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Inferring the relative strength (i.e. the ratio of reproduction numbers) and
relative speed (i.e. the difference between growth rates) of new SARS-
CoV-2 variants is critical to predicting and controlling the course of the
current pandemic. Analyses of new variants have primarily focused on
characterizing changes in the proportion of new variants, implicitly or expli-
citly assuming that the relative speed remains fixed over the course of an
invasion. We use a generation-interval-based framework to challenge this
assumption and illustrate how relative strength and speed change over
time under two idealized interventions: a constant-strength intervention
like idealized vaccination or social distancing, which reduces transmission
rates by a constant proportion, and a constant-speed intervention like ideal-
ized contact tracing, which isolates infected individuals at a constant rate. In
general, constant-strength interventions change the relative speed of a new
variant, while constant-speed interventions change its relative strength.
Differences in the generation-interval distributions between variants can
exaggerate these changes and modify the effectiveness of interventions.
Finally, neglecting differences in generation-interval distributions can bias
estimates of relative strength.
1. Introduction
Estimating variant epidemic strength and speed remains a key question
in understanding the threat of SARS-CoV-2 variants of concern (VoCs) [1–8].
Epidemic ‘strength’ is measured by the reproduction number R—a unitless
quantity representing the average number of new infections caused by a typical
infection. A pathogen can spread in a population if R . 1 [9]. The epidemic
strength also determines the final size of an epidemic in a homogeneously
mixing population under the mass-action assumption [10]. Epidemic ‘speed’
is characterized by the growth rate r, which has units of 1/time and describes
the exponential rate of pathogen spread at the population level. Like epidemic
strength, epidemic speed also determines conditions for pathogen elimination:
r = 0 is a threshold equivalent to R ¼ 1 under constant conditions. However,
epidemiological modellers have often over-emphasized R at the expense of r
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[11]; we thus use the terms ‘strength’ and ‘speed’ here to
underline our contention that these metrics are better
seen as complementary perspectives (and to link them to
complementary perspectives on measuring the transmission
advantage of new variants).

Epidemic speed is typically estimated from time series of
incidence of infection during the exponential growth period
[12–14], but epidemic strength is difficult to measure from
incidence time series. Instead, epidemic strength is often
inferred from the observed epidemic speed using the gener-
ation-interval distribution g(τ), an approach popularized by
Wallinga & Lipsitch [15]. The generation interval, defined
as the time between infection and transmission, provides
information about the time scale of individual-level trans-
mission [16]. The generation interval is also distinctly
different from other ‘transmission intervals’ that measure
time between successive infections—including the serial
interval, which is defined as the time between symptom
onsets in an infector–infectee pair [17–21].

The exact shape of the distribution depends on several
factors—including the shape of latent and infectious period
distributions [22–24] as well as more detailed life history of
a pathogen [25]—and thus can be difficult to estimate.
While it is possible to consider general forms of generation-
interval distributions [26,27], summarizing the distribution
in terms of its mean and variability—for example, by assum-
ing they are Gamma distributed—can still provide a robust
link between epidemic speed and strength for real pathogens
and yield important biological insights [28]. In particular,
several studies have noted, in various contexts, that mechan-
isms that increase the mean generation interval increase
the epidemic strength R that would be estimated for a
given epidemic speed r [29–32].

Analyses of new variants have characterized relative
strength (i.e. the ratio of reproduction numbers of the invad-
ing and resident strains, here called ρ) and speed (i.e. the
difference between growth rates of the invading and resident
strains, here called δ). As an example, we consider a new var-
iant invading a wild-type strain in this paper and use Rvar

and Rwt to denote their respective reproduction numbers
and rvar and rwt to denote their respective growth rates at a
given time (and therefore r ¼ Rvar=Rwt and d ¼ rvar � rwt).
Many analyses have focused on changes in the proportion of
a new variant to estimate its relative speed [1–7]. Focusing
on proportions can be advantageous, because changes in pro-
portions are less sensitive to changes in testing and to other
transient phenomena that would affect variants and wild-
type viruses similarly; however, estimates of relative speed
from changes in the proportion of a new variant have typi-
cally relied on the assumption that the relative speed
remains fixed over the time scale of an invasion. Instead (or
additionally), some studies have assumed a fixed value of
the relative strength and tried to predict relative speed [2,3].

While both approaches are reasonable, holding different
quantities constant (i.e. strength or speed) can lead to different
conclusions about the spread of the pathogen and its control
[11]. To illustrate the differences in conclusions when holding
R or r fixed, we consider two idealized interventions of con-
stant strength and constant speed. Before these interventions
are introduced, the dynamics of pathogen spread can be
characterized in terms of the pre-intervention kernel Kpre(τ),
which represents the rate at which an infected individual
generates secondary infections τ time units after infection.
The pre-intervention kernel can be further decomposed in
terms of the epidemic strength R and the generation-interval
distribution g(τ): KpreðtÞ ¼ RgðtÞ; therefore, the infection
kernel integrates to R while the generation-interval distri-
bution integrates to 1. Then, a constant-strength intervention
reduces transmission by a constant factor θ throughout infec-
tion such that the post-intervention kernel is Kpost(τ) =
Kpre(τ)/θ. In this case, the intervention strength θ must be
greater than the epidemic strength R to control the epidemic.
By contrast, a constant-speed intervention reduces trans-
mission after infection by a constant rate ϕ throughout
infection: Kpost(τ) =Kpre(τ)exp(−ϕτ). In this case, the intervention
speed ϕ must be greater than the pre-intervention epidemic
speed r to control the epidemic. We note that the resulting
post-intervention generation-interval distribution under a
constant-speed intervention is not equal to g(τ)exp(−ϕτ);
instead g(τ)exp(−ϕτ) needs to be renormalized to integrate to
1 because the generation-interval distribution is a probability
distribution.

