputs.

For linear models, the dimension- free entropy growth rate is ε−2 (Mendelson & Schechtman, 
2004; Zhang, 2002), and consequently, the present theory does not apply. For integer α and 
γ ∈ (0, 1], entropy for the class of (α, γ)- Hölder smooth functions on ℝd grows at rate ε−d/(α+γ) 
(Wainwright, 2019, Example 5.11), requiring univariate inputs to apply the present theory in 
the Lipschitz (α = 0, γ = 1) setting. These examples include neural networks with linear and 
Lipschitz activations, as well as certain variants of random forests (Mourtada et al., 2020). In the 
notation of Vansteelandt and Dukes, the input dimension corresponds to the dimension of A and 
L jointly, and in practice L can be quite high dimensional.

The authors clearly acknowledge that their convergence requirements may not be satisfied by 
‘very flexible machine learning methods’. However, these requirements exclude many methods 
of interest, including standard neural network and random forest architectures. Ultimately, it 
remains an interesting open question whether Vansteelandt and Dukes' estimator enjoys conver-
gence guarantees (even with appropriately slow rates) when used with such canonical nonpara-
metric methods.
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We thank the authors for their stimulating article. At the highest level, it agrees with our think-
ing as expressed in the second of two articles in Statistical Science (Buja et al., 2019). The guid-
ing principle is to focus on quantities of interest that are meaningful statistical functionals, 
beyond the statistical models that motivate them, even when those models are fully misspec-
ified. In some form, this focus has existed for decades in the semi- parametric literature. We 
suggest below a reinterpretation of the authors’ approach and a modification of their third 
principle.

1. Interpretation: The authors’ formulation can be reinterpreted as follows:

• Dispense with the complexities of GLMs, which for a mixed semi- parametric model, 
 ignoring scale and normalization, are:

Ignore also ‘proper’ minimization of the negative log- likelihood:

p(y: �)∼exp(y�−b(�)), �=�A+�(L), g−1(�)=b�(�),E[Y |A,L]= g−1(�)

min
�,�()

E
[
b
(
�A + �(L)

)
− Y ⋅

(
�A + �(L)

)]
.
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• Instead, use OLS to achieve g
(
E[Y |A,L]

)
≈ � = �A + �(L) directly:

For a binary outcome Y and logistic regression, this means applying OLS to the logit of 
E[Y |A,L].

The authors’ proposal (5) is the solution to the minimization problem (1), which shows that it is 
a projection functional based on a non- standard loss function.

The parameter of interest, β, is obtained by adjusting g
(
E[Y | A,L]

)
 and A non- parametrically 

for L,

and applying a simple linear regression to Z vs. X: β = E[ZX]/E[X2].

2. Suggestion: The authors’ third principle states that the parametric estimand should be an 
L- weighted average of estimands at each stratum of the confounder L. However, the estimands 
are not covariances but slopes,

for which averaging over L- strata is incorrect. There is no need for a principle if the quantity of 
interest is mathematically defined as a functional on distributions, be they cofounder- conditional 
(β | L = E[ZX | L]/E[X2 | L]) or marginal (β = E[ZX]/E[X2]). Yet, there is value in the idea of weight-
ing across L- strata because it can be used to generate multiple functionals that satisfy the authors’ 
first principle: agreement with the model parameter if the model is correct. This works as follows:

• Reweight the data/population with an L- dependent weight function w(L) (not to be con-
fused with ω(L) of the model):

• Apply the functional of interest to the reweighted data/population:

This specializes to the authors’ proposal (5) for w(L) ≡ 1.

When the model is 1st order correct, g
(
E[Y |A,L]

)
= �A + � (L), it holds that βw is the same for 

all weight functions w(L): βw ≡ β. When the model is 1st order misspecified, there exist weight 
functions w1(L) and w2(L) such that �w1 ≠ �w2, which is equivalent to ‘effect heterogeneity’, i.e., 

(1)min
�,�()

E
[(
g
(
E[Y |A,L]

)
−

(
�A+�(L)

))2
]

Z := g
(
E[Y |A,L]

)
−E

[
g
(
E[Y |A,L]

)
|L
]
and X := A−E[A|L]

� |L =
Cov

(
g
(
E[Y |A,L]

)
,A |L

)

Var (A |L)
,

pw (y, a, l) = w (l) p (y, a, l) , where Ep [w (L)] = 1.

�w =

E
[
w (L) ⋅ Cov

(
g
(
E[Y |A,L]

)
,A|L

)]

E [w (L) ⋅ Var (A|L)]
=

E [w (L)ZX ]

E
[
w (L)X2

] .
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β | L is not the same (a.s.) for all confounder strata L. This lends itself to a ‘well- specification’ 
diagnostic for regression functionals, as elaborated in Buja et al. (2019). It specializes here to a 
diagnostic for effect heterogeneity.
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We congratulate the authors for major advances in the methodology of estimands, in particular 
assumption- lean reference for the estimands in possibly misspecified generalised linear mod-
els. Whereas the simulation studies in Section 6 indeed support the ‘assumption- lean’ claim 
and the authors’ software in Practice of Epidemiology 187 (pp. 1079– 1084, 2018) facilitates such 
inference, the empirical example in Section 7 seems problematic to illustrate applications of the 
methodology. The example focuses on ‘data obtained from birth certificates from 2500 children 
born in King County, Washington in 2001’ in the First Steps program that was ‘set up in 1989’ 
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in King County. These are longitudinal data, and the program is still ongoing. The methodology 
for longitudinal studies developed by Laird and Ware (1982) and applied to the Six Cities Study 
(Ryan, 2015, section 3) using generalised linear mixed models seems more appropriate for the 
re- analysis of the longitudinal data from the First Steps program of King County. Although 
Laird and Ware's methodology does not involve causal inference, Laird mentions how such 
inference can be added to the analysis in Ryan (2015, section 9 on statistical genetics). Chen 
et al. (2018, sections 3.6.3, 4.5, 5.4, 6.3, 6.4, 6.5, 7.4, 7.5) describe how causal inference/conclu-
sions can be derived via multi- criteria statistical decision theory, exposure- adjusted incidence 
rates and multiple testing with familywise error or false discovery rate control for clinical trials 
data, control for confounding using inverse probability weighting, propensity scores, instru-
mental variables and research designs for unmeasured confounders, structural causal models 
and symbolic causal calculus for post- marketing safety data, empirical Bayes and Bayesian ap-
proaches to signal detection from adverse event databases. In addition, Sections 2.1.3 and 2.1.4 
of that book describe recent advances in statistical learning methods which involve nonlinear 
basis functions such as neural networks and classification/regression trees and in validation 
of the prediction/regression model, in contrast to the linear (or partial linear) basis functions 
used in the present paper and complementary to the sample splitting asymptotic theory in its 
Theorem 2.

REFERENCES
Chen, J., Heyes, J. & Lai, T.L. (2018) Medical product safety evaluation: biological models and statistical methods. 

Boca Raton FL: Chapel R Hall/CRC.
Laird, N. & Ware, J. (1982) Random- effects models for longitudinal data. Biometrics, 38, 963– 974.
Ryan, L. (2015) A conversation with Nan Laird. Statistical Science, 30(4), 582– 596.

How to cite this article: Choi, A. & Kee Wong, W. (2022) Anna Choi and Weng Kee 
Wong’s contribution to the Discussion of ‘Assumption- lean inference for generalised 
linear model parameters’ by Vansteelandt and Dukes. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology), 84, 705–706. Available from: https://doi.
org/10.1111/rssb.12522

https://doi.org/10.1111/rssb.12522
https://doi.org/10.1111/rssb.12522


      |  707DISCUSSION CONTRIBUTION

DOI: 10.1111/rssb.12523  

Chaohua Dong, Jiti Gao and Oliver Linton’s 
contribution to the Discussion of ‘Assumption- 
lean inference for generalised linear model 
parameters’ by Vansteelandt and Dukes

Chaohua Dong1  |   Jiti Gao2  |   Oliver Linton3

1Zhongnan University of Economics and Law, Wuhan, China
2Monash University, Melbourne, Australia
3University of Cambridge, Cambridge, UK

Correspondence
Oliver Linton, University of Cambridge, Cambridge, UK.
Email: obl20@outlook.com

