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Abstract 

Background: Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have 
recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly 
detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in 
Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruit-
ment challenges. However, these communities may be at higher risk of anti-malarial resistance.

Methods: From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the 
feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifica-
tions and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimi-
nation area in South Africa.

Results: Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified 
malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, 
linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant 
validated/associated  Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples 
assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated 
with decreased lumefantrine susceptibility.
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Background
Malaria has been declining globally, with a 50% reduc-
tion in malaria cases and an 84% reduction in malaria 
deaths from 2000 to 2015 [1]. Unfortunately, there has 
been no significant progress in reducing the global 
malaria burden since 2015 [2]. The emergence of SARS-
CoV-2 threatens to reverse any such progress. The 
World Health Organization (WHO) estimates an addi-
tional 47,000 deaths in 2020 linked to pandemic-related 
disruptions, with the WHO African region account-
ing for the majority of these additional cases [3]. The 
emergence and spread of anti-malarial drug resistance 
threaten malaria control and elimination efforts, espe-
cially in Southeast Asia (SEA), where parasites resist-
ant to artemisinin-based combination therapy (ACT) 
have been confirmed in at least five countries [4, 5], 
with resistance markers also reported in China-Myan-
mar border [6] and eastern India [7]. The majority of 
SEA countries have low to very low malaria trans-
mission intensities (and thus populations are non-
immune), with infections occurring primarily in highly 
mobile populations along international borders. Sev-
eral malaria-endemic southern African countries now 
have similar epidemiological profiles, placing them at 
increased risk for the emergence of artemisinin (and 
partner drug) resistance [8, 9]. In sub-Saharan Africa, 
mutations in the Plasmodium falciparum Kelch-13 gene 
(k13) associated with artemisinin resistance have been 
identified in Central (Democratic Republic of Congo) 
[10], Eastern (Kenya, Rwanda and Tanzania) [11–13] 
and Western Africa (Ghana, Mali and Nigeria) [13, 
14], with phenotypic evidence of artemisinin resist-
ance (delayed parasite clearance) recently confirmed in 
Rwanda [15] and Uganda [16]. Moreover, Carbo Verde, 
Eritrea and Ghana were identified as having more than 
5% k13 mutations. More importantly, the k13 561HIS 
mutation in Rwanda [15] and the 469TYR and 675VAL 
mutations in Uganda have been documented in up to 
20% of infected individuals [17]. These three mutations 
have been associated with reduced efficacy to arte-
misinin both in-vitro and in-vivo [12, 16, 18]. Recent 
studies have demonstrated the independent emergence 
of artemisinin resistance molecular markers in Guyana 
[19], and the presence of novel k13 mutations in Brazil 

[20] and Colombia [21]. In their 2021 systematic review 
of k13 markers frequencies in Africa, Ndwiga et  al. 
highlighted the fact that while many African countries 
were able to identify the k13 resistance markers using 
genomic analyses [22], this genomic surveillance was 
rarely linked to a public health surveillance system.

Robust drug resistance monitoring is a significant 
challenge, especially in low to moderate malaria trans-
mission settings. While therapeutic efficacy studies 
(TES) are more feasible in moderate-to-high transmis-
sion areas where the required sample sizes can readily 
be achieved, low and very low transmission settings 
face recruitment challenges due to fewer malaria cases 
leading to prolonged study duration, multiple study 
sites and increased study costs. In such settings, the 
WHO recommends integrated drug efficacy surveil-
lance (iDES), integrating surveillance of anti-malarial 
drug efficacy within malaria case-based surveillance 
[23]. However, resource constraints limit follow up of 
all malaria cases. This is seldom feasible for mobile and 
migrant populations, so many low transmission coun-
tries fail to monitor anti-malarial efficacy adequately. 
As of April, 2022, only China [24] and Thailand [25] 
had published iDES results since its recommenda-
tion in 2018 [26]. As countries move towards malaria 
elimination, many of those with low to very low case 
numbers need alternative anti-malarial drug resist-
ance surveillance methods. Surveillance of molecu-
lar markers associated with drug resistance collected 
in different clinical trials and observational research 
has proved useful. However, these studies are gener-
ally short-term and are conducted in a few sites where 
they are not repeated regularly enough to track resist-
ance trends over longer time periods [27]. Integrating 
sample collection for monitoring molecular resistance 
markers into routine malaria case surveillance by 
national malaria programmes has been suggested as a 
suitable alternative to provide early warning of emerg-
ing resistance [28–30]. Such molecular marker surveil-
lance using routine data could then trigger and target 
transmission-blocking interventions, such as single low 
dose (SLD) primaquine and foci clearing, and confirm-
atory therapeutic efficacy studies needed to inform the 
effective anti-malarial treatment policies essential for 

Conclusion: Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on 
a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here 
could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for 
other antimicrobial resistance surveillance.
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achieving elimination. In a case of imported malaria, 
the malaria programme at the source of the infection 
can also be informed to trigger and target similar inter-
ventions in the source community.

Health information systems used in malaria, such 
as “District Health Information System 2” (DHIS2), 
have functionalities that display maps at the ward, dis-
trict, province, or national malaria programme levels. 
Whether thematic or modelled, the accuracy of a map 
depends on the accuracy and reliability of the source 
data [31–33]. While the need for maps showing the dis-
tribution of parasites (malaria cases), vectors and vector 
breeding sites and prevalence of insecticide and anti-
malarial resistance was realized more than two decades 
ago, data verification, quality assessment and consid-
eration of malaria programme needs to make these 
malaria maps user-friendly have rarely been included 
[34]. ‘Human-centred design’ is a part of design think-
ing that incorporates users in the design process [35, 
36]. The co-designing pathway allows a flow of knowl-
edge to both designers and users from development to 
deployment [36]. Analysing trends in routine data and 
reviewing results together with the end-users can help 
improve the data by informing the co-development of 
tools and resources needed to appraise and enhance 
data quality, and "Make Data Map-worthy".