These two idealized interventions, in turn, allow us to
understand how holdingR or r fixed can lead to different con-
clusions about epidemic control. For example, if we assume
epidemic strength R is known, then variation in the gener-
ation-interval distribution does not change the estimated
effectiveness of a constant-strength intervention. In this same
case, however, assuming longer generation intervals decreases
the estimated epidemic growth rate (lower r), making an
epidemic look easier to control with a constant-speed interven-
tion. Conversely, when epidemic speed r is fixed, assuming
longer generation intervals increases the estimated epidemic
strength (R), making the epidemic look harder to control
with a constant-strength intervention. Constant-strength and
constant-speed interventions are idealized representations of
real-life interventions, which can range from strength-like (e.g.
vaccination and social distancing) to speed-like (e.g. contact
tracing and isolation) depending on how their effectiveness
varies across the generation interval (see [11] and Discussion).

Recent studies have suggested the possibility that new
variants may have different generation-interval distributions.
For example, Kissler et al. [33] suggested that the Alpha var-
iant may have a longer duration of infection: 13.3 d (90% CI:
10.1–16.5), compared to 8.2 d (90% CI: 6.5–9.7) for the wild-
type, thus suggesting that the mean generation interval of
the Alpha variant is likely to be longer than that of the
wild-type [22–24]. By contrast, some studies have suggested
that the Delta variant may have a shorter generation interval
due to faster within-host viral replication [34,35]. Modelling
studies have also considered the possibility that the observed
fast replacement of some variants may be driven, in part, by
shorter generation intervals [2,6]. However, linking strength
and speed is complicated given that the generation-interval
distribution depends on many factors including behaviour: for
example, self-isolation after symptom onset will lead to shorter
generation intervals. The emergence of the Omicron variant,
and its breakthrough infections in previously immune individ-
uals, adds further uncertainty to individual-level transmission
dynamics and therefore the generation interval of SARS-CoV-2
variants [36].

Here, we use the generation-interval-based framework to
compare two measures of transmission advantage of new
variants: the relative strength and relative speed. We assess
how relative strength and speed depend on underlying epi-
demiological dynamics of previously dominant lineages
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and argue that assuming a constant relative strength (rather
than a constant relative speed) is more appropriate for
estimating relative transmissibility of new variants. We also
show how neglecting differences in the generation-interval
distributions of new variants can lead to biased estimates of
their relative transmissibility and how such biases might be
assessed in practice. Finally, we discuss how information
on differences in generation interval distributions might
influence priorities for controlling the spread of VoCs.
/journal/rsif
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2. Renewal equation framework
We use the renewal equation framework to characterize the
spread of two pathogen strains—in this case, the wild-type
SARS-CoV-2 virus and a focal VoC. We focus on characteriz-
ing the incidence of infection, which is directly related to r
andR. In practice, observed case reports are subject to report-
ing delays as well as changes in testing behaviours or
capacity, which must be taken into account in order to cor-
rectly infer r and R [37,38].

Neglecting the (relatively slow) rate of new mutations and
assuming homogeneous mixing, the current incidence of
infection ix(t) caused by each strain x—either the wild-type
(‘wt’) or the variant (‘var’)—can be expressed in terms of
their previous incidence ix(t− τ) and the rate Kx(t, τ) at
which secondary infections are generated at time t by
individuals infected τ time units ago:

ixðtÞ ¼
ð1
0
ixðt� tÞKxðt, tÞdt: ð2:1Þ

This framework provides a flexibleway of modelling pathogen
dynamics and generalizes a wide range of compartmental
models, including the SEIR model [39–44].

Integrating the kernel at a fixed calendar time gives the
instantaneous reproduction number:

RxðtÞ ¼
ð
Kxðt, tÞdt ð2:2Þ

which is defined as the expected number of secondary
infections that would be caused by an individual infected
at time t if conditions were to remain the same [45]. The
instantaneous reproduction number is a particular kind of
weighted average of infectiousness of previously infected
individuals at time t—in particular, it is weighted by the
total relative infectiousness at time t, rather than by the actual
number of infected individuals present. The normalized
kernel gxðt, tÞ ¼ Kxðt, tÞ=RxðtÞ—which we refer to as the
instantaneous generation-interval distribution—describes the
relative contribution of previously infected individuals
to current incidence ix(t) and provides information about the
time scale of pathogen transmission. Like the instantaneous
reproduction number, the instantaneous generation-interval
distribution describes contributions to the epidemic under the
counterfactual case where conditions remain constant at a par-
ticular set of values. Both the instantaneous reproduction
number and the instantaneous generation-interval distribution
dependonmany factors, including intrinsic infectiousness of an
infected individual, non-pharmaceutical interventions, aware-
ness-driven behaviour and population-level susceptibility [45].