The title of this paper is ironically self- fulfilling, since there are almost no meaningful assump-
tions made throughout! The starting point is that we have some plausible semi- parametric 
model, which is a special case of a more general non- parametric model, but we wish to allow for 
misspecification and in particular define an estimand that is meaningful in the non- parametric 
model and that specialises in the plausible model to a slope coefficient. However, since the es-
timator that is proposed is not the semi- parametric efficient estimator of that slope coefficient 
under the semi- parametric model, we wonder what is the role of the model at all? The theory 
side of it seems to assume in Theorem 2, for example that E(Y | A, L) is consistently estimated in 
L2 under the full unrestricted - parametric setting. But if that is possible, then why bother with 
the model? The authors talk casually about machine learning methods being used to estimate 
E(Y | A, L), but if that is a silver bullet, then who needs the model? The model embodies some 
structure around A, L but the discussion is focussed away from the dimensionality of L, which is 
a big reason why one might want a structured model such as additivity (Linton & Nielsen, 1995) 
or the partial linear model (Robinson, 1988). Perhaps it would help if a full model was written 
down for the effect of high- dimensional L. Perhaps the point is that the parameter of interest is 
only defined in terms of low- dimensional conditional expectations, but this does not appear to be 
the case in the sense that high- dimensional smoothing is employed in (a) of p.14, which is then 
projected down by conditional expectation onto L, but if A is binary, then this has not reduced 
dimensionality at all, the dimensionality issue sits in L and what structure is assumed about its 
effect on Y.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited.
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The authors say that the usual choice of smoothing parameter is not tuned to the estimand. 
This point has been made in Linton (1995) who derived an optimal bandwidth for estimation of 
slope parameters and Wald statistics in the partially linear model based on local polynomial esti-
mators; the optimal rates are indeed different from those that minimise the mean squared error 
of the non- parametric regression involved.

An alternative approach is to use sieve methods throughout and penalisation. Of course this 
questions whether it is necessary to pay too much attention to the approximating model. For ex-
ample, suppose that we let Xi be the (2dK  +  1)  ×  1 vector containing Ai and basis functions 
�k(Lji) and Ai�k(Lji) (if interactions between Lj and A are important) for k  =  1,  …  ,  K and 
j = 1, … , d, and i = 1, … , n, and let � ∈ ℝ

2dK+1 minimise 

where m is a large vector of (possibly non- linear) moment condition, while pen� is a penalty func-
tion such as SCAD or LASSO. Dong et al. (2018) establish, as a special case, the consistency and 
asymptotic normality of the estimators in (1) and provide consistent inference methods when the 
dimensionality of Xi is diverging and a smooth penalty like SCAD is used.
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We congratulate the authors on their work, which contributes to a growing movement in 
Statistics, moving away from (semi)parametric- based regression model assumptions, in favour of 
understanding working models as non- parametric projections of the true distribution. Here, we 
highlight this aspect of the work, and draw connections with other recent developments.

Consider the functional m(A, L) = g {E(Y|A, L)}, using the same notation as Vansteelandt and 
Dukes (2020). Without loss of generality,

where β is an arbitrary constant, ω(.) is an arbitrary function and R(A, L) is a remainder term, with-
out restrictions.

The parametric modeller assumes that for some particular β, ω(.), the remainder term is ex-
actly zero. Inference is usually carried out under this assumption, resulting in the dishonest in-
ference described in (Vansteelandt & Dukes, 2020). The projectionist, however, instead aims to 
report β such that the remainder term is, in some sense, small. The projectionist argues that 
when the remainder is small, β captures the main effect of A on Y. Indeed when the parametric 
modeller is correct, both the reported main effects coincide.

One sense in which the remainder might be small is in squared expectation, e.g. β is

where ω(.) is chosen to minimise the same quantity. This minimisation recovers the main effect of 
Vansteelandt and Dukes (2020), which is consequently given a least squares projection interpretation. 

m(A, L) = �A + �(L) + R(A, L),

argmin
�∈ℝ

E[{R(A, L)}2] = argmin
�∈ℝ

E[{m(A, L)−�A−�(L)}]2 =
E[cov{A, m(A, L)|L}]

E{var(A|L)}
,
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The estimand, however, remains non- parametrically defined and can be estimated using methods 
described in (Vansteelandt & Dukes, 2020).

Vansteelandt and Dukes (2020) also elucidates the relationship between causally- derived esti-
mands and those defined through parametric models, which are seemingly disparate. Consider, 
for example, a conditional effect estimand, λ(.), defined by

λ(.) can be interpreted as a heterogeneous treatment effect (HTE). To see why, notice that for an 
identity link, and binary A, the remainder is zero when λ(L) is the HTE and ω(L) is the condi-
tional mean outcome in the A = 0 treatment subgroup, i.e. m(A, L) is written

Regardless of whether A is binary or not, the projectionist may decide to report λ(.), such that 
the mean squared remainder is minimised

where  is the set of functions mapping confounder vectors to the real numbers, and ω(.) minimises 
the same objective function. When A is binary and g(.) the identity link, λ(.) reduces to the binary 
HTE; however, it remains well defined for continuous and discrete exposures. Moreover, we note 
that the recent R- learner (Nie & Wager, 2021; Robinson, 1988) provides a method for estimating λ(.) 
when g(.) is the identity link, since the R- learner minimises the objective function,

Finally we observe that the main effect estimand in (Vansteelandt & Dukes, 2020) is a weighted 
average of this HTE,

with the weight W (L) = var(A|L)∕E{var(A|L)}, which is non- negative and has expectation 1.
We believe that model projection estimands represent an exciting frontier in statistical research.
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This paper offers a generic and principled addition to conventional statistical modelling. It is a 
real advance in applicable methodology. But there is no need in the paper for the following claims: 
that statisticians routinely use ‘dishonest’ modelling assumptions, that statisticians should aim 
for ‘purely evidence- based’ inferences and that modelling assumptions are ‘almost always a pure 
mathematical convenience’. These sorts of claims are redundant or misleading for three reasons.

First, text- book statistical inferences look like deductions. But nearly everyone wants to make 
inductive inferences. Statisticians assist in the leap from deduction to induction via iterations of a 
two- step process: step one, specify different models and estimate their parameters (adding and drop-
ping interaction terms, using different error assumptions and so on); step two, assess and compare 
the models (including assumption checking). This inductive process is necessarily vague, but it em-
bodies the key statistical tasks defined by Fisher (1959, pp. 6– 8). Properly disclosed assumptions that 
cannot be proved, or are openly false, play an honest and essential role in inductive processes— we 
have to take risks to go beyond the data and what we already know. Adding assumption- lean or ‘less 
risky’ methods to inductive processes may prove useful but this would not be ‘more honest’.

Second, if by ‘evidence’ the authors really mean data then I would argue that aiming for ‘purely 
evidence- based’ inferences is not ambitious enough. Seeking inductive or causal inferences is to 
aim higher, but ‘no causes in, no causes out’ (Cartwright, 1994) and, I argue, ‘no assumptions in, 
no inductions out’. In other words, substantive and risky modelling assumptions help turn data 
into the sort of evidence that supports causal and inductive claims.

Third, I acknowledge the convenience- factor of conventional modelling assumptions; prover-
bial examples include simplistic error structures and the absence of model mis- specification. But 
with finite samples, the methodology promoted in this paper has its own hazards tucked away. 
For example, estimators may depend on the particular machine learning method used (kitchen- 
sink approaches, like SuperLearner, are no panacea); and sample- splitting or cross- fitting can 
cause biases (such as a tendency to over- penalize more complex models that require larger sam-
ples for adequate parameter estimation) as well as noise.
This is an open access article under the terms of the Creative Commons Attribution- NonCommercial- NoDerivs License, which permits 
use and distribution in any medium, provided the original work is properly cited, the use is non- commercial and no modifications or 
adaptations are made.
© 2022 The Author. Journal of the Royal Statistical Society: Series B (Statistical Methodology) published by John Wiley & Sons Ltd on 
behalf of Royal Statistical Society.
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Assumption- lean methods are not necessarily superior to assumption- rich methods, but they 
are surely complimentary. In future applied work, I look forward to adding some of these generic 
estimand- centric methods to my usual, honestly- reported, model comparisons and tentative in-
ductive leaps.
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According to Leo Breiman (2001), there are two broad cultures for analysing and modelling to 
reach conclusions from the data. The first one is data modelling culture where the value of the 
parameters are estimated from the data and then the model is used for information and/or pre-
diction. The second one is algorithmic modelling culture, where the approach is to find a func-
tion f(x) using an algorithm that operates on x to predict y. In the first case, statistical tools like 
OLS are used whereas machine learning tools perform much better in the second case. I should 
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congratulate­the­authors­for­developing­a­hybrid­model­using­machine­learning­and­traditional­
statistical­techniques­like­OLS.­However,­I­do­have­few­queries­on­the­real-­life­applications­of­
the­proposed­model.­Most­of­ the­simulation­results­ for­main­effects,­effect­modification­and­
misspecified­ link­function­are­valid­ for­sample­size­n = 500­or­more.­Also,­ the­data­analysis­
example­presented­in­section­7 has­a­sample­size­of­2500.­How­is­the­empirical­bias­affected­
when­the­sample­size­is­small?­Bayesian­models­incorporate­prior­information,­which­can­be­
specified­quantitatively­in­the­form­of­a­distribution.­Do­the­authors­think­a­Bayesian­parameter­
generalised­linear­model­can­perform­better­if­some­prior­information­is­available?­Also,­I­am­
not­sure­how­this­model­tackles­the­problem­of­multicollinearity?­Finally,­in­the­context­of­high­
dimensional­variable­selection,­what­will­happen­if­the­covariates­are­not­distributed­normally?