In South Africa, all suspected malaria cases should 
have a definitive diagnosis confirmed by malaria rapid 
diagnostic test (RDT) or microscopy before treatment 
is administered [37]. In pre-elimination settings, the 
Malaria Elimination Programme (MEP) implements both 
proactive case detection (screening populations at high-
est risk, such as migrant and mobile populations), as well 
as reactive case detection (in households surrounding 
of an index cases’ residence), in addition to passive case 
detection of patients presenting to health care facili-
ties [38]. The Mpumalanga MEP has stratified Nkomazi 
sub-district as being in the pre-elimination phase, and 
has piloted two interventions to enhance monitoring of 
anti-malarial efficacy and advance malaria elimination. 
The first was Smart Surveillance for Malaria Elimination 
(SS4ME), which started in February 2018, and comprised 
the collection of RDTs (and, wherever possible capillary 
blood filter paper samples) for tracking molecular mark-
ers of anti-malarial resistance. The second was the pro-
grammatic roll-out of SLD primaquine recommended by 
the WHO for malaria transmission blocking [38], in addi-
tion to routine treatment of uncomplicated malaria with 
the artemisinin-based combination therapy, artemether-
lumefantrine (AL) [37]; this included WHO recom-
mended follow up of treatment adherence and response 
during malaria case investigations (from January 2019).

The present study aimed: 1) to map linked patient 
demographic, clinical and drug resistance profiles in 
order to identify areas where additional surveillance 
or containment efforts are needed; 2) to evaluate and 
quantify the feasibility of this approach, which led to 
the development of data improvement tools and activi-
ties to better meet the needs of the MEP; and 3) to opti-
mize spatial and temporal maps for use by policymakers 
in local, provincial and national malaria programmes in 
South(ern) Africa.

Methods
Design
A sequential explanatory mixed-methods approach, with 
iterative quantitative and qualitative methods, was used 
from March 2018 to February 2020 to optimize maps 
that linked patient demographic, clinical and drug resist-
ance profiles in order to identify areas where additional 
surveillance and/or containment efforts are needed. 
The quantitative component was grounded in the post-
positivist theory, where a descriptive and exploratory 
spatiotemporal analysis was conducted, using trend and 
time-series decomposition analyses [39] to define spatial 
and temporal patterns for data linkage and mapping [40]. 
The qualitative component used a pragmatist approach 
with co-design techniques to innovate and implement 
tools to bridge gaps identified from the ongoing spati-
otemporal activities and analysis. The MEP and study 
team worked together iteratively to improve the informa-
tion system, data architecture and maps produced.

The quantitative component included data aggrega-
tions, curation, and analyses to generate data visualiza-
tions. These visualizations and summaries of the analyses 
were shared monthly with the MEP. The study team then 
worked with the MEP to design activities, tools and 
training to enhance data quality and improve surveil-
lance metrics, including coverage, accuracy and linkage 
(Fig.  1). Data were grouped monthly and quarterly to 
estimate trends. Monthly evaluations focused on meas-
uring changes in data from the health information system 
over time. Quarterly evaluations were used to compare 
the flow of data and accuracy of GPS coordinate data 
over time.

Spatiotemporal information in the malaria routine case 
data was used to produce draft maps of malaria incidence 
and prevalence of molecular markers of resistance. These 
maps were then presented to the provincial malaria team 
to evaluate their ‘understandability’, using semi-struc-
tured interviews and feedback meetings. These under-
standability assessments fed back iteratively into the 
analysis and co-design process until the final maps were 
agreed upon between researchers and the MEP. This 
optimization process involved repeatedly deploying and 
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updating the tools and maps produced to enhance rou-
tine data and optimize the maps generated.

Study setting
While most of South Africa is considered malaria-free, 
approximately 5 million South Africans (10% of the coun-
try’s population) reside in the malaria-endemic areas of 
Mpumalanga, Limpopo, and KwaZulu-Natal provinces 
[41]. Most malaria cases in South Africa are imported, 
with some local transmission occurring in the low-alti-
tude [42] international border regions shared with Bot-
swana, Eswatini, Mozambique and Zimbabwe. Malaria 
transmission in South Africa is seasonal, occurring 
mainly during the summer rainy season (September to 
April) [43].

This study was conducted in Nkomazi Sub-District, a 
pre-elimination area in Mpumalanga province, South 
Africa. All individuals identified using either proactive, 
active or passive case detection were tested for malaria 
using a falciparum-specific, histidine-rich protein 
2  (HRP2)-based RDT, and positive cases were included 
whether or not they were symptomatic [37]. As per the 
national treatment guidelines, those with asymptomatic 
or uncomplicated malaria are treated with the WHO rec-
ommended weight-based 3day AL  (Coartem®) regimen 

[37]. AL has been used in the study area since 2007 [27, 
37, 42]. Additionally, all consenting malaria-positive 
patients, excluding pregnant women, breastfeeding 
mothers and children under 10 kg or one year of age, are 
given a single low dose of primaquine (0.25 mg base/kg 
/15 mg base adult maximal dose) [44–46]. An additional 
dried blood spot (DBS) on filter paper (Whatman Paper 
No 1) was collected from RDT malaria positive patients 
by dabbing the remaining blood at the RDT finger prick 
site, then labelled, barcoded and sent to the National 
Institute for Communicable Diseases (NICD) in Johan-
nesburg, South Africa, together with its respective posi-
tive RDT cassette, for anti-malarial resistance marking 
[47]. An additional 10% of the negative RDTs were col-
lected and sent to the NICD for quality assurance.