Constant-strength changes, which reduce transmission rate
of infectious individuals independent of age of infection, do
not change the instantaneous generation-interval distribution
[45]. In this case, the instantaneous generation-interval distri-
bution is also often referred to as the intrinsic generation-
interval distribution [32,38,46,47]—for example, the standard
SEIR model can be equivalently expressed as a renewal
equation with time-invariant intrinsic generation-interval dis-
tribution g(τ) as shown in [44]. The instantaneous generation-
interval distribution is different from the realized generation-
interval distribution, which measures time between actual
infection events [46]. Previous studies have noted, in many
contexts, that the realized generation intervals can contract
due to susceptible depletion—a special case of constant-
strength changes [46,48,49]—even though the instantaneous
generation-interval distribution remains unchanged in this
scenario. While the instantaneous generation-interval distri-
bution can change under speed-like changes (see [45] and
§§6 and 7 for detailed discussions), assuming a time-invariant
instantaneous generation-interval distribution is often appro-
priate in the context of SARS-CoV-2, given that control
strategies against its spread have been primarily strength-
like, including social distancing measures [50] and vaccination
[51]. Indeed, many dynamical models of SARS-CoV-2 infec-
tions have solely relied on constant-strength changes, either
implicitly or explicitly assuming a time-invariant intrinsic gen-
eration-interval distribution (e.g. [38,50,52]). Therefore, we
neglect changes in the intrinsic generation-interval distribution
over time for now and focus on the impact of constant-strength
changes on the inference of dynamics of new SARS-CoV-2 var-
iants. We revisit these ideas in §6 and compare the effects of
constant-speed interventions with those of constant-strength
interventions.

Over a short period of time, we can assume that epidemio-
logical conditions remain roughly constant: RxðtÞ � Rx and
gx(t, τ)≈ gx(τ), in which case the incidence of infections changes
exponentially. Here, we use the term ‘epidemiological con-
ditions’ to broadly refer to all factors that affect transmission
at the population level—mathematically, they are captured by
the kernel K(t, τ). In the context of SARS-CoV-2 infections, we
are essentially assuming that the changes in susceptible pool,
behaviour, and contact rates are usually small over a short
period of time—this assumption would not apply at the
moment of a drastic policy change, but could be applied to
the periods immediately before and after. Then, the incidence
of each strain grows (or decays) exponentially at rate rx, satisfy-
ing the Euler–Lotka equation [15]:

1
Rx

¼
ð1
0
expð�rxtÞgxðtÞdt: ð2:3Þ

We can approximate this r–R relationship by assuming that the
generation-interval distribution is Gamma-distributed, and
summarizing it using the mean generation interval �Gx and
the squared coefficient of variation κx (equal to the reciprocal
of the Gamma shape parameter) [28]:

Rx � ð1þ kxrx �GxÞ1=kx : ð2:4Þ

Various Gamma-generation-interval assumptions have been
widely used in epidemic modelling, including for models of
SARS-CoV-2 [53]. The Gamma-generation-interval assumption
includes as a special case models that assume exponentially
distributed generation intervals (when κ = 1), corresponding
to the SIR model [10]. We note that when the infectious
periods are Gammadistributed—another standard assumption
in epidemic modelling—the resulting generation interval does
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not necessarily follow the Gamma distribution (see [24] for
detailed discussion).

We use this framework to investigate how inferences
about strength and speed of the variant depend on our
assumptions about the underlying generation-interval distri-
butions. Here, we focus on differences in mean generation
intervals, assuming that both the variant and wild-type inter-
vals are Gamma-distributed with squared coefficient of
variation κwt = κvar = κ. Changes in shape can be important
[26,27], but we do not investigate them here. We do note
that we expect a distribution with higher coefficient of vari-
ation to allow for more early transmission, and thus to
have qualitatively similar effects to a distribution with a
shorter mean during periods of growth, when early events
are more important than later events [28].
3. Inferring relative strength from relative speed
When incidence is changing exponentially (ix(t) = ix(t0)exp(rx
t)), the proportion of the new variant p(t) follows a logistic
growth curve [1,2]:

pðtÞ ¼ ivarðt0Þ expðrvartÞ
iwtðt0Þ expðrwttÞ þ ivarðt0Þ expðrvartÞ ð3:1Þ

¼ 1
1þ (iwtðt0Þ=ivarðt0Þ) expð�dtÞ , ð3:2Þ

where the relative speed of the variant δ can be estimated as
the slope of the log odds of p versus time. When more than
two strains are co-circulating, the picture is more complicated
[8]; we focus here on comparing two strains at a time.

We thus ask: what factors affect the relative strength
r ¼ Rvar=Rwt of a new variant, conditional on an observed
relative speed δ? This inference depends on assumptions
about the generation-interval distributions of both strains.
Given the mean generation interval of the variant �Gvar and
the wild-type �Gwt, the relative strength r ¼ Rvar=Rwt under
the Gamma assumption [28] is given by

r ¼ 1þ kðrwt þ dÞ�Gvar

1þ krwt �Gwt

� �1=k

: ð3:3Þ

Therefore, the relative strength ρ depends not only on the
relative speed δ and the generation-interval distributions
but also on how fast the wild-type is spreading in the popu-
lation (rwt)—some analyses have implicitly or explicitly
neglected this factor by assuming either rwt ¼ 0 [1] or κ = 0
[2] (in the latter case, r ¼ expðd�GwtÞ when �Gvar ¼ �Gwt).