REFERENCE
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The­authors­advocate­a­style­and­rhetoric­of­statistical­analysis­that­begins­with­specifying­an­
estimand­and­ends­with­an­estimate­and­interval.­They­say,­‘The­starting­point…­is­to­come­up­
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with an estimand that is meaningful when the above [generalized partially linear] model [(4)] 
does not hold, but reduces to [the familiar regression coefficient] β when the model holds; this… 
allows for nonparametric inference to be developed for that estimand’. However, in our opinion, 
such an analysis is not always appropriate. For example, consider the second of Anscombe’s 
(1973) data sets, in which Y is a quadratic function of X. The authors’ Y is Anscombe’s Y; the au-
thors’ A is Anscombe’s X; and the authors’ L has just one value. The authors’ estimand appears 
to be given by (5), where g is the identity function. For a given data set, including Anscombe’s, 
(5) reduces to one number which is to be interpreted similarly to a slope. In our opinion, that 
is a poor way to summarize Anscombe’s data. The problem arises because the authors insist on 
choosing an estimand before seeing the data, thereby precluding the possibility of summarizing 
the data with a statement like ‘E[Y|X] appears to be a roughly unimodal function of X with a 
maximum around X = 11’. Contrary to the authors’ claim that ‘the resulting analysis can be pre- 
specified, which is essential if one aims for an honest data analysis that reflects all uncertainties’, 
we think it is dishonest, or at least a serious mistake, to summarize Anscombe’s data with one 
slope- like number.

Instead, we prefer a style and rhetoric of sensitivity, which begins with looking at the data to 
see what sorts of models provide useful descriptions; then uses familiar, interpretable quantities 
and a simple analysis; and then considers how substantive conclusions change with deviations 
from the assumptions of the simple analysis, elaborated only as needed. The product is a leading 
result and a summary of the effects of variations. Barr et al. (2012) is but one of many possible 
examples of this style and rhetoric, the regression diagnostics literature being another. From 
our experience, a rhetoric of sensitivity provides a more intelligible and better- fitted answer to 
our scientific collaborators’ questions and concerns, at least for the range of problems we have 
worked, as well as being more transparent.
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Not all conditional associations between outcomes and exposures are of interest. Those that are 
tend to be directional: up or down. The simplest way to assess directionality is to fit a confounder-  
adjusted linear exposure term, as the authors propose. We agree with this approach as some of 
us have argued that linear slopes are meaningful and interpretable even if the directional associ-
ation is not linear (Buja et al., 2019, section 10). The authors, and Whitney et al. (2019), remind 
us that severely misspecified adjustment can result in distortions of linear exposure slopes. In 
their examples, the A−L distributions have U- shaped nonlinearities and, as a result, naive linear 
adjustment produces a biased estimate of the true slope. Thorough data analysis could unearth 
such exposure- confounder structure if present in real data. A greater worry for practitioners is 
missing an essential confounder that biases or reverses the direction of association. The authors’ 
inferential framework does not require L to control for all A−Y confounding, but meaningful use 

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial License, which permits use, 
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Journal of the Royal Statistical Society: Series B (Statistical Methodology) published by John Wiley & Sons Ltd on 
behalf of Royal Statistical Society.

We congratulate the authors on their excellent article (Vansteelandt and Dukes, 2021). In this comment, we highlight a 
few practical issues related to their proposal. 
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of the estimand likely does— and therefore practitioners should select L with care and interpret 
estimates in conjunction with sensitivity analyses.

The authors’ project of assumption lean inference rests on the assumption that nuisance pa-
rameters can be estimated nonparametrically at rate n1/4. It is surprising to us that this property 
is widely assumed to hold for machine learning methods. The authors are in good company 
with this assumption, but, for example, the random forests included in the authors’ analyses can 
have large bias if a tuning parameter is chosen badly (Olson, 2018), and as far as we know cross- 
validation has not been shown to reliably choose good tuning parameters. Even if n1/4 rates are 
achieved asymptotically, slower rates of convergence may require large samples before asymp-
totic approximations are useful. This points to the importance of methods to test or help ensure 
that the required rates are achieved (Liu et al., 2020; Robins et al., 2008; van der Laan et al., 2021), 
or to perform valid inference under slower rates (Cattaneo and Jansson, 2018; Kuchibhotla et al., 
2021).

We re- ran the authors’ code and applied HulC, a new method for the construction of 
assumption— lean confidence intervals (Kuchibhotla et al., 2021).1 We found that the point es-
timates are indeed sensitive to choice of tuning parameters. Although HulC intervals are wider, 
they are valid even if approximate normality does not hold, as would be the case if the nuisance 
estimators converge slower than n−1/4, as long as the estimator satisfies a weaker median unbi-
asedness property (Kuchibhotla et al., 2021).
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We commend the authors on this novel non- parametric extension of main and interaction 
coefficients in a generalised linear model (GLM), such as �(Y |A,L) = �A + g(L) , and their  
efficient estimation. There is a wealth of non- parametric extensions one could pursue, including  
weighted squared error projections of a conditional treatment effect �(Y |A = a,L) − �(Y |A = 0,L)  
and conditional interaction effect �(Y |A= (a1+1, a2+1),L)−�(Y |A= (a1, a2+1),L)−

�(Y |A= (a1+1, a2),L)+�(Y |A= (a1, a2),L) onto a simple parametric models �a and 
�0 + �1a1 + �2a2, respectively (Chambaz et al. (2012)). Such projection estimands are common in 
the causal inference literature. The authors propose a different estimand criterion that requires 
the efficient influence curve (EIC) to avoid (conditional) density estimation and inverse weight-
ing. Inverse weighting can certainly cause instability but machine learning techniques have been 
well- adapted for conditional density estimation (for instance, Muñoz and van der Laan (2011), 
Rytgaard et al. (2021) and van der Laan (2010)). The above least squares projection for the main 
effect has an EIC that inverse weights by P(A = 0|L), thereby achieving the first but not the sec-
ond goal.

The proposed main effect estimand �((A − �(A|L))(�(Y |A,L) − �(Y |L)))∕��2
A|L

 (5) satisfies this 
criteria for the EIC; however, it is harder to interpret outside the GLM. For example, if 
(�(Y |A,L) − �(Y |L)) is not linear in (A − �(A|L)), then the numerator will generally average  
both negative and positive contributions �(Y |A,L) − �(Y |L), even for problems in which 
�(Y |A,L) − �(Y |A = 0,L) ≥ 0 everywhere. Consider A ∼ U(0, 1) independent of L and 
�(Y |A,L) = 𝜖−1A�(A ≤ 𝜖) + �(A > 𝜖) + g(L). Here, the numerator becomes �(A − 1∕2)(�−1A�(A ≤ �)+

�(A > 𝜖)) and approximates �(A − 1∕2) = 0 as � → 0, whereas the unweighted projection of 
�(Y |A,L) − �(Y |A = 0,L) on �a, would result in � = 3∕2 − �2∕2, correctly demonstrating a strong 
treatment effect. In addition to impacting the interpretation, these cancellations can hurt the 
power for testing a null hypothesis relative to testing with the parameter in Chambaz et al. (2012), 
even though the latter’s EIC might have larger variance. The interpretation of the interaction 
estimand (e.g., 10) for continuous A1, A2 has an additional complication in the sense that it does 
not involve an average of L- specific interactions.

https://orcid.org/0000-0002-8474-591X
mailto:﻿￼
https://orcid.org/0000-0003-1432-5511
mailto:laan@berkeley.edu


718  |      DISCUSSION CONTRIBUTION

Both of the proposed estimands and their EICs depend on the conditional distribution 
of A, given L, making the interpretations non- robust to irrelevant deviations in the study. 
Users should carefully consider knowledge regarding the model for P(A|L) and compute the 
EIC accordingly, potentially achieving efficiency gains relative to the non- parametric model 
considered.