As malaria is a notifiable condition in South Africa, 
demographic and malaria case information collected at 
the malaria diagnosis and treatment initiation phase are 
reported on the Notifiable Medical Condition (NMC) 
form or mobile application. If reporting is paper-based, 
forms are collected by a MEP case investigator assigned 
to that healthcare facility, ideally within 24 h of diagno-
sis and delivered to the sub-district malaria office for data 
quality verification and data capture. Within 24–72  h 
of case notification, case investigators should visit the 

NMC and case inves�ga�on
forms & lab data (mRDTs,
malaria filter papers)

HIS captured & lab
evaluated data
(mRDT, PCR and
MMR)

Cases’ residen�al
coordinates, district
shapefiles &
popula�on se�lement
data

Maps and monthly result 
outputs

Op�mised maps and 
curated monthly result 
outputs

Co-designing for Map 
op�misa�on & data 
improvement ac�vi�es

Project team & provincial 
malaria team, feedback sharing, 
maps evalua�on & data gaps 
iden�fica�on

System 
errors/gaps

GPS devices and open-
source spa�al data

Fig. 1 Making data map-worthy study design. Chart showing different iterations of data curation and map optimization. Orange and blue colours 
show quantitative and qualitative methods, respectively. Solid lines indicate analysis and optimization pathways, while dashed lines show the 
iteration pathway. NMC notifiable medical condition, HIS health information system, RDT malaria rapid diagnostic test, PCR polymerase chain 
reaction, MMR molecular markers of resistance
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malaria patient’s household for in-depth case investiga-
tion to assess for the presence of malaria risk factors (e.g., 
last indoor residual insecticide spraying of that house-
hold or nearby mosquito vector breeding sites) and to 
conduct contact tracing and testing. During these case 
investigations, the household’s GPS location coordinates 
are recorded, and the case investigation form completed. 
The malaria treatment adherence and response informa-
tion (including any side effects) is captured as part of the 
case investigation using Additional file 1: Tool S1. Once 
completed these forms are submitted to the sub-district 
malaria office for quality checking and electronic capture 
into the DHIS2.

Data
Malaria case data
Malaria case data consisted of NMC, case investigation 
and treatment adherence and response forms as individ-
ual case records captured on paper or electronically, and 
downloaded from the DHIS2.

Geospatial data
The geospatial data consisted of four types. Firstly, each 
patient’s residential address and GPS coordinates were 
sourced from both MEP android tablets/handheld GPS 
devices and as recorded in DHIS2. Secondly, popula-
tion settlement shapefile data were obtained from (a) the 
Ehlanzeni District Municipality, and (b) the open-source 
Global Administrative Areas website for South Africa 
[48]. Thirdly, a list of locality addresses of malaria cases 
were obtained from the Mpumalanga MEP office, curated 
and validated using Google Maps. Lastly, the modelled 
Facebook population of South Africa density raster was 
downloaded from The Humanitarian Data Exchange 
(HDX v1.52.1) [49].

Laboratory data
Parasite DNA was extracted from the RDTs and DBS 
using the Qiagen DNA mini extraction kit (Qiagen, Ger-
many), according to the manufacturer’s instructions. 
When both the RDT and accompanying DBS were avail-
able, DNA was extracted from both sources in a single 
reaction. The extracted DNA was subjected to multiplex 
PCR to confirm Plasmodium species [50]. To assess pos-
sible decreases in lumefantrine susceptibility, samples 
containing only P. falciparum parasites were subjected 
to  quantitative and conventional PCR, and endonucle-
ase cleavage to detect polymorphisms at codons 72–76 
of the chloroquine resistance transporter (crt) [51] and 
codon 86 of multi-drug resistance 1 (mdr1) genes [93]. 
Codons were classified as pure sensitive, pure mutant or 
mixed (both mutant and sensitive genotypes present in 
an individual patient’s sample). Genotyping assays were 

run in duplicate, with a third assay performed on any 
discordant results. When calculating overall prevalence 
of infections with mutant genotypes, codons with mixed 
genotypes were grouped with pure mutant codons. The 
copy number of the mdr1 gene was assessed using quan-
titative PCR (qPCR), with primers, probes and qPCR 
cycling conditions previously described [52]. Every qPCR 
run contained three reference DNA samples from D10 
and Fac8 clones, having an mdr1 copy number of one 
and three respectively, as well as a no-template control. 
Assays were repeated if the threshold cycle values were 
greater than 35. For the assessment of artemisinin resist-
ance, the propeller domain of the k13 gene was ampli-
fied as previously described [53]. The amplified products 
were sent to Inqaba Biotechnologies (South Africa) for 
Sanger sequencing. Sequences were then aligned against 
a reference k13 gene (XM_001350122.1) using a BLAST 
search and BioEdit Software [] to detect polymorphisms 
in 27 codons associated with delayed parasite clearance 
in South East Asia [54]. Molecular data were compiled 
monthly and shared with study investigators for further 
curation and analysis. Results were presented to the 
Mpumalanga MEP monthly and quarterly for them to 
take timely action with investigation and response in the 
event of any significant resistant mutations.

Definition of metrics
Coverage
Four measures of coverage were used: (1) percentages of 
malaria cases with blood samples taken (RDT/DBS), (2) 
percentages of cases assigned a correct barcode (neces-
sary for linkage of laboratory results to NMC data), (3) 
percentage of cases investigated and (4) percentages of 
investigated cases with GPS coordinates relative to all 
reported malaria notifications captured in the DHIS2.

Accuracy
Two measures of accuracy used were: (1) percentage of 
investigated cases with GPS coordinates falling within 
the study’s residential areas, and (2) percentages of noti-
fied cases with correctly formatted barcodes, calculated 
monthly and quarterly.

Linkage
This was measured using the percentage of cases with 
accurate barcodes linked to the NMC data, the molecu-
lar markers results data and accurate GPS coordinates at 
health facility, ward, locality, and household levels.
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Study procedures
The accuracy, coverage and ability to link the malaria 
notifications to the case investigation, laboratory data 
and drug report data was evaluated using monthly 
timelines. Data from DHIS2 was downloaded monthly 
from the malaria programme and shared with the pro-
ject team for curation and analysis. A checklist was 
used to record the settings of each MEP GPS device, 
and their data was downloaded for further analysis. All 
data were securely downloaded, encrypted and trans-
ferred to the password-protected study computer for 
further compilation and analysis.

Analysis
All data analyses were conducted using R program-
ming language (versions 3.6 and 4.0) and Esri ArcGIS 
ArcMap (version 10.8). The analysis focused on data 
linkage, spatiotemporal trends in molecular marker 
and usability assessments. Coverage, accuracy and link-
age metrics were used as units of analysis for tempo-
ral trends in the numbers of malaria cases reported, 
malaria cases investigated, the laboratory received sam-
ples, and post-treatment case investigation reports.