We start by taking the mean generation interval of the
wild-type to be �Gwt ¼ 5 d [54] and the squared coefficient
of variation of generation intervals to be κ = 0.2 [54] for
both the variant and the wild-type. As noted above, we
assume throughout that the variant and the wild-type can
be approximated with Gamma distributions with equal κ,
and only consider differences in the mean. We evaluate the
estimates of relative strength ρ across a wide range of κ
from 0 (fixed-length generation intervals) to 1 (exponential
distributions). To further explore how inference depends on
underlying epidemiological conditions, we consider five
scenarios, all with d ¼ rvar � rwt ¼ 0:1 d�1 (based on obser-
vations of the Alpha variant in the UK [2]), and with
increasing underlying r: (1) rwt , rvar , 0, (2) rwt , rvar ¼ 0,
(3) rwt , 0 , rvar, (4) 0 ¼ rwt , rvar and (5) 0 , rwt , rvar.

Unsurprisingly, we find that an increased speed of δ =
0.1 d−1 for the variant is consistent with higher strength
(ρ > 1) than the wild-type across all five epidemiological scen-
arios considered (figure 1). However, the magnitude of
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relative strength ρ is sensitive to assumptions about gener-
ation intervals: for realistic values of κ (excluding 0 and 1),
the inferred relative strength ρ ranges between 1.1 and 2.3
(across all five scenarios) when �Gvar is allowed to vary
between 2/3 and 3/2 of �Gwt.

In general, longer mean generation intervals of the new
variant translate to higher values of ρ (and vice versa;
figure 1, bottom panels), except when rvar � 0 (recall, we
always assume rwt , rvar; figure 1, top panels). When
rvar ¼ 0, we always have Rvar ¼ 1 and so ρ is independent
of the generation-interval distribution of the new variant.
When rvar , 0, we see that longer generation intervals
decrease ρ because longer generation intervals actually lead
to slower decay (higher r). Assuming a narrower distribution
for both the variant and the wild-type strain (lower κ) has
qualitatively similar effects to assuming longer generation
intervals (leading to higher values of ρ when rvar . 0 and
lower values of ρ when rvar , 0) because both reduce the
amount of early transmission. When rwt , 0 , rvar, inference
of ρ is relatively insensitive to values of κ.
4. Inferring relative speed from relative strength
We do not generally expect the relative speed δ to remain fixed
if other factors governing epidemic spread are changing.
Instead, many biological mechanisms appear compatible
with assuming a fixed value of relative strength ρ over
changing conditions. For example, if the proportion of the
population susceptible declines, or the average contact rate
changes, while other factors remain unchanging, the relative
strength ρ is expected to remain fixed [3,5,55,56].

We thus investigate how δ is expected to change with Rwt

when ρ remains fixed, and how this expectation changes with
the ratio of the generation intervals. Once again, we rely on
the Gamma assumption [28] to find the relative speed δ
given the mean generation interval of the variant �Gvar and
the wild-type �Gwt:

d ¼ ðrRwtÞk � 1
k�Gvar

�Rk
wt � 1
k�Gwt

: ð4:1Þ

As our baseline scenario, we assume ρ = 1.61 (i.e.
Rvar ¼ 1:61Rwt), which is the value we obtain for δ = 0.1 d−1

[2], rwt ¼ 0 d�1, �Gwt ¼ �Gvar ¼ 5d and κ = 1/5 [54]. We evaluate
δ across five scenarios as before: (1) Rwt , Rvar , 1, (2)
Rwt , Rvar ¼ 1, (3) Rwt , 1 , Rvar, (4) 1 ¼ Rwt , Rvar and
(5) 1 , Rwt , Rvar.

In general, longer generation intervals lead to slower rela-
tive speed of the variant when the incidence of both strains is
increasing (figure 2, bottom panels) because slower growth of
the variant reduces the differences in absolute speed. When
Rvar ¼ 1, the relative speed is insensitive to the generation-
interval distribution of the variant because we always have
rvar ¼ 0 (figure 2, top-right panel). When Rvar , 1, longer
generation intervals of the variant lead to slower decay (rvar
closer to 0), and therefore greater relative speed (figure 2,
top-left panel). We see that assuming a narrower distribution
for both the variant and the wild-type strain (lower κ) has
qualitatively similar effects to assuming a longer mean (lead-
ing to lower values of δ whenRvar . 0 and higher values of δ
when Rvar , 0).