Finally, the authors proposed a one- step estimator of their estimands based on the EIC. 
We believe that practitioners that are used to maximum likelihood estimation (MLE) would 
find it more natural to use a plug- in estimator, and thereby targeted MLE (TMLE). It would 
be straightforward to develop a TMLE, as the EICs imply how to target initial estimators 
of �(A|L) and �(Y |A,L) for the main terms estimand, and their analogs for the interaction 
estimand.
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I congratulate the authors on an interesting and thought provoking contribution to the literature 
on modelling associations.

A particular strength of the approach advocated by the authors is that it may facilitate the 
estimation of main effects on the relative risk scale, by taking g = log. In contrast, a GLM specifi-
cation such as (4) with log link presents difficulties owing to the variation dependence between β 
and ω(·). This dependence, also called non- congeniality, often leads to computational difficulties 
in practice (Lumley et al., 2006).

An alternative approach that allows parametric modelling of the log relative risk as a function 
of base line covariates: 

is to use the Odds Product (OP) as a nuisance model: 

 This has the advantage that the odds product is variation independent of the relative risk; see (Richardson 
et al., 2017). This specification may also be used as the first stage in a doubly robust estimation method, 
which permits consistent estimation of the relative risk model given correct specification of the pro-
pensity score π(L) and the relative risk model. Though originally formulated for binary exposures, this 
approach has recently been extended to discrete variables taking finitely many levels and, under mono-
tonicity conditions, continuous exposures taking values in a bounded interval; see (Yin et al., 2021).

While a partially linear GLM using the logit link function does not suffer from the problem 
of variation dependence it still faces the issue that, owing to the lack of collapsibility of the odds 
ratio, interpretation of a logistic ‘main effect’ can be challenging. In particular, even when a spec-
ification such as (4) with g = logit is correct, the main effect β will never be closer to zero than the 
log odds ratio for the marginal association.

(1)RR(L) ≡
E[Y | A = 1, L]

E[Y | A = 0, L]
= exp(�(L; �)),

(2)OP(L)≡
E[Y |A=1,L]

(1−E[Y |A=1,L])

E[Y |A=0,L]

(1−E[Y |A=0,L])
=�(L).
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More generally, when (4) does not hold, the marginal (log) odds ratio may not even lie within 
the convex hull of the conditional (log) odds ratios as these vary over strata defined by L. In 
such a setting, any weighted average of the conditional associations will not reflect the marginal 
association. Perhaps for this reason, as noted by Lumley et al. (2006), applied researchers often 
express a preference for relative risks over (log) odds ratios.
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A hallmark of principled causal inference is being careful and explicit about assumptions un-
derlying data analysis. In their timely paper, the authors, Professor Stijn Vansteelandt and Oliver 
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Dukes, adopt this view to provide a general roadmap for cautious statistical inference about tar-
get parameters. The authors distinguish between assumptions made for substantive reasons and 
those made for convenience. An important feature of their approach is that an estimand with 
respect to an unrestricted model (hereafter, the ‘non- parametric estimand’) must be specified 
prior to imposing any model restrictions. The authors illustrate their roadmap by defining and 
estimating main effect and interaction parameters in regression models. These estimands are 
defined without reference to any model restrictions, but at the same time specialise to known 
special cases if restrictions hold, for example if the partially linear regression model is true.

The proposal recapitulates developments in mediation analysis, where direct and indirect 
effect parameters were initially defined as simple functions of regression coefficients in linear 
causal models, with the definition eventually generalising to a fully non- parametric one based 
on nested potential outcomes (Pearl, 2001; Robins & Greenland, 1992) or separable effects based 
on treatment components (Robins & Richardson, 2010).

In causal inference, an estimand in an unrestricted model is often implied by the combination 
of the causal model, substantive considerations, and identification theory yielding an identified 
functional for the target causal parameter. The difficulty with the authors’ proposal is that the 
considerations one should appeal to when defining the non- parametric estimand are unclear. 
The authors propose a number of desiderata such an estimand must satisfy, but (a) these are 
perhaps arguable, and (b) given a particular specialised parameter defined in a parametric or 
semi- parametric model, for instance a regression coefficient, it seems there will be many non- 
parametric estimands that reduce to the specialised parameter under restricted models, and 
otherwise satisfy the authors’ desiderata. Different estimands will yield substantively different 
conclusions, and it is not clear how to choose among them. It would not be surprising if prag-
matic considerations (e.g. ease of inference, availability of software) guided such a choice in 
practice. Indeed, it appears that the authors themselves were guided by pragmatic considerations 
when choosing among multiple possibilities for the non- parametric interaction parameter. This 
would seem to be contrary to the spirit of the authors’ proposal.

As a causal inference researcher myself, I applaud the call to clarity about assumptions and 
estimands made by the authors. However, absent clear substantive guidance or an analogue of 
identification theory in causal inference, making the crucial choice of one non- parametric esti-
mand out of many appears to be a ‘black art’.
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The method proposed by Vansteelandt and Dukes is an interesting combination of non- parametric 
and machine learning techniques with traditional ideas in statistics. We note in this discussion 
that the authors' argument is easily extended to obtain a quantitative rate in terms of the quality 
of the nonparametric conditional mean estimate, and comment on how this may impact a practi-
tioner's choice of the machine learning model used to estimate the conditional mean.

It is worth examining the non- parametric estimation problem of the conditional mean more 
closely, as it reveals the potential trade- off between using complex estimation procedures and the 
error rate of the normal approximation to the statistic of interest. One of the conditions required 
in Theorem 2 is

which (along with the other stated conditions) is sufficient to show that (14) holds, meaning that 
n1/2 (� − �̂) = Zn + op(1), where Zn

D
⟶N(0, 1). This is crucial for generating confidence intervals 

with the correct asymptotic coverage.
However the exact rate of consistency of the chosen estimator for E(Y | A, L) and the other 

conditional means matters if one wishes to quantify the speed at which the error term decays. 
For example, consider if all of the conditional means in Theorem 2 have a rate of consistency of 
Op {n−1/2−ϵ}, for some ϵ > 0, then following the thread of calculation available in the appendix, 
we arrive at n1/2(� − �̂) = Zn + Op(n−�). While the error in the approximation tends to 0, it may 
be doing so at a very slow rate which implies a large amount of data is needed to produce a confi-
dence interval with the correct coverage. While if the model were a correctly specified GLM, using 
the traditional Wald statistic on the regression parameter β would have resulted in the classical 
error rate of Op (n−1/2). This potential loss in the accuracy of the distributional approximation is 
not surprising as it reflects the difficulty of non- parametric estimation problems in general.

ℙ

[{

E(Y |A, L)− Ê(Y |A, L)
}2

]

= op(n
−1∕2),
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This suggests that the method chosen to estimate the conditional mean needs to be flexible 
enough to produce a good estimator, while not so complex that the rate of consistency is too slow 
to be of practical use for a given dataset of size n. Thus some additional consideration is needed 
on the practitioner's part when selecting the machine learning or non- parametric method used to 
estimate the conditional mean, and in particular some knowledge of the true conditional mean 
function may be required, for example its smoothness in terms of higher- order derivatives.
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We congratulate Vansteelandt and Dukes (V&D) for an important contribution to the burgeoning 
literature on methods for valid and interpretable inference about the potential ‘effect’ of an expo-
sure from a model agnostic perspective. We wholly agree with the general principle of model- free 
inference about a functional motivated by a semiparametric model, in this case a generalised par-
tially linear model (GPLM). Such a principle is well- grounded and ought to be routinely used in 
applications of semiparametric theory. In fact, we contend that had this very principle been ap-
plied to competing methods considered in the simulation study such as reported in Table 1, a more 
compelling conclusion might have been reached by clearly separating the near universal advantage 
of agnostic inference, from the more subjective goal of defining an interpretable non- parametric 
functional. Specifically, considering the DR estimator of Tchetgen Tchetgen (2013) of section 6.1, 
we note that a model agnostic (i.e. assumption- lean) inferential framework is readily available upon 
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deriving the influence function for the non- parametric solution to the population analogue of the 
DR moment equation. In fact, straightforward algebra reveals that the non- parametric functional 
implicitly defined by the moment equation is the log of a weighted average of the conditional odds 
ratio function: 

with weight 

where 

is the true conditional odds ratio parameter, 

Clearly β = logγ(L) only if �(L) = �0 does not depend on L, that is under the semi- linear logistic re-
gression model. Agnostic inference about β, can then be obtained by using an empirical version of 
its efficient influence function (under a non- parametric model for the observed data distribution) 
possibly combined with cross- fitting as outlined by V&D, which is proportional to 

Instead of the above influence function, V&D constructed Wald Type CIs omitting the last two 
terms (which vanish only under the logistic partially linear model), an omission which might 
explain the poor coverage of DR in scenarios 3 and 4 of Table 1, likely due to excessive bias and 
under- estimated standard errors.