Trend analysis
Monthly percentages were calculated using the monthly 
reported malaria case totals as the denominator. Time-
series decomposition was used to evaluate for the 
non-stationarity of data and account for trend (t), sea-
sonality (s) and random noise (r) [55]. Loess regression 
was used to obtain the optimum distribution and the 
95% confidence margins of the trend (Additional file 1: 
Figures S2(a), S3(a), S4(a)). This time series was further 
decomposed to evaluate trend, seasonality and random 
errors using Sen’s slope and Mann–Kendall test [39, 
56]. Seasonality was further explored using box plots.

Molecular markers analysis
The classification of the 27 k13 mutations after codon 
400 assessed in this study was guided by the WHO 
[57, 58] and the Worldwide Antimalarial Resistance 
Network (WWARN) [54]. The 2020 WHO categories 
of ’validated’, ’associated/candidate’, ’not associated’ or 
’wild type’ were used [58]. The ’wild type’ parasite was 
renamed to ’sensitive’ for further clarity. Mutations 
at codon 86 of the mdr1 gene and codon 76 of the crt 
gene together with increases in mdr1 gene copy num-
ber were assessed to determine susceptibility to lume-
fantrine. Parasites with the mdr86ASN and crt76LYS 
alleles but no increase in mdr1 copy number were cate-
gorized as less susceptible (or tolerant) to lumefantrine, 

while those with an increased mdr1 copy number con-
sidered lumefantrine resistant.

Spatial and usability analysis
All shapefile data and residential coordinates from 
malaria cases were converted to the HartebeestHoek94 
Datum coordinate system and projected to the Univer-
sal Transverse Mercator zone 32 [59]. Two draft maps 
were then drawn to display (1) thematic maps for the 
distribution of malaria cases by ward and (2) density 
maps of cases distributed by settlement within their 
ward boundaries. Twenty-four case investigators, with 
between one and 24 years experience working in Nkom-
azi sub-district, reviewed both maps to identify and label 
the Nkomazi wards (administrative level four). Feedback 
obtained from malaria case investigators was used to 
develop malaria case distribution maps and evaluate the 
shapefiles.

Thematic maps of the distribution of malaria cases by 
ward were produced using a spatial join tool linking GPS 
coordinates to the sub-district polygon. All cases falling 
in the same ward were summed, and an equal-interval 
scale and continuous colour ramp were used for display-
ing the distribution of cases by ward. Density maps of 
malaria cases per 1000 population were produced using 
kernel density estimation at 1 × 1  km and 0.5 × 0.5  km 
grids with a buffer around the sub-district polygon of 
1  km and 0.5  km, respectively. The two grids were pur-
posely selected for comparison. The Kernel density esti-
mation used Quartic implementation as per the formula 
below:

where, i = 1,…,n are the input points. The sum of points 
was used if they were within the radius distance of the 
(x,y) location. popi is the population value of point i. disti 
is the distance between point i and the (x,y) location [40].

Feedback was obtained from the case investigators 
using semi-structured interviews to assess if the maps 
were well understood and whether the distribution of 
malaria cases corresponded with their local knowledge. A 
case-based orientation was used to optimize the maps to 
arrive at the most correct and easily understood versions.

Descriptive exploratory proximity analysis was further 
conducted on residential coordinates to ascertain the 
probability of these locations falling in the actual resi-
dential area (within 0.5 × 0.5 km) at a given time (t). Two 
types of analyses were used. Firstly, for identifying the 
progress of the accuracy and distribution of the malaria 
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case residential coordinates over time, a time-series line 
using Loess regression was plotted, as were maps to 
assess the distribution of the coordinates. Secondly, the 
quadrats of the observed malaria cases at 0.5 km radius 
compared to expected cases were analysed by a Pois-
son process using the known malaria incidence and 
population settlement data to obtain likelihood ratios 
and Chi-square test. To assess the sparsity of malaria 
case residential data, average nearest neighbour analysis 
was used to explore for precision in the GPS coordinate 
dataset.

Results
Malaria notification, case investigation, drug adherence 
and response reports
From 1 March 2018 to 28 February 2020, 4787 malaria 
cases were notified in Nkomazi sub-district. All cases 
were definitively diagnosed using RDTs, with 98% 

(n = 4673) treated as outpatients. The probable source of 
infection for 73% (n = 3486) of the cases could be identi-
fied, with 96% of these classified as imported cases (i.e. 
source of infection outside South Africa). Of the 2531 
cases with a reported date of diagnosis, the majority 
(80%) presented at health facilities within two days of 
symptom onset. Altogether, 78.5% (n = 3758) of cases 
were investigated and GPS coordinates captured (Fig. 2). 
Treatment adherence and response reports were intro-
duced from January 2019 (Additional file  1: Figure S1), 
whereafter, of 2464 cases investigated, 61% (n = 1510) 
had the treatment adherence and response report com-
pleted. Overall, 72% (1793/2507) of cases were investi-
gated within 24 h (and 75%, 81%, 87%, and 92% within 3, 
7, 14 and 30 days, respectively).

Data linkage was performed at three levels, the first 
two at household level and the third at locality level. 

3748 posi�ve mRDTs

6054 mRDTs received at 
the laboratory

2636 with results and 
accurate barcodes

3758 had GPS coordinates 
or/and addresses

2002 linked with accurate 
household GPS coordinates 

and sample barcodes

2240 with MMR results mapped to facility and 
locality addresses

3262 Pf PCR Posi�ve

1989 with MMR results mapped to facility, locality 
addresses and household level (with accurate 

coordinates)