Figure 2 also shows that when ρ is fixed, relative
speed depends on underlying epidemiological conditions—
specifically, the absolute strength of the two strains. For
example, even when the generation-interval distributions
are identical (�Gvar ¼ �Gwt, in this case), changing Rwt from
0.49 (figure 2, top-left panel) to 1.27 (figure 2, bottom-right
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panel)—and thus Rvar from 0.79 to 2.04—changes the relative
speed δ from 0.08 to 0.11 when κ = 0.2 (and from 0.06 to 0.14
when κ = 0.5). Differences in the generation-interval distri-
butions exaggerate these changes. Therefore, characterizing
changes in the proportion of variants by assuming a fixed
relative speed (e.g. by fitting a standard logistic growth
curve [1] and using the resulting value of δ) should be
done with care.
 .org/journal/rsif

J.R.Soc.Interface
19:20220173
5. Inferring relative strength from incidence data
Instead of inferring relative strength from relative speed, one
can separately estimate time-varying reproduction numbers
RðtÞ of the variant and the wild-type from observed inci-
dence and assumptions about the generation intervals, and
then calculate the ratio—such methods have been used in
previous analyses of the Alpha [6], Delta [57] and Omicron
variants [58]. Broadly, there are two types of time-varying
reproduction numbers: case reproduction number and
instantaneous reproduction number. The case reproduction
number is defined as the average number of secondary
infections caused by an individual infected at time t and
therefore depends on transmission after time t [59]. The
instantaneous reproduction number is defined as the average
number of secondary infections that would be caused by an
individual infected at time t if conditions were to remain
the same [45]; therefore, the instantaneous reproduction
number only depends on transmission at time t and is most
appropriate for real-time evaluation of changes in transmis-
sion [38]. The estimation of the instantaneous reproduction
number was popularized by Cori et al. [60] and has been
widely adopted in epidemiological analyses of SARS-CoV-2
[50,52,61–63].

In practice, estimating the instantaneous reproduction
number is complicated because it requires estimating inci-
dence of infection. Observed case counts are sensitive to
reporting delays [37] and changes in case definitions [64],
which in turn can affect estimates of the instantaneous
reproduction number [38]. Here, we choose to focus on the
underlying dynamical mechanisms that may affect inference
and thus assume that the incidence of infection is known
exactly. Assuming that the instantaneous generation-interval
distribution remains constant, the instantaneous reproduc-
tion numbers of the new variant and of the wild-type can
be estimated from their corresponding incidence curves [60]:

RxðtÞ ¼ ixðtÞÐ1
0 ixðt� tÞgxðtÞdt

: ð5:1Þ

Under constant-strength intervention measures that reduce
transmission rates of both strains by a constant amount,
we expect ratios between reproduction numbers to remain
constant and correspond to the true relative strength:
RvarðtÞ=RwtðtÞ ¼ r [3,5,55,56]. However, if the assumed
generation-interval distribution ĝðtÞ differs from the true
distribution, then the ratio between the estimated reproduc-
tion numbers r̂ðtÞ ¼ R̂varðtÞ=R̂wtðtÞ may change, even if the
true ratio does not.

Here, we investigate how misspecification of the gener-
ation-interval distribution of the variant affects our inference
of relative strength from incidence data under the assumption
that the true generation-interval distribution of thewild-type is
known. We use a two-strain renewal equation that assumes
perfect cross-immunity to simulate three different scenarios
(see electronic supplementary material, Text): (1) the variant
has a shorter mean generation interval (figure 3a–c); (2) the
wild-type and the variant have the same (known) generation-
interval distributions (figure 3d–f); and (3) the variant has a
longer mean generation interval (figure 3g–i). Then, we com-
pare the estimated ratio r̂ðtÞ ¼ R̂varðtÞ=R̂wtðtÞ with the true
ratio r ¼ RvarðtÞ=RwtðtÞ. In order to simulate introduction
and lifting of non-pharmaceutical interventions, we let RwtðtÞ
decrease from 2 to 0.4 around day 30 and increase back up to
1 around day 60 and assume RvarðtÞ ¼ rRwtðtÞ. Previous
studies havemodelled the impact of non-pharmaceutical inter-
ventions as a step function [50], but we use a smooth function
to model RwtðtÞ (figure 3; see electronic supplementary
material, Text) given the possibility that behavioural changes
may affect transmission before and after interventions take
place. We reach similar conclusions if we use a step function
instead (electronic supplementary material, figure S1).

When the wild-type and the variant have the same
(known) generation-interval distributions, the assumed gen-
eration-interval distribution matches the true distribution
(figure 3d–f ). In this case, the estimated reproduction num-
bers match the true values (figure 3d ); thus, their estimated
ratio r̂ðtÞ remains constant and R̂varðtÞ ¼ RvarðtÞ (figure 3e).
However, when the true generation intervals of the variant
have a shorter mean than the assumed distribution, we
over-estimate RvarðtÞ during the growth phase and under-
estimate RvarðtÞ during the decay phase (figure 3a); therefore,
the estimated ratio r̂ðtÞ changes over time (figure 3b). Conver-
sely, when the true generation intervals of the variant have a
longer mean than the assumed distribution, we find similar
biases in opposite directions (figure 3g,h).