Finally, it is worth noting that in the case of identity link, Robins et al. (2008), Li et al. (2011) 
and Mukherjee et al. (2017) proposed minimax estimators of functional (5) of V&D, which are 
root- n consistent, asymptotically normal and semiparametric efficient under rate conditions for 
estimating nuisance functions that are significantly weaker than those of V&D in Theorem 2 
(nuisance estimation rate conditions for the theorem are therefore sufficient but not necessary 
at least in the identity link case); their estimator also attains the minimax lower bound of Robins 
et al. (2009) in non- root- n regimes. More recently, Liu et al. (2021) obtained optimal adaptive 
minimax estimation results (both in the sense of upper and lower bounds) which simultaneously 
described both root- n and non- root- n regimes of estimation of a general class of non- parametric 
functionals which includes (5) in the identity link case. It remains unknown and much of inter-
est whether similar results can be obtained for functional (5) in non- linear link cases.

� = log
E
(
w(L)�(L)

)

E(w(L))

w(L) =
P(1 − P)Q(1 −Q)

c(L)
≥ 0

�(L) =
Pr(Y = 1 | A = 1,Lt) Pr(Y = 0 | A = 0,L)

Pr(Y = 1 | A = 0,L) Pr(Y = 0 | A = 1,L)

P = p(L)=Pr(Y =1|A=0,L)

Q = q(L)=Pr(A=1|Y =0,L)

c(L) =
∑

ay

�(L)ayPy(1−P)1−yQa(1−Q)1−a�(L)ay

{Y −P}{A−Q}exp{−�AY}−E{exp{−�AY}{Y −P}|L}I(Y =0){A−Q}

−E{exp{−�AY}{A−Q}|L}I(A=0){Y −P}
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First I congratulate Vansteelandt and Dukes for a fascinating and stimulating paper, which I 
believe will have great impact on the practical data analysis as well as on the application of semi-
parametric techniques.

Briefly, the authors propose the following estimand (for main effect) 
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 and the efficient influence function for β is 

In the estimation process, other than estimating E(Y | A, L), i.e., Ê(Y |A,L), the authors also need 
the estimate Ê(A|L).

In applications, any fitted model could be a misspecified model, for example Ê(A|L) con-
verges to E∗(A|L), where E∗ denotes the expectation that is evaluated under a working model. 
The similar notations are also used for Cov and Var throughout. Nonetheless, I think the frame-
work the authors propose can be naturally extended to the case where E(A | L) is misspecified.

We simply generalise the proposed estimand β as 

Clearly, if the working model E∗(A|L) is the truth, �∗ becomes β. Then, all the properties and theo-
ries of β presented in the paper apply. The �∗ is motivated from evaluating the mean zero property of 
the efficient influence function with the misspecified model E∗(A|L).

An interesting fact is, when we consider the generalised partially linear model 

then �∗ is always equal to β. This means, for the generalised partially linear model, to estimate the 
estimand of interest, how to model E(A | L) might not matter too much.

This comment is strongly relevant to the locally efficient estimator in semiparametric models.

How to cite this article: Zhao, J. (2022) Jiwei Zhao’s contribution to the Discussion of 
‘Assumption- lean inference for generalised linear model parameters’ by Vansteelandt and 
Dukes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 84, 
725– 726. Available from: https://doi.org/10.1111/rssb.12534

� =
E(Cov[A, g{E(Y | A,L)} | L])

E{Var(A | L)}
,

{A − E(A|L)}[�(Y ,A,L) − �{A − E(A|L)}]

E
[
{A−E(A|L)}2

] .

�∗ =
E(Cov∗[A, g{E(Y |A,L)}|L])

E{Var∗(A|L)}
.

g{E(Y |A,L)} = �A + �(L),
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We thank Professors Vansteelandt and Dukes for their innovative and stimulating paper. They 
introduce a new estimand which reduces to the exposure effect parameter when the (semi)para-
metric model holds, is generic for continuous or discrete exposure, and still captures conditional 
association when model assumption fails. We make some additional understanding of the new 
estimand and introduce a related new estimand.

When there are no covariates L, a natural estimand is

which reduces to the exposure effect parameter β under model g{E(Y |A)} = �A, and is still mean-
ingful as a projection parameter when the model is misspecified (Buja et al., 2019a,b).

When there are covariates L, consider the conditional version of the above estimand τ:

To form a meaningful estimand, Vansteelandt and Dukes (2021) considered the ratio of ex-
pectations, that is,

Alternatively, we can consider the following modified estimand

� = :
Cov (A, g{E(Y |A)})

Var(A)
,

�(L) = :
Cov

[
A, g{E(Y |A,L)}| L

]

Var(A | L)
.

E
(
Cov

[
A, g{E(Y |A,L)}|L

])

E{Var(A|L)}
.
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Here we consider the expectation of the ratio.
Consider a general model:

Here �( ⋅ ) and �( ⋅ ) are unknown functions. Different from the model (4) in Vansteelandt and 
Dukes (2021), we now allow A– L interaction, and extend to the exposure effect heterogeneity 
setting, with respect to L.

Under the above model (1), the estimand in Vansteelandt and Dukes (2021) is equal to

which is a weighted average of �(L) with weights given by Var(A|L)∕E{Var(A|L)}, and is generally 
not equal to E

[
�(L)

]
.

While under model (1), � = E
[
�(L)

]
, which measures the average exposure effect. When there 

is no exposure effect heterogeneity, i.e. �(L) ≡ �, � reduces to β as the estimand in Vansteelandt 
and Dukes (2021). Even when the model fails, the estimand γ is still meaningful to capture con-
ditional association.

When the exposure is binary, g( ⋅ ) is the identity link and moreover A is independent of the coun-
terfactual outcome Y  a given L, our proposed estimand � reduces to the average treatment effect, i.e.

Clearly, the new estimand in Vansteelandt and Dukes (2021) can be viewed as an extension 
of weighted average treatment effect; while our new estimand is an extension of the classical 
average treatment effect.

Lastly, current literature only focus on the conditional expectation of the exposures, which 
is sensitive to outliers. Conditional quantile can provide a more robust and complete view of 
the association between response and exposure. Thus it would be very interesting to extend the 
insightful idea in Vansteelandt and Dukes (2021) to quantile setting.
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� = :E
(
�(L)

)
= E

(
Cov

[
A, g{E(Y |A,L)}|L

]

Var(A|L)

)

.

(1)g{E(Y |A,L)} = �(L)A + �(L).

(2)E
{
�(L)Var(A|L)

}

E{Var(A|L)}
,

� =E

(
�(L)

{
1−�(L)

}
(E(Y |A=1,L)−E(Y |A=0,L))

�(L)
{
1−�(L)

}

)

=E
(
Y 1

−Y 0
)
.
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We thank all discussants for their interesting and thoughtful comments on our paper. In this 
rejoinder, we will focus on common themes amongst the commentaries and will close with a 
discussion of some open issues.

1  |   TRANSLATING CAUSAL QUESTIONS 
INTO ESTIMANDS

Didelez, Shpitser, and Stensrud and Sarvet consider the framework described in our paper as 
being to some extent at odds with the philosophy of causal inference. There, one translates a 
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scientific question into a causal estimand; ideally this definition should also be model- free. 
Didelez fears that in spite of the conveniences of our framework, it may lead researchers to by-
pass the first step of formulating a meaningful question. Stensrud and Sarvet argue that even in 
simple settings, the parameter that our ‘algorithm’ for generating a target parameter outputs may 
deviate from the natural causal quantity of interest.