2255 accurate GPS 
coordinates

2527 accurately wri�en 
barcodes

2240 linked with accurate 
barcodes and addresses

•2297 nega�ve 
mRDTs
•9 invalid mRDTs

• 477 PCR nega�ve
• 5 P. malariae
• 4 mixed

• 326 no  barcodes
• 300 inaccurate 
barcodes

•2093 no barcodes

•1503 inaccurate 
GPS coordinates

•253 non-matching 
NMC number

•423 no GPS 
coordinates and 
addresses

•167 inaccurate 
barcodes

•287 non-
matching NMC 
number

4231 cases 
inves�gated

4787 no�fied malaria cases
Mar 2018 – Feb 2020

2694 cases with barcodes

4787 cases with  
mRDT results

•556 non-matching  
NMC number

Fig. 2 Making Data Map-worthy data flow chart. A chart showing data flow from the DHIS2 (consisting of malaria notification data captured on 
the notifiable medical condition (NMC) forms and case investigation data captured on case investigation forms), and molecular laboratory data on 
molecular markers of resistance from filter paper dried blood spots of RDT positive malaria patients. MMR molecular markers of resistance results, 
RDT malaria rapid diagnostic test, Pf Plasmodium falciparum)
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The first group linked case investigation data with accu-
rate household GPS coordinates (n = 1053) and RDT 
barcodes (n = 2527), allowing 89% (n = 2002) of inves-
tigated cases to be linked to their molecular markers 
of resistance results. The second group included treat-
ment adherence and response reports (Additional file 1: 
Tool S1), where only 50% (n = 1413, Additional file  1: 
Figure S1) of case investigations since its introduction 
in January 2019 could be linked to molecular markers 
of resistance results. The third group used GPS coordi-
nates of locality addresses (n = 2255) as an anonymised 
proxy for residential coordinates, where 85% (n = 2240) 
of cases investigated could be linked to their individual 
molecular markers of resistance results (Fig. 2).

Of the 6054 RDTs received by the national labora-
tory, 61.6% (n = 3748) were reported as P. falciparum 
positive by the Mpumalanga MEP; the remainder were 
negative RDTs sent for quality control purposes. Para-
site DNA was extracted, and PCR amplified from these 
positive RDTs and their corresponding filter paper 
dried blood spots (DBS), with 3340 (88%) found to be P. 

falciparum positive by PCR. Only samples with P. falci-
parum mono-infections [98% (n = 3262)] were assessed 
for molecular markers of drug resistance, of which 
80.8% (n = 2636) had barcodes for linkage.

Linkage of the molecular markers of resistance results 
and case notification data increased to 72% (95% CI 
60—82%) at the end of the second quarter of 2019 before 
dropping to 47% (95% CI 38–60%) in quarter one of 2020 
(Additional file  1: Figure S6). Molecular marker results 
could be linked to 99% (n = 1989) of the notified cases 
with accurate barcodes and residential coordinates, and 
2240 cases with accurate locality addresses and barcodes 
(Figs. 3 and 4).

Temporal trends of the selected surveillance metrics
As shown in Fig. 2 (overall) and Fig. 5 (longitudinal anal-
ysis by semester), linkage data increased from 12% at 
baseline to 54% in the final quarter. Barcoded case noti-
fication forms increased from 38 to 97% overall, while of 
RDT samples received at the NICD laboratory, those bar-
coded increased from 19 to 85% (Fig. 4). The household 
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GPS coordinate accuracy increased from 48 to 76% over 
the study period (Fig. 3).

GPS coordinate coverage and accuracy
Although the proportion of households with GPS 
coordinates (“coverage”) remained high throughout 
the study, spikes in coverage that corresponded with 
the months after on-site training were noted except 
following the third training. However, the accuracy of 
these coordinates increased from 48% at baseline to 
89% in November 2019, with high levels of accuracy 
sustained until February 2020 (Fig.  3 and Additional 
file 1: Figure S3).

Barcode coverage and accuracy
Over the course of the study, there was a steady increase 
in the percentage of accurately barcoded samples. Cover-
age and accuracy increased from an average of 5% in the 
first quarter to 80% in the last quarter, again with peaks 
in the months after on-site visits and training, except 
for the third training (Figs.  4 and Additional file  1: Fig-
ure S4). Over the two study years, there was a steady 
increase in barcode recording accuracy, reaching 75% 
(95% CI 64–85%) by the last quarter of 2019; however, 
this dropped to 64% (95% CI 59–85%) in the first quarter 
of 2020 (Additional file 1: Figure S5).
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Fig. 4 Barcode coverage, accuracy and linkage. The coverage, accuracy and linkage of the barcodes were assessed over the two-year study period 
(March 2018–February 2020). The grey bars show when training was conducted

Fig. 5 The longitudinal flow of data over the study period (March 2018–February 2020). Making Data Map-worthy (MDM) data flow over time 
from malaria case notification and laboratory data. The coloured bars show the totals, while the flows in grey illustrate the proportions of data 
that corresponded to the destination bar for the period. Over time, coverage, accuracy and linkage increased, illustrated by increased sizes of the 
corresponding bars for (a) March–August 2018, (b) September 2018–June 2019 and (c) July 2019–February 2020. (Acc. coord.: accurate residential 
coordinates, Inacc. Coord.: inaccurate residential coordinates, NMCI notifiable medical condition notification and case investigation data linkable/
unlinkable, Mol molecular marker of resistance data linkable/unlinkable, Pf Plasmodium falciparum, Pm Plasmodium malariae 

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Spatial analysis and semi‑structured evaluation 
of the spatial data
Widely dispersed household coordinates were obtained 
in the first three-quarters of the study, including posi-
tive and negative coordinates (hence some coordinates 
in the northern hemisphere or ocean), as illustrated in 
Fig. 6. Twenty-eight GPS collection devices used by Mpu-
malanga MEP case investigators were assessed. All 19 
Android device GPS capturing applications had degrees 
and decimal minutes (DDD° MM.MM’), while 5/9 hand-
held Garmin eTrex-10 devices had decimal degrees and 
decimal minutes (DDD.DDDDo) and the remaining four 
in the format of degrees, minutes and seconds (DDD° 
MM’ SS.S"). Standard operating procedures (Additional 
file  1: Tool S2) were developed, which included how to 
set devices to decimal degrees, and four workshops were 
conducted (November 2018, January, March and July 

2019) to train case investigators on best practices for the 
collection of GPS data.

Overall, improvement in the accuracy and precision 
of coordinates was observed over the study period. The 
average nearest neighbour distance decreased from 
330 km in the second quarter to 35 km by the fifth quar-
ter. The proportion of residential coordinates of a given 
malaria case falling within the 0.5 km × 0.5 km area rose 
from 15% (95% CI 4–48%) in the first quarter to 88% 
(95% CI 72–96%) by the 5th quarter.