In practice, estimates of instantaneous reproduction num-
bers RðtÞ (and therefore, their ratios) can be noisy due to
limited data availability or model assumptions; instead, we
might want to estimate a single value of relative strength ρ.
For example, we can estimate ρ by plotting the estimated
strength of the variant R̂varðtÞ against the estimated strength
of the wild-type R̂wtðtÞ—as presented in fig. 2 of [6]—and
performing a linear regression (figure 3c,f,i). Here, we esti-
mate the slope while fixing the intercept to zero: the
regression line should go through the origin in theory
because Rvar ¼ 0 when Rwt ¼ 0. If ρ is constant, and gener-
ation-interval distributions are correctly specified, we obtain
a straight line with a slope of ρ and intercept at zero
(figure 3f ). However, when the assumed mean generation
interval is longer than that of the variant (figure 3c), we
over-estimate the slope (and conversely, figure 3i).
6. Implications for intervention strategies
While relative speed δ and strength ρ are useful for character-
izing the spread of the variant in an epidemiological context
with a previously dominant wild-type, the absolute speed rvar
and strength Rvar of the variant determine the spread and
conditions for control of the variant over the long term. In
particular, at any given point in the epidemic, we can
measure the speed of the variant rvar (or infer rvar from rwt

and δ) and ask how much more intervention is required to
control the spread of the variant (and thus also the wild-
type, which is assumed to be easier to control). As a baseline
scenario, we assume rwt ¼ 0 and δ = 0.1 d−1 (and therefore
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rvar ¼ 0:1d�1), in which case additional intervention is required
to reduce rvar below 0 (or, equivalently,Rvar below 1).

We consider two types of intervention: an intervention
of constant strength (figure 4a,c,e), which reduces transmis-
sion by a constant factor θ regardless of age of infection
(Kpost(τ) =Kpre(τ)/θ); and an intervention of constant speed
(figure 4b,d,f), which reduces transmission after infection by
a constant rate ϕ (Kpost(τ) =Kpre(τ)exp(−ϕτ)); both of these
interventions are constant across generation intervals, but
not necessarily across calendar time. In this case, we can
control the spread of the variant when u . Rvar or f . rvar,
respectively [11]. We consider constant-strength and -speed
interventions calibrated to reduce Rvar to 0.9 under the
assumption that the variant generation intervals match
those of the wild-type (figure 4c,d ). While both interven-
tions are equally effective on the strength scale (that is,
Rpost ¼

Ð
KpostðtÞdt ¼ 0:9), they have different dynamical

implications. The constant-strength intervention affects trans-
mission equally throughout the course of infection, whereas
the constant-speed intervention has greater impact on
transmission that occurs later in infection; as a result, the con-
stant-speed intervention reduces the post-intervention mean
generation interval (figure 4b) and leads to (slightly) faster
exponential decay (therefore, lower Rpost).

However, if the variant has longer generation intervals
than the wild-type (figure 4e,f ), then the strength of the
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variant will be higher because we are holding the observed
speed constant (figure 4g). In this case, the same constant-
strength intervention can fail to control the epidemic
(i.e.Rpost . 1; figure 4h) because this intervention reduces the
transmission by a constant amount regardless of age of infec-
tion (figure 4e). On the other hand, the same constant-speed
intervention will prevent a larger proportion of transmission,
leading to lower Rpost (figure 4g), because it is more effective
against late-stage transmission (figure 4f ). The constant-
speed intervention also reduces the mean generation interval
by a larger factor (figure 4f). Conversely, if the variant has
shorter generation intervals than the wild-type (figure 4a,b),
the given constant-strength intervention will be relatively
more effective (figure 4a) because the given constant-speed
intervention prevents less transmission (figure 4b).

The speed-based paradigm gives the same results regard-
ing control but provides additional insight (figure 4f ). The
observed speed of the variant rvar at a given moment is inde-
pendent of our estimates of its mean generation interval.
Likewise, the post-intervention speed of the variant under
the constant-speed intervention is also independent of the
mean generation interval. Therefore, if speed of intervention
is faster than the observed speed of spread (i.e. if f . rvar ),
we can control the epidemic (i.e. Rpost , 0) regardless of
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the underlying generation-interval distribution (see [11] for
mathematical details).

Finally, we synthesize our findings and illustrate the
differences between constant-strength and constant-speed inter-
ventions using epidemic simulations (figure 5). As before, we
consider a scenario in which a new variant is emerging with
known relative speed (d ¼ rvar . 0:1 d�1 ) Rwt . 1) while
the incidence of infections caused by the wild-type is constant
(rwt ¼ 0 d�1 ) Rwt ¼ 1) before interventions are introduced.
The constant-strength intervention then reduces both Rwt

and Rvar by a factor θ beginning on day 30, whereas
the constant-speed intervention isolates individuals infected
with both the wild-type and the variant at a constant hazard ϕ
after day 30. If the variant has a longer mean generation
interval, this particular constant-strength intervention fails to
suppress the spread of the variant (figure 5a) because the
longer generations imply a higher initial Rwt, and thus
a stronger intervention is required to reduce Rwt below 1
(figure 5b). Conversely, if the variant has a shorter mean gener-
ation interval, its initial Rwt will be lower, and therefore the
same constant-strength interventionwill bemore effective, lead-
ing to lower post-intervention Rwt (figure 5b). The relative
strength remains constant under constant-strength intervention
(figure 5b), but the relative speed changes (figure 5c) as
discussed earlier in §4—in this case, the longer mean genera-
tion interval variant increases the relative speed when the
intervention is introduced.