The hygienic causal inference approach is clearly ideal in the simple point- treatment example 
of Stensrud and Sarvet, and has led to enormous progress in statistical research. In particular, 
inference for the average treatment effect is generally preferable to our proposal in such settings, 
provided that ‘treatment’ or ‘no treatment’ are feasible options for all. However, by being some-
what divorced from the specific complexities of the considered data, those hygienic principles 
can rarely be strictly adhered to; this is especially so as more complex analyses are needed, a 
point made excellently clear by Daniel. Analyses that were intended to be hygienic, then turn 
somewhat into a black art, as Shpitser would call it. This is commonly seen in popular marginal 
structural model analyses for the effect of a time- varying treatment. Here, adjustment for base-
line covariates is common, but hardly ever motivated by the strive for a scientifically relevant 
estimand. It is merely a statistical attempt to trade bias for variance by avoiding the need for in-
verse weighting to eliminate confounding induced by baseline covariates, which also motivated 
our work. The lack of guiding principles regarding the choice of baseline covariate set, which 
Didelez rightly judges to be ad hoc in our proposal, is as much ad hoc in this causal modelling 
context. Moreover, for similar reasons as explained in Section 2 of our paper, misspecification 
of the baseline covariate effects in the marginal structural model turns the intended treatment 
effect estimand into a generally poorly understood functional of the observed data law, which 
may no longer even summarise that effect. What remains may well be a pale reflection of the 
hygienic analysis that was intended. We agree with Didelez that problems due to highly variable 
inverse probability weights elucidate that no useful statements can be made about the considered 
estimand due to it being too ambitious for the data at hand. However, the sad truth is that these 
problems often end up being hidden by heuristic truncation of inverse probability weights, which 
has become the default in software packages. In contrast, our proposal, which could analogously 
be developed for marginal structural models, does not suffer these problems to the same extent; 
it is not hiding them, as Didelez seems to worry. This is achieved by targeting an estimand that is 
not too ambitious for the data at hand. While the weighted average of baseline- covariate- specific 
treatment effects that we target may appear less appealing, at least it is much better understood 
than the above marginal structural model estimand when the model is misspecified or inverse 
probability weights are being truncated.

We agree with Didelez that causal analyses should ideally be handled on a case- by- case basis. 
The difficulties experienced in the above example may in particular be remedied by targeting 
the effect of specific dynamic interventions designed to be feasible for all. However, translating 
a question into a causal estimand is often a highly subtle exercise. In practice, even in the causal 
inference literature, researchers are therefore commonly drawn to estimands that have been well 
studied, even when their relevance for the scientific question is dubious (e.g. what if the same 
BMI, or the same level of pack- years of smoking applied uniformly in the population)? It is there-
fore not uncommon to see exposures being dichotomised/categorised for mathematical conve-
nience, leading to estimands that are deceptively simple, but still remote from the real world (e.g. 
what if all people in the study population were obese?).

The difficulty of constructing an estimand is further compounded by the fact that some study 
participants may well be ineligible for the considered interventions, or that the considered expo-
sure cannot be well linked to a specific intervention. The latter is for instance the case in studies 
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on the effect of obesity. Such studies generally have a causal pursuit, but often of a more explor-
atory nature; attempting to infer the effect of specific interventions on body weight may then 
go well beyond what the data allow to infer as well as beyond the researchers' initial aim. Our 
focus on weighted averages of stratum- specific conditional association measures is therefore pur-
posefully less ambitious. The considered weights downweigh individuals for whom few exposure 
values are plausible. Such individuals would also be less likely recruited if an experiment were 
conducted. We therefore find Stensrud and Sarvet's example misleading in that there is nothing 
wrong in finding a treatment effect different from zero when there is treatment effect heteroge-
neity. In such case, any scalar summary is deficient. Whether the average treatment effect (ATE) 
is the most relevant target is then context- dependent. It is tempting to believe that conclusions 
should be drawn for the entire study population and that the marginal causal effect is most rel-
evant (see also Ding), but in practice— even in clinical trials— we often work with convenience 
samples. Without careful restriction of the study population (Hernán & Robins, 2016), the ATE 
may well end up focussing on a less relevant population than the retargeted variance- weighted 
population on which our estimands focus. As such, the considered estimands also address and 
overcome the formidable task of how to restrict the study population (e.g. consider how difficult 
it would be to identify individuals in whom obesity could be a plausible exposure status).

Given the difficulty of choosing a proper estimand, we believe that the ideal causal analysis is 
often not within reach of the many data analysts who have no expert on causal inference within 
their research network. To connect with applied practice, it is therefore important to provide 
general purpose strategies that move well beyond the simple binary point- treatment example of 
Stensrud and Sarvet, while being sufficiently safe to use without necessitating ‘black art’ reme-
dial measures, such as weight truncation. We believe that our framework offers this. It is partly 
driven by practical considerations, which Shpitser understood to be against the spirit of our pro-
posal, but whose relevance on the contrary motivated this work. It is a pity that the commentaries 
did not attempt to demonstrate how an assumption- lean ‘algorithm for causal inference’, as en-
dorsed by Stensrud and Sarvet, would function in real applied settings that involve more complex 
queries (e.g. with continuous exposures).

2  |   CHOICE OF CRITERIA

Several commentators were critical of our three criteria for choosing an estimand. Shpitser sug-
gested that our criteria are ‘perhaps arguable’ and that in a given problem, there may be many 
estimands which may satisfy them. We appreciate this concern, but provide clarity. For a given 
association measure β(L) and weight w(L) (scaled to have mean 1), we have chosen to focus on 
weighted averages

These can be interpreted as an average association in a retargeted population that samples individ-
uals with probability proportional to w(L). These align well with what we would hope to report— an 
‘average effect’— when the association β(L) varies with L, implying that our interpretation of the 
results would not be grossly misleading if we wrongly assumed β(L) to be constant. Under this model 
assumption, which appeared to confuse Dong, Gao and Linton, the estimand moreover reduces to 
a standard model parameter, so that the proposed estimators can also be viewed as root- n consistent 
estimators in a generalised partially linear model. For the estimand to be more broadly relevant, 

E{w(L)�(L)}.
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we wanted the weight to be the same regardless of the association measure β(L), so that the same 
retargeting of the study population applies no matter what outcome is considered. We moreover did 
not want the weights to depend on features of the outcome distribution, because considerations who 
to recruit in a study— while often indirectly based on the conditional exposure variability— would 
not generally be based on the conditional outcome variability. In particular, our choice of L- specific 
weights retargets the covariate distribution of the study population to one where all subjects have 
‘sufficient’ variation in the exposure. We believe that this retargeted population may well resemble 
better the population that would be considered in an experiment than the original study population. 
To evaluate this and to be clear about the population to which the results apply, we recommend 
reporting summary statistics of the baseline characteristics (e.g. age, gender, etc.) for this retargeted 
population.

The above criteria, along with the criteria in the paper, leave surprisingly few choices of 
weights; in fact, we found the construction of an interaction estimand which satisfied all of these 
criteria to be a non- trivial task. In our proposal, there may however be many ways to define β(L) 
when A is not dichotomous. In this paper, we have chosen to work with linear projections as this 
is visually attractive and drastically simplifies the resulting inference. In future work, we will 
also consider defining β(L) as the solution to the population maximum likelihood score equation 
restricted to the stratum L.

Regarding the first criterion in the paper, Didelez questioned the relevance of choosing an 
estimand which reduces to a regression coefficient when the model restriction (4) holds. We do 
not entirely agree. First, there is an abundance of causal queries aimed at developing etiological 
insight without the immediate ambition of doing a specific intervention. In such settings, it is 
much easier to reason about the causal data- generating mechanism, than about what estimands 
might be relevant for the data at hand. This partly explains the popularity of causal diagrams, 
which enable more intuitive reasoning than that based on counterfactuals. It also explains the 
popularity of regression- based methods, which continue to dominate applied practice. By con-
necting to regression models, we believe that we may often connect better to researchers' a priori 
understanding of the causal data- generating mechanism, while merely inferring specific features 
of it. Though the postulated model could be misspecified, our estimands retain close connec-
tions to (and sometimes equal) average derivative effects (Hines et al., 2021), which— by virtue 
of focussing on the effect of a small change in in everyone's observed exposure— tend to be quite 
‘safe’ for general use. An alternative would be to focus on shift interventions that express the 
effect of increasing the exposure uniformly by, say, 1 unit in the population. The greater appeal 
of the resulting effects is somewhat deceptive, however, as shift interventions are rarely planned 
in practice. This then raises the question what would happen when increasing the exposure with 
0.5 units, 2 units, … Flexibly answering these questions calls for some form of modelling, which 
our framework (when adapted to shift interventions) provides. Second, a key strength of our 
proposal is that it enables the investigator to work on the scale of choice. In response to Ding's 
concern, one may therefore choose to model risk differences or relative risks even for a dichot-
omous outcome. We agree that the interpretation of model coefficients (causal or otherwise) in 
more general non- linear models is not always obvious. Nevertheless, if the generalised partially 
linear model (4) holds, then a given choice of β enables one to work out how specific means or 
risks E(Y|A = 0, L = l) in the unexposed would translate into the corresponding means or risks 
E(Y|A = a, L =  l) at other exposure levels a. When the model restriction (4) fails, the result-
ing point estimate may still be useful in terms of giving a rough impression of the strength of 
association.
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For the second criterion, Phillips and van der Laan questioned the importance of choosing 
estimands for which non- parametric inference does not require estimation of a conditional 
density. They state that machine learning methods are ‘well- adapted’ for conditional density 
estimation. Although some proposals have certainly been made, including those by the au-
thors, we are concerned that such estimators may still suffer from unstable performance in 
finite samples. In fact, unstable performance is often expected with a continuous exposure, 
even if its conditional density is a priori known, as a result of influential weights for individu-
als in the tail of the density. Our intention was to develop procedures that could be used safely 
by non- experts.