Of the maps generated (Additional file  1: Figure 
S7a), the density map of the distribution of cases by 
0.5 × 0.5 km grid was preferred by the 24 MEP staff inter-
viewed. Problems identified in the thematic map (Addi-
tional file 1: Figure S7b) included colouring of the whole 
ward polygon while malaria cases are clustered only in 

Fig. 6 GPS coordinates of the malaria case residential locations collected during case investigation by quarter (2018–2020). Distribution of GPS 
coordinates in the six quarters evaluated. The top three maps show some highly dispersed coordinates far away from the study area compared to 
the subsequent period shown in the bottom three maps. Training using SOPs in Additional file 1: Tool S2 were conducted in October 2018, January, 
March and August 2019
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certain areas within the wards (other areas are largely 
unoccupied farmlands or nature reserves), so not resid-
ing equally throughout the ward as shown in the chorop-
leth ward map. In addition, non-familiarity with the ward 
demarcations was demonstrated by case investigators 

failing to label the respective wards (5/38), with duplicate 
labelling (7/38) and misplaced labels with no consensus 
(12/38) reported.

Molecular markers of drug resistance
Of the 3748 malaria-positive RDTs, 13% (n = 477) were 
malaria negative by PCR, five were pure Plasmodium 
malariae and four were mixed infections (P. malariae 
and P. falciparum). Of the 2297 RDTs reported as nega-
tive by the Mpumalanga MEP, 2% (53) were found to be 
false negatives by PCR. Of the false-negative RDTs ana-
lysed, 96% (51/53) were found to be pure P. falciparum 
infections, with the remaining 4% (2/53) pure P. malariae 
infections by PCR.

The propeller domain of the k13 gene was successfully 
amplified and sequenced from 73% (2385/3262) of the 
PCR positive falciparum samples (Table 1). All sequenced 
samples were wildtype at the 27 k13 single nucleotide 
polymorphisms (SNPs) known to be associated with arte-
misinin resistance (delayed parasite clearance).

Table 1 Summary of molecular markers of artemisinin and 
lumefantrine “resistance”

Prevalence of k13, mdr186 and crt76 mutations in individual patients with P. 
falciparum infections, Nkomazi Sub-District, Mpumalanga (March 2018–Feb 
2020). Markers showing sensitive parasites include the wild type-k13, mutant-
mdr186, and mutant/mixed crtK76T and potentially reduced susceptibility (or 
tolerant) markers with wild type-mdr186 and crtK76T

Artemisinin Lumefantrine

Marker name k13 Pf mdr186 Pf crtK76T

Samples assayed (n) 2385 2812 2122

Wild type 2385 (100%) 2803 (99.7%) 2121 (99.9%)

Mutant 0(0%) 9 (0.3%) 0 (0%)

Mixed 0(0%) 0 (0%) 1 (0.1%)

Fig. 7 Distribution of confirmed malaria cases and molecular markers of artemisinin and lumefantrine drug “resistance” in Nkomazi sub-district, 
Mpumalanga (March 2018–February 2020). Distribution of P. falciparum malaria cases by 5 × 5 km grid, artemisinin Plasmodium falciparum k13 (left) 
and lumefantrine (right) mdr186ASN/crt76LYS molecular markers of “resistance”, denoted by their susceptibility



Page 13 of 19Kagoro et al. Malaria Journal          (2022) 21:207  

Almost all the samples in which the mdr186 and crt76 
SNPs could be assessed carried wild type mdr186ASN 
(99.7%, 2803/2812) and crt76LYS (99.9%, 2121/2122) 
alleles, respectively (Table 1). No increase in copy num-
ber was observed in the 1503 isolates assessed for mdr1 
copy number. Thus, these samples were classified as 
potentially having reduced susceptibility (or tolerance) to 
lumefantrine, but not resistance, as shown in Fig. 7.

Discussion
Over the course of this study, data was curated from 
4787 notified malaria cases and 55.1% of these cases 
were linked to their individual anti-malarial drug resist-
ance profiles and residential localities in Nkomazi sub-
District, a pre-elimination area in Mpumalanga, South 
Africa. This pilot evaluation used an iterative framework, 
termed ‘Making Data Map-worthy’. This is the first study 
utilising routine malaria surveillance data individually 
linked to molecular surveillance data to create near-real-
time maps of anti-malarial drug resistance. The evidence 
generated by this pilot exemplifies the WHO recommen-
dation to transform surveillance into a core intervention 
[23]. While most evaluations of molecular markers of 
artemisinin and partner drug resistance are from clini-
cal trials, routine surveillance has the potential to facili-
tate the early detection of anti-malarial drug resistance 
in areas in which clinical trials are not feasible, such as 
low transmission intensity areas and areas where most 
malaria occurs in highly mobile and migrant popula-
tions [22, 60]. Although the WHO recommends iDES for 
low malaria transmission settings, there is little evidence 
of its feasibility in resource-constrained malaria pro-
grammes with thousands of malaria cases, particularly 
if most infections are among mobile and migrant popu-
lations. The findings from this study present a possible 
solution by allowing malaria programmes in such settings 
to target where and when resource-intensive confirma-
tory investigations and additional transmission-blocking 
interventions are needed [60].

Routine malaria surveillance data were collected and 
assessed over two years to map any spatiotemporal 
changes in anti-malarial drug resistance molecular mark-
ers. A user-centred feedback approach helped to assess 
data quality and incorporate improvement activities 
into data collection, analysis and map creation. Under-
standing malaria programmatic needs to support public 
health decision-making using an integrative approach, 
such as user-feedback and co-creation, has previously 
been shown to assist in the take-up and sustainability 
of new interventions, especially those that involve new 
technology adoption [35]. The greatest improvements in 
the surveillance metrics studied were generally observed 
following on-site supervision, and were sustained at a 

moderately high level for seven months after the last 
on-site supervision visit. Since there are no proposed 
analysis frameworks for evaluating routine location data 
from cohorts of infectious diseases patients, metrics were 
adapted from the latest systematic review and the WHO’s 
Data Quality Review (DQR) framework, an expert pro-
posed framework designed only for the assessment of 
facility-based data [61, 62]. Malaria surveillance data 
include off-facility activities such as case investigation 
home visits to assess treatment adherence and response, 
while seeking any mosquito vector risk factors.