In contrast, epidemic trajectories under the constant-speed
intervention behave identically regardless of the mean
generation interval of the variant (figure 5d ). As shown in
figure 4e, a constant-speed intervention leads to greater
reduction in RvarðtÞ when the mean generation interval of
the variant is longer (figure 5e)—this implies a change in rela-
tive strength ρ because the resulting post-intervention strength
under a constant-speed intervention is sensitive to the gener-
ation-interval distribution as shown in figure 4. In this case,
the relative speed of the variant remains unaffected by the con-
stant-speed intervention because the epidemic speed of the
wild-type rwt and the variant rvar are both reduced by equal
amounts ϕ, resulting in the post-intervention epidemic speed
of rwt � f and rvar � f, respectively.
7. Discussion
We explored how the generation-interval distribution shapes
the link between relative strength and speed. While the role
of generation-interval distributions in linking epidemic
strength and speed is well established, this framework also
provides insight into an under-appreciated phenomenon:
the relative strength and speed of new variants also depend
on both current epidemic conditions and the nature of pro-
posed control measures (e.g. strength- or speed-like) to be
introduced. For example, under a constant-strength interven-
tion that reduces the transmission rate of the wild-type and a
variant by the same amount (and therefore keeps the relative
strength constant), the relative speed of the variant depends
on the epidemic growth rate of the wild-type strain. Our
results challenge the assumption commonly made when
characterizing changes in the proportion of new variants
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that the relative speed of new variants remains constant over
time.

Differences in the generation-interval distributions further
exaggerate this effect. Therefore, neglectingpotential differences
in the mean generation intervals between the variant and
the wild-type can bias estimates of the variant’s transmis-
sion advantage. These biases may be assessed by considering
whether estimates of relative strength appear to vary systemati-
cally with the direction of changes in the incidence of infections
caused by the variant. Differences in generation intervals can
also lead todifferent conclusions about the effectiveness of inter-
ventions. If the variant has longer generation intervals than
the wild-type, speed-like interventions will be relatively more
effective than naive estimates would suggest. Conversely,
strength-like intervention will be relatively more effective if
the variant has shorter generation intervals.

This perspective sheds light on earlier estimates of relative
strength of the Alpha variant. Mathematical analyses typically
reported greater than a 1.4-fold increase in reproduction
number for theAlpha variant (ρ > 1.4), whereas an independent
analysis of secondary attack rates from contact tracing data
suggested a somewhat smaller 1.25- to 1.4-fold increase [65].
As shown in [2,6], propagating uncertainty in generation inter-
val estimates (and, in particular, assuming shorter generation
intervals) partially explains these differences: for example, if
we consider a generation-interval distribution estimate with a
short mean and wide variability from Tianjin, China
(�Gwt ¼ �Gvar ¼ 2:57 d and κ = 1 [66]), we obtain ρ = 1.26 (from
δ = 0.1 d−1 and rwt ¼ 0d�1). Although these estimates are
more consistentwith theattack rate analysis [65], theyarenecess-
arily more accurate. While individual-level data based on
contact tracing can provide amore reliable source of information
about the transmissibility and time scale of transmission in
some cases, they can also be biased towards particular types of
contacts—for example, household contacts are more likely
to be identified—which could also affect the estimate of ρ.
Instead, this calculation simply highlights the importance
of carefully considering generation-interval distributions in
assessing the relative strength and speed of SARS-CoV-2
variants.We relied on parameter estimates for theAlphavariant
throughout our analysis, but our qualitative conclusions can
be applied to studying other SARS-CoV-2 variants, including
the Delta and Omicron variants.

Other studies have also used generation-interval-based
arguments to explore changes in estimates of relative strength.
For example, Volz et al. estimated that the relative strength of
the Alpha variant declined in England between December
2020 and January 2021 [6]. They hypothesized that a shorter
generation interval of the Alpha variant could explain this
phenomenon by reducing the Alpha variant’s relative
speed (and therefore its relative strength) under intervention
measures. However, our analysis suggests that a shorter gener-
ation interval of a new variant cannot explain the decline in
relative strength. Under a constant-strength intervention, the
relative speed decreases (as predicted by [6]) but the relative
strength remains constant (figure 5b). Under a constant-speed
intervention, the relative speed remains constant (figure 5f ),
but the relative strength increases because the intervention
will have less effect on the variant with a shorter generation
interval (figure 5e).

We have focused on the differences in the mean gener-
ation interval, but differences in the amount of variability,
characterized by the squared coefficient of variation κ,
could also have important, but different implications [67].
For example, if two variants have identical reproduction
numbers, the variant with a wider generation-interval distri-
bution will always out-compete the other variant (except
when both variants have R ¼ 1) because a variant with a
wider generation-interval distribution can take advantage
of more early transmission during the growth phase and
more late transmission during the decay phase.

We further used simulations to show how misspecification
of generation-interval distributions can bias the inference
of relative strength from incidence data. In doing so, we
assumed that the intervention would reduce transmission
caused by the variant and the wild-type by equal amounts,
thereby preserving the relative strength over time; however,
this assumption only holds under strength-like interventions,
which are insensitive to time since infection, but not under
speed-like interventions. As we demonstrated, if the variant
and the wild-type have different generation intervals, speed-
like interventions such as contact tracing can affect them differ-
ently, causing their relative strength to change over time (but
not necessarily their relative speed).