For the third criterion, Buja et al. argue that averaging slopes over L- specific strata is ‘incor-
rect’. We disagree. Summarising the different slopes obtained for the L- specific strata in terms of 
a weighted average is perfectly well aligned with the standard notion of summarising in statistics.

Overall, we agree that other criteria may be worth considering; part of the intention was to 
stimulate discussion on how to choose an estimand.

3  |   INTERPRETING THE ESTIMAND

Stensrud and Sarvet, and Phillips and van der Laan argue that the main effect estimand (5) may 
be difficult to interpret outside of the semiparametric model (4); examples are given where it al-
legedly fails to capture the causal effect of interest. Stensrud and Sarvet's example is constructed 
so that treatment is harmful for half of the population, beneficial for the remainder, and hence 
the average treatment effect is zero. In contrast, the overlap- weighted treatment effect (6) can 
be positive or negative depending on whether |P(A = 1|L = 1) − 0.5| is larger or smaller than 
|P(A = 1|L = 0) − 0.5|. Stensrud and Sarvet's example is designed to illustrate how the proposed 
estimand may differ ‘from a causal target that more naturally corresponds to (the investigator’s) 
scientific question of interest.' However, it is not clear whether either effect is of interest in the 
presence of qualitative effect heterogeneity, particularly when effects are strong. We would argue 
that conditional/subgroup- specific treatment effects are more useful here. Stensrud and Sarvet's 
example highlights the limitations of summary measures, which average (sometimes crudely) 
over the distribution of L and/or A. We believe that there is value in supplementing a summary 
estimate that provides insight into treatment effect heterogeneity, for example the variance of 
β(L) in the retargeted population:

for � ≡ E{w(L)β(L)}.
If one is willing to settle for a scalar summary, then it is still questionable whether the average 

treatment effect best corresponds to the scientific question of interest— at least if the goal is gen-
eralisability. Stensrud and Sarvet consider how the overlap- weighted effect changes by changing 
the conditional distribution of the exposure (given L), but fix the distribution of L. This is reason-
able, given the emphasis in causal inference on a well- defined study population. Nevertheless, 
varying P(L = l) in their example could also change the direction of the average treatment effect. 
In cases where the treatment- assignment policy is similar between populations but the covariate 
distribution changes, as is also reasonable, it is possible that the overlap- weighted treatment ef-
fect is better transportable than the average treatment effect.

E[w(L){�(L) − �} 2],
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Phillips and van der Laan also highlight that the numerator of the main effect estimand (5) 
averages positive and negative contributions E(Y|A, L) − E(Y|L), such that the estimand may 
equal zero in the presence of a strong individual- level treatment effect, and tests of the null 
hypothesis can suffer from low power relative to tests of other ‘projection- type’ parameters. 
The example they provide is interesting, but dependent on a lucky choice of reference value (0 
in Phillips and van der Laan, and x0 in Chambaz et al. (2012)). An unlucky choice may likewise 
make their estimand zero in the presence of a strong individual- level treatment effect. More 
generally, the connection of our results to the optimality results in Crump et al. (2006) suggest 
that better power can be expected when the model is correct. In view of the realistic possibility 
that the model is wrong, we will discuss non- parametric modelling in the next section.

As a brief aside, Phillips and van der Laan also criticise the dependence of the estimand on 
the conditional distribution of the exposure. However, shift intervention effects, which have been 
developed in part by those authors (Hubbard & van der Laan, 2008), also share this property. 
Those estimands consider interventions that transform the conditional distribution of the expo-
sure; instead, we evaluate intervention effects over a retargeted population defined in terms of 
the conditional distribution of the exposure.

Ding notes that even when the model restriction (4) holds, the estimand (5) will not reduce 
to a marginal causal effect. It is suggested that the latter parameter is most relevant for policy- 
making. Our intention was not to wade into the on- going debate about which is most relevant, 
but we do believe that both marginal and conditional causal effects have advantages and limita-
tions that are important to understand. For example, under model restriction (5), the conditional 
effect may transport better to different populations since it is insensitive to shifts in the distribu-
tion of L. A weakness of typical approaches for estimating conditional treatment effects is that 
they rely on parametric modelling assumptions (even in a randomised trial). The imposition 
of assumptions is understandable, given that these effects are non- pathwise differentiable and 
therefore the construction of root- n rate non- parametric confidence intervals is not generally 
feasible. Hence our proposal summarises conditional treatment effects, rendering root- n non- 
parametric inference feasible.

Hines and Diaz- Ordaz note that our estimands could also be viewed as specific projections 
of, for example the conditional association between exposure and outcome onto that parameter-
ised by the working model. The concept of projection is indeed highly relevant and has received 
some attention in the literature on non- parametric inference. In this literature, little or no atten-
tion is being paid to the interpretability of the resulting projection estimand. This is especially 
problematic when, as is commonly done, the entire data- generating model is projected onto the 
working model. In that case, misspecification in parts of the working model may contaminate 
all projected model coefficients, as we illustrated in Section 2 of the paper. This is why we have 
chosen to project merely the conditional association between exposure and outcome (thereby 
demanding a separate analysis for each considered exposure). The proposal by Hines and Diaz- 
Ordaz provides a structure for formalising more general estimands along these lines. It will be of 
interest to understand how specific conditions on the remainder terms in their expansion trans-
late into estimands with specific features.

Responding to Zhou and Guo, we would like to emphasise that our considered estimand ex-
plicitly allows for treatment effect heterogeneity by taking a weighted average of conditional 
treatment effects β(L). Unlike them, we have chosen not to work with unweighted averages as 
these do not readily extend to continuous exposures and inference for such effects necessitates 
inverse probability/density weighting.
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4  |   DATA- ADAPTIVE INFERENCE VERSUS DATA- 
ADAPTIVE ESTIMANDS

Under model misspecification, Battey, and Lavine and Hodges question whether it is useful to 
target an estimand for which the interpretation is stable, but which may be misleading about 
the association of interest. Lavine and Hodges give an example of when the true association 
between Y and A is quadratic; our estimand merely captures the linear association between Y 
and A and so may poorly summarise the data. Battey, and Lavine and Hodges, therefore prefer 
a sensitivity analysis, which reports the results from multiple models. A key advantage of our 
proposal is that it avoids the need for such sensitivity analysis with respect to models for the 
dependence between Y and the auxiliary covariates L. However, we are sympathetic towards 
the concern that a linear (conditional) association between Y and exposure A (on the scale 
of a link function) may sometimes deliver a poor approximation. It is for that reason that the 
discussion of our paper suggested how the proposal may be extended to estimate that (condi-
tional) association non- parametrically. Even so, the estimation of curves adds complications 
in view of their high dimensionality, both when it comes to inference and reporting. Our focus 
on low- dimensional parameters thus remains of interest, even more so as linear approxima-
tions are often relevant, for example they sometimes express how much the average outcome 
would change if each subject's observed exposure were slightly increased (Hines et al., 2021). 
Sensitivity analyses are useful, but the truth is that subject- matter researchers will often want 
to present results for a single selected model. In the example of Lavine and Hodges, one may 
use the data to select a quadratic term in a regression of Y on A, but presenting a confidence 
interval around either the coefficients in the selected model or the model predictions which 
accounts for the uncertainty in the selection step is then non- trivial; inferential techniques 
for data- adaptive parameters seem relevant here (Hubbard et al., 2016). Although concepts of 
sufficiency may be helpful in certain settings, as suggested by Battey, as far as we are aware 
they cannot be operationalised to account for the many data- adaptive model selection steps 
that occur in routine data analyses.

5  |   ESTIMATING NUISANCE PARAMETERS USING 
MACHINE LEARNING

We appreciate the connection that Hines and Diaz- Ordaz draw to the R- learner, which may po-
tentially aid nuisance parameter estimation.

Bilodeau, Ogburn et al. and Tang claim that the requirement that nuisance parameter esti-
mators converge at a rate faster than n1∕4 in our Theorems 2 and 4 may rule out many machine 
learning methods. These are the same rates discussed elsewhere in the targeted maximum 
likelihood estimation and debiased machine learning literatures (Chernozhukov et al., 2018; 
van der Laan & Rose, 2011). Whilst these rates may be attainable in certain contexts (see e.g. 
Bickel et al. (2009) for sparse estimators, Wager and Walther (2015) for trees and random 
forests, Chen and White (1999); Farrell et al. (2021) for neural networks), we acknowledge 
that these results may not reflect how machine learning methods are implemented in prac-
tice. Ideally, further developments in statistical learning theory may deepen our understand-
ing of the behaviour of different algorithms in realistic settings. Unfortunately, for applied 
researchers interested in the implementation of our proposed estimators, it may be overly 
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challenging to assess the plausibility of the often abstract conditions used in this literature 
to derive rates.