A 0.5 × 0.5  km malaria density map provided the 
most user-friendly representation of the distribution 
of malaria. This finding challenges the most prevalent 
malaria map designs, namely ward level thematic maps 
of case distribution, which show that geographical or 
political boundaries demarcate cases. Density and other 
modelled maps can show disease distribution beyond 
uninterrupted land borders, which relates better to how 
infectious diseases, such as malaria spread. Another 
advantage of the density maps in this area was the avoid-
ance of large areas used for plantations and a national 
game reserve that lacked human settlements for malaria 
transmission. Density maps displaying cases in a continu-
ous land surface require modelling of the incidence and 
other key covariates that determine the distribution of 
cases. This study used the latest available human settle-
ment data and feedback from 24 local malaria case inves-
tigators to validate the correct malaria case distribution 
in their areas.

While only 55.1% of all reported malaria cases could 
be linked, overall, the iterative analysis, training and 
feedback improved the precision of collected GPS data 
from 15 to 88% within 0.5 × 0.5  km grid squares. With 
89% (n = 2002) of investigated cases having accurate GPS 
location linked to their individual molecular marker of 
resistance results, it would be possible to target the cor-
rect geolocation of a given case for further investigation 
and prompt response within that community, should any 
molecular marker/s of concern be identified.

Almost 45% of individual malaria cases and molecu-
lar data could not be linked in this study. To achieve 
optimum linkage and data curation might only be pos-
sible with the iterative analysis of data, identification of 
gaps and implementation of collaborative surveillance 
strengthening activities, in order to improve the data col-
lection, capture, analysis and reporting cycle. Although 
this may be perceived as resource-intensive and chal-
lenging to implement in a low resource setting, such an 
investment is essential for all malaria surveillance objec-
tives to be achieved, not just for promptly detecting, 
locating and responding to any emerging anti-malarial 
drug resistance. To avoid straining the already stretched 
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health system, further development of assay methods 
is needed to obtain an adequate yield from RDTs alone, 
as filter paper DBS requirements could potentially limit 
the scalability of this approach. Several studies have pro-
posed the use of RDTs for parasite DNA extraction as a 
useful alternative to the current methods; however, its 
applicability at field level is yet to be established [64–67]. 
Even for next generation sequencing, using DBS is rec-
ommended as the DNA obtained from RDTs is generally 
insufficient and of poor quality [68]. Pooling individual 
patient DBS samples before performing a genomic anal-
ysis has been proven useful for low and high malaria 
transmission settings [69]; however, no such pooling of 
samples has been reported yet for RDTs. Morris et  al. 
2013 noted that when RDTs were used alone, the DNA 
yield was much lower, allowing for only a “one-shot 
operation” with no possibility of DNA re-extraction [65]. 
Thus, each case’s RDT and blood spot were used together 
in a single reaction to increase the parasite density, if 
both were present. The DNA yield for RDT vs DBS was 
not quantified or compared in this study.

Although numerous human and system errors were 
identified and corrected, especially in the first and sec-
ond quarters, a significant proportion of the cases could 
not be linked to their resistance profile or locality. The 
inability to follow-up patients, particularly those among 
the highly mobile migrant populations, played a signifi-
cant role in the low number of household coordinates 
collected. Although many of the migrant cases presented 
at local healthcare clinics, most could not be followed up 
to geolocate their residential addresses/ward or assess 
treatment adherence and response. Undocumented 
migrants may be more likely to provide inaccurate con-
tact details for the notification form, and many transit 
rapidly through endemic areas to reach major cities in 
non-endemic areas.

Although the proportion of filter paper DBS samples 
submitted with positive RDTs increased over the study 
period to 92% in the final quarter, the quality of the DBS 
collected remained suboptimal. Only 61% of the col-
lected DBS passed the internal quality control screen-
ing, in terms of sufficient blood volume and storage 
conditions to be entered into the laboratory workflow. 
Despite numerous training rounds, the health facility 
staff persisted in collecting very low blood volume (less 
than 10 µl) DBS. These low blood volumes decreased the 
efficiency of both the DNA extraction and downstream 
PCR analyses, particularly in infections with low parasite 
densities. It has been shown that DBS with at least 50 µl 
of blood are essential for molecular assays that include 
next-generation sequencing [70]. More intensive in-per-
son training would be required to improve and sustain 
progress.

A small proportion (2.2%) of negative RDTs were 
malaria positive by PCR. This finding could be due to 
patients with infections that have parasites loads below 
the detection limit of the RDT (200 parasites per µl 
blood), but within the detection limit of the more sensi-
tive PCR assay (20 parasites per µl blood). Other possi-
ble explanations include inadequate storage conditions 
of the RDT and/or DBS or the incorrect use of the RDT 
(addition of too little blood or too much Lysis buffer or 
reading before the recommended time). Preliminary 
investigations suggest these false negatives were not 
due histidine-rich protein 2 (hrp2) deletions; available 
evidence suggests hrp2 mutations are currently rare in 
southern African [71]. However, ongoing systematic test-
ing is required to exclude hrp2 deletions in this region.

Fortunately, neither ’validated’ or ’associated/candidate’ 
k13 mutations associated with artemisinin resistance 
were found this study [54, 57, 58]. However, the strong 
selection for the mdr86ASN and crt76LYS wildtype 
alleles may indicate some lumefantrine tolerance. A study 
in Uganda found an increased relative risk of treatment 
failure (PCR-adjusted) associated with the presence of 
the mdr86ASN allele [72]. Venkatesan et al. found a slight 
increase in recrudescence and reinfection for parasites 
carrying pfcrt76 and mdr86ASN alleles following AL 
treatment [73]. However, no other African studies have 
demonstrated an increased therapeutic failure rate when 
these alleles are present [74–76]. In Asia, clinical fail-
ure rates have been linked to the increase in mdr1 copy 
number as compared to the mdr86ASN alleles [77]. The 
increase in mdr1 copy number has rarely been reported 
in Africa [52, 78], and this study did not observe any such 
increase.