We mostly considered idealized interventions of constant
strength or constant speed. Real interventions are likely more
complex. Interventions that reduce contact rates, such as
social distancing measures, are generally strength-like, but
they can also elicit awareness-based behavioural responses
that are speed-like—for example, infected individuals may
self-isolate faster after symptom onset. On the other hand,
the hazard of isolation-based interventions (and thus, speed-
like), such as contact tracing, can vary over the course of
infection depending on delays in tracing infected individuals
[54,68,69]. Their effectiveness can further depend on the ‘cover-
age’ of isolation, which is strength-like—for example, there
may be a group of individuals that cannot be isolated by
certain interventions due to asymptomaticity or the lack
of participation in the contact tracing programme. Further,
some interventions, such as vaccination, can also have dispro-
portionate different effects on different variants—another
complication not considered in our analysis.

Analyses of SARS-CoV-2 dynamics have primarily relied
on the constant-strength framework [38,52,70], even when
modelling speed-like interventions such as self-isolation
[50,71]. While the constant-strength framework provides a
convenient tool for modelling and understanding epidemic
dynamics, we encourage researchers to consider both
strength- and speed-based perspectives, as they can lead to
different conclusions.

This study has practical implications for analysing the
epidemiological dynamics of new variants. First, models
that assume time-invariant relative speed, such as the stan-
dard logistic growth model, should be used with care—it is
important to remember that the relative speed is expected
to change with epidemiological conditions. Early in the
spread of an emerging variant, it is likely more convenient
to fix the relative speed, given that speed can be directly
observed. However, epidemiological conditions will change
over time in response to spreading new variants—in the con-
text of SARS-CoV-2 infections, most of these responses (e.g.
vaccination and social distancing) have been strength-like,
causing relative speed to change and invalidating this
assumption. As more information about the transmission
and immunity profiles of the new variant becomes available,
we advise instead fixing the relative strength and inferring
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the speed, as this assumption better matches biological mech-
anisms for the variants’ higher strength (e.g. higher rates of
transmission and immune evasion). However, as interven-
tions can often have both strength- and speed-like aspects,
both the relative strength and speed can vary at the same
time. Second, the absolute strength and speed should not
be neglected in favour of relative values. While the relative
strength and speed are useful for describing the spread of
new variants, the absolute values determine their spread
and control. Finally, uncertainty in generation intervals
should be carefully considered.

While detailed contact tracing data can help narrow down
uncertainties in the generation-interval distributions, there
are additional complexities to comparing generation-interval
estimates of different variants. The generation intervals can
be measured in two different ways: backward and forward
[46]. The backward distribution starts from the cohort of
infectees who were infected at the same time and looks at
when their infectors were infected. The backward distri-
bution is subject to dynamical biases because we are more
likely to observe recent infections (and therefore shorter gen-
eration intervals) when the epidemic is growing. On the other
hand, the forward distribution starts from the cohort of infec-
tors who were infected at the same time and looks at when
they transmitted infections. While the forward distribution
is more stable, changes in epidemic dynamics due to inter-
vention measures and susceptible depletions can affect the
shape of either distribution [20,49]. For example, comparing
generation-interval estimates from different intervention
periods will necessarily bias the true differences in the gener-
ation-interval distributions of different variants.

Even though SARS-CoV-2 has been spreading for more
than a year, there is still considerable uncertainty about its
generation intervals. Several studies have tried to estimate
the generation-interval distribution, with means ranging
between 3 and 6 d and squared coefficients of variation ran-
ging between 0.1 and 1 [54,62,66,72]. However, these
estimates are derived from serial intervals (i.e. time between
symptom onset of the infector and the infectee [16]), which
are subject to dynamical biases [21] and fail to account for
asymptomatic transmission [32]. A recent study has further
suggested that the generation intervals of the original
SARS-CoV-2 strain may be considerably longer than pre-
viously thought [73], adding further uncertainty. A few
studies have tried to compare generation- and serial-interval
distributions of new SARS-CoV-2 variants with those of the
original wild-type strain [74,75]; these comparisons are inher-
ently difficult due to temporal changes in generation- and
serial-interval distributions caused by dynamical and inter-
vention effects [20,21]. Future studies should prioritize
detailed assessment of the generation intervals of SARS-
CoV-2 and widespread variants, as well as consider how
uncertainty in generational intervals might bias conclusions
[20,38,53]. Combining sequencing or viral load trajectory
data can also help narrow estimates of generation- and
serial-interval distributions as well as time-varying reproduc-
tion numbers even when contact tracing data are limited
[76,77].

The spread of new SARS-CoV-2 variants and the
replacement of previously dominant lineages represent
ongoing challenges for controlling the SARS-CoV-2 pan-
demic [36,78–80]. By explicitly considering epidemiological
context and generation-interval differences together, we
have shown that improving estimates of the relative duration
of infectiousness at the individual scale may help guide more
effective interventions. Specifically, speed-like interventions,
such as contact tracing, will be relatively more effective if var-
iants have longer generation intervals. Most intervention
strategies throughout the current pandemic have focused on
strength-like interventions [50], such as lock-downs, partly
because pre-symptomatic transmission of SARS-CoV-2 has
limited the effectiveness of contact tracing efforts [81]. How-
ever, given the possibility that new variants can have
different infection characteristics, future studies should con-
sider whether their transmission dynamics also differ (e.g.
the amount of pre-symptomatic transmission) and evaluate
intervention strategies accordingly.
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