In the light of this, we give some practical advice. Ideally, a cross- validation- based ensemble 
method should be used instead of a single candidate learner. Although the simulations in the 
paper often relied on a single learner, this was done for computational convenience (given the 
large number of different experiments to run); in the data analysis we were using the Super 
Learner. Results in van Der Laan and Dudoit (2003), van der Vaart et al. (2006) and van der 
Laan et al. (2007) suggest that the performance of the Super Learner should be as good as that 
of the ‘best’ candidate. Like Balzer and Westling (2021), we recommend using a diverse range of 
candidates, including simple parametric methods and regression splines. These impose greater 
structure (e.g. linearity or additivity) but may have a faster rate of convergence and better finite 
sample performance when the requisite assumptions hold. At smaller sample sizes, one may 
even wish to confine to these simpler methods, which then already improves upon standard 
analyses by acknowledging post- selection uncertainty. At the moment, we are reassured by ob-
serving favourable performance in simulation experiments, but recognise that further, extensive 
experimentation remains needed.

In challenging, high- dimensional settings, it may be that even the candidate algorithm with 
the best rate still converges slower than n−1∕4. We therefore agree with Ogburn et al. that an 
ideal analysis should either supplement inference based on first- order asymptotic theory with 
sensitivity checks, for example tests of whether bias dominates standard error (Liu et al., 2020), 
or use alternative approaches that are valid under weaker conditions (Robins et al., 2008). This 
is an area of exciting development, and further advances will no doubt complement the proposal 
made here. Of particular interest are methods that are scaleable and can be applied generically 
by non- experts.

6  |   COMPARISON WITH ‘PROJECTION’ ESTIMANDS

Battey notes that when the effects of interest are represented by parameters whose interpreta-
tions differ according to the model used, the appropriate approach is to acknowledge the model 
uncertainty rather than seek inference on a quantity whose interpretation is stable but perhaps 
only tangentially relevant when the assumed model is false. We disagree that the considered 
parameter is only tangentially relevant. First, it is a weighted average of stratum- specific associa-
tion measures. Her focus on KL divergence leads to poorly understood estimands, especially in a 
multivariate sense (see the next paragraph for detail).

Basu and Ding wonder how multivariate parameters would be handled in our proposal. We 
have purposely chosen to handle one scalar parameter at a time so that a poor projection on 
one parameter (due to a poor choice of working model) does not contaminate the projections 
on other parameters. For instance, when the interest lies in the main effect β of A, a separate 
analysis is needed from when an interaction γ between A and some covariate Z is considered. 
Moreover, if the interest lies in the sum β + γ, then rather then summing the estimates obtained 
in the two previous analyses, we would derive the efficient influence function of β + γ and work 
with it. This way of working ensures that for instance our inferences for γ do not assume the 
main effect of A to be correctly modelled,… This strategy contrasts with typical projection strat-
egies. If simultaneous inferences are nonetheless desired, then inferences can still be developed 
based on the joint distribution of the efficient influence functions for the different considered 
estimands.
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7  |   DOUBLE ROBUSTNESS

We appreciate Zhao's suggestion to allow for misspecification of the propensity score, but worry 
that this is not readily accommodated. The reason is that the derivation of the efficient influence 
function would require taking directional derivatives of the population limit E∗(A|L) of the ma-
chine learning estimates of the propensity score (under perturbations of the observed data law). 
Such derivatives would be difficult to obtain as they depend on the features of the considered 
machine learning algorithm, an issue that we have precisely aimed to avoid.

We find Richardson's alternative parametrisation of the relative risk model attractive com-
pared to the standard approach. However, in our proposal one is free to choose any model/esti-
mator for the nuisance parameters E(Y|A, L) and E[g{E(Y|A, L)}|L] that may (or may not) respect 
the constraints on the parameter space. One may fit a logistic model for E(Y|A, L) and still target 
a relative risk, for example. This flexibility is important.

Furthermore we are concerned that the resulting inferences and interpretation for the doubly 
robust estimator developed for the partially linear model in Richardson et al. (2017) are sensitive 
to violations of model restriction (4). This is especially so if the proposed odds product model is 
fit data- adaptively, for example using variable selection techniques. For that reason, it may be 
preferable to seek non- parametric inference for the probability limit of doubly robust estimator, 
as Tchetgen Tchetgen demonstrates for the odds ratio. Interestingly, when model restriction (4) 
fails, the resulting odds ratio estimator proposed by Tchetgen Tchetgen no longer appears itself to 
be consistent if only P(Y = 1|A = 0, L) or P(A = 1|Y = 0, L) is consistently estimated. This coheres 
with our experience that the double robustness properties of semiparametric efficient (or nearly 
efficient) estimators obtained under the generalised partially linear model may break down out-
side of the semiparametric model. This includes the ‘rate- double robustness’ property described, 
for example by Smucler et al. (2019), where the outcome regression estimator may be allowed to 
converge at a rate, for example n1∕4 or slower, if the propensity score can be estimated at a fast 
rate (or vice versa). The development of doubly robust methods nevertheless remains useful in 
our opinion, as we know better how to construct nuisance parameter estimators in this context 
that target estimators of the parameter of interest with low bias/variance (Cao et al., 2009; Cui & 
Tchetgen, 2019; Vermeulen & Vansteelandt, 2015).

8  |   OPEN ISSUES

We agree with Choi and Wong that our data analysis ignored the longitudinal nature of the data. 
This was so on purpose because we wanted to confine the proposed methodology to general-
ised linear models. Even so, the extension to longitudinal data models is important and is being 
worked out along the same principles that we advocate. More generally, we agree with Hennig, 
Basu, and Zhou and Guo, that extension to more general estimands (e.g. involving quantiles, 
differences- in- differences) remains needed. With concern for the important problem of influ-
ential values, note that the sensitivity of our estimators to such values is readily inspected via 
histograms of the estimated efficient influence functions.

We are sympathetic to Hunt's remarks. Properly disclosed assumptions may indeed render 
the analysis honest. Our concern is that model building processes are often complex, and it is 
generally impossible, even when this is disclosed, to understand how the resulting inference may 
have been affected. In that sense, we would view the reported confidence intervals as potentially 
misleading since, even if all assumptions were met and the sample size were large, they would 
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not cover the truth at the advertised rate. We fully agree that background assumptions, supported 
by expert knowledge, cannot be avoided in a real data analysis, especially as causal inferences 
are drawn. Such assumptions are not data- adaptive (i.e. not inferred based on the data being 
analysed) and were therefore not in the scope of our paper. Finally, we have purposely labelled 
our methods ‘assumption- lean’ because they do require sufficient smoothness, relative to the size 
of the data. However, even if parametric methods were considered, we believe that our proposal 
may still improve upon standard practice by delivering valid post- selection inference when the 
parametric model holds.

Both the paper and many of the discussions focused on the role of adjustment for confounding. 
In reality, many data analyses (causal or otherwise) are subject to some form of coarsening (Heitjan 
& Rubin, 1991), for example missing data, censoring, selection bias, measurement error. In a para-
metric modelling framework, under a coarsening- at- random assumption we can ignore this bias 
both in terms of how an estimand is defined, and how inference is done. When the statistical model 
is incorrect, likelihood- based estimators implicitly target estimands that depend on the coarsening 
mechanism. These estimands may be inferred with precision, but may be difficult to communicate 
and compare between studies. In this work, we have deliberately chosen to target estimands that de-
pend on the exposure mechanism, so that they extend to arbitrary exposures. However, in choosing 
estimands more generally, should we as statisticians prioritise those that are easy to communicate, 
even if they rely too much on extrapolation? Or should we promote targets that are less ambitious? 
The answer is not obvious in data subject to more complex coarsening structures, for example if 
there is non- monotone missingness in L. Here, non- parametric inference under a ‘missing- at- 
random’ assumption could be prohibitively complex (Robins, 1997), and a ‘complete case’- type as-
sumption may anyhow be more plausible (Bartlett et al., 2014). Yet such an assumption suggests an 
estimand that depends on the conditional variance of the exposure given covariates in the complete 
cases. Borrowing the terminology of Daniel, navigating this ‘bluntness- variance’ trade- off will often 
be subtle. If one accepts that target parameters should be defined outside of a parametric statistic 
model, as much of the causal inference community has done, then there is much room for both new 
estimands and practical guidance in making a choice.
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