This study highlights the need for continued rigorous 
surveillance, particularly in light of multiple reports of 
the independent emergence of k13 resistance markers in 
Central [10], East [11–13], and West African countries 
[13, 14]. Despite the absence of validated k13 artemisinin 
resistance mutations in southern Africa, the decline of 
ACT clinical efficacy below the WHO threshold of 90% 
observed in nearby Angola in 2013 and 2015 (Zaire Prov-
ince) and 2019 (Lunda Sul Province) [79] is of some con-
cern [80], although consecutive studies in 2017 and 2019 
showed adequate parasite clearance rates [79, 81]. The 
extreme AL drug pressure in sub-Saharan Africa, delayed 
parasite clearance following AL treatment in Rwanda, 
and the emergence of clinical artemisinin resistance in 
Uganda calls for strengthening resistance surveillance 
across Africa. Such activities will inform efficient target-
ing of transmission blocking activities (including SLD 
primaquine and foci clearing) and further investigation 
of parasite clearance rates and ACT therapeutic efficacy, 
with prompt changes to treatment policy[17] should 
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treatment failure rates exceed acceptable limits (currently 
10%) [57].

Some of the challenges and limitations often seen with 
the use of routine surveillance data were also encoun-
tered in this study, including limited data availability, 
multiple information/reporting systems and relatively 
high staff turnover rates. During the course of the study, 
DHIS2 was being rolled out and updated, while malaria 
cases notified before the generic notifiable medical con-
dition (NMC) system was introduced in January 2019 
were entered in a provincial MS Access-based Malaria 
Health Information System. The transition between these 
overlapping systems might have affected the data captur-
ing cycle and impaired harmonization of the two data-
sets, potentially impacting on data quality. During this 
transition period, malaria cases could be notified using 
paper notification forms (later captured into the DHIS2) 
or on one of two mobile-phone-based systems, a malaria 
case short messaging service and NMC mobile applica-
tions[82]. Ideally, these two systems should feed into the 
DHIS2 system and remove duplication; however, these 
two mobile-phone-based databases could not be accessed 
for confirmation. Insufficient staff and resources may also 
hamper data quality. During the two years of this study, 
some of the staff from a collaborative non-governmental 
organization (who comprise more than half of the malaria 
case investigators) had to stop working for a few months 
whilst waiting for the renewal of funding, and this inter-
rupted their surveillance activities. Other studies have 
also documented similar challenges leading to inconsist-
encies and inaccuracies in health information systems 
[83–85]. Such challenges limit the usage of routine data 
in decision-support systems, especially in low-resource 
settings. Consequently, countries rely on population-
level health surveys, which remain costly, outdated and 
irregular; for instance, the WHO world malaria report 
still relies on modelling data due to incompleteness and 
inconsistencies in the malaria routine reporting system 
[1, 3, 86–88]. Other factors such as climate, altitude, vec-
tors, or the existing malaria interventions that have been 
shown to affect the distribution of malaria cases in previ-
ous studies were not explored [33, 89], given the focus of 
this study.

Routine near-real-time mapping of molecular mark-
ers of anti-malarial drug resistance data to the health-
care facility, locality and patient household levels offers 
malaria programmes rapid and efficient monitoring of 
spatiotemporal changes in anti-malarial drug resist-
ance profiles. By improving the facility and population-
based routine surveillance systems as shown in this 
study, malaria programmes can identify areas of con-
cern requiring further investigation and conduct tar-
geted therapeutic efficacy trials and transmission limiting 

activities, hence allocating their resources strategically. 
This might however be too costly for high transmission 
settings. Here, molecular markers from a representative 
sample of malaria cases from a range of health care facili-
ties with optimal geographic and epidemiological cover-
age could be used to strengthen resistance surveillance 
and inform programmes of areas where further investi-
gation should be conducted. Such sentinel sites could be 
linked to a centralized national or regional laboratory, 
reducing investments and running costs. Low and mod-
erate transmission settings have started implementing 
centralized genomic surveillance. For instance, Haiti [90], 
Honduras [91] and South Africa [28] provide examples 
of national molecular surveillance, while the GenRe-
Mekong study provides a model for regional surveillance 
[92]. However, a feasibility study and cost-effectiveness 
analysis may be needed to inform the relevance of such 
a system in high malaria transmission settings. Pragmatic 
and innovative approaches such as co-design can enable 
precision mapping, contextualization of analyses and 
meeting of malaria MEP needs.

Although linking individual patient information and 
the molecular markers might not directly benefit the 
patient, the molecular results may be of value in case 
the patient returns to a healthcare facility with recurrent 
malaria, as the linked molecular marker data will help 
differentiate anti-malarial resistance from other causes 
of treatment failure and thus inform re-treatment strat-
egy. While enhancing the quality of routine data can be 
a daunting task, identifying, monitoring and improving 
important surveillance metrics and indicators by MEPs 
is considered critical to both evaluating progress and 
achieving malaria elimination targets. This is consistent 
with the WHO recommendation that surveillance is a 
core intervention to achieve elimination. Countries that 
have eliminated malaria have established strong infor-
mation systems and maintained them to prevent the re-
establishment of the disease [23]. Sustainability can be 
facilitated by researchers and MEPs working collabora-
tively to develop tools and resources for efficient training 
and regular supervision that can be cascaded to reach all 
relevant MEP staff.

Conclusions
In low malaria transmission settings in sub-Saharan 
Africa, near-real-time fine-scale mapping of molecu-
lar markers of anti-malarial drug resistance can assist 
in rapidly and efficiently monitoring anti-malarial drug 
resistance and identifying areas requiring further inves-
tigations and interventions. However, the sustainabil-
ity of such a strategy requires regular training, close 
supervision and strong programmatic support. More 
innovation and research are needed to explore more 
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cost-effective strategies for anti-malarial resistance sur-
veillance systems given current resource constraints, 
such as sampling at representative sentinel health facili-
ties strategies versus comprehensive sampling, linkage 
at individual versus health facility levels, particularly in 
moderate and high transmission settings. The methods 
piloted, and lessons learnt in this study could inform 
scale-up to provincial, national and regional malaria 
control/elimination programme levels in low- and 
middle-income countries and may be relevant for other 
antimicrobial resistance surveillance.
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