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Soil and landscape factors influence 
geospatial variation in maize grain 
zinc concentration in Malawi
L. Botoman1,2,13, C. Chagumaira1,3,4,5,13, A. W. Mossa3,13, T. Amede6, E. L. Ander7, E. H. Bailey3, 
J. G. Chimungu1, S. Gameda8, D. Gashu9, S. M. Haefele5, E. J. M. Joy10, D. B. Kumssa3, 
I. S. Ligowe1,2, S. P. McGrath5, A. E. Milne5, M. Munthali2, E. Towett11, M. G. Walsh12, 
L. Wilson3, S. D. Young3, M. R. Broadley3,5,13, R. M. Lark3,4,13 & P. C. Nalivata1,13*

Dietary zinc (Zn) deficiency is widespread globally, and in particular among people in sub-Saharan 
Africa (SSA). In Malawi, dietary sources of Zn are dominated by maize and spatially dependent 
variation in grain Zn concentration, which will affect dietary Zn intake, has been reported at distances 
of up to ~ 100 km. The aim of this study was to identify potential soil properties and environmental 
covariates which might explain this longer-range spatial variation in maize grain Zn concentration. 
Data for maize grain Zn concentrations, soil properties, and environmental covariates were obtained 
from a spatially representative survey in Malawi (n = 1600 locations). Labile and non-labile soil Zn 
forms were determined using isotopic dilution methods, alongside conventional agronomic soil 
analyses. Soil properties and environmental covariates as potential predictors of the concentration 
of Zn in maize grain were tested using a priori expert rankings and false discovery rate (FDR) controls 
within the linear mixed model (LMM) framework that informed the original survey design. Mean 
and median grain Zn concentrations were 21.8 and 21.5 mg  kg−1, respectively (standard deviation 
4.5; range 10.0–48.1). A LMM for grain Zn concentration was constructed for which the independent 
variables: soil  pH(water), isotopically exchangeable Zn  (ZnE), and diethylenetriaminepentaacetic acid 
(DTPA) extractable Zn  (ZnDTPA) had predictive value (p < 0.01 in all cases, with FDR controlled at < 0.05). 
Downscaled mean annual temperature also explained a proportion of the spatial variation in grain 
Zn concentration. Evidence for spatially dependent variation in maize grain Zn concentrations 
in Malawi is robust within the LMM framework used in this study, at distances of up to ~ 100 km. 
Spatial predictions from this LMM provide a basis for further investigation of variations in the 
contribution of staple foods to Zn nutrition, and where interventions to increase dietary Zn intake 
(e.g. biofortification) might be most effective. Other soil and landscape factors influencing spatially 
dependent variation in maize grain Zn concentration, along with factors operating over shorter 
distances such as choice of crop variety and agronomic practices, require further exploration beyond 
the scope of the design of this survey.

Zinc (Zn) is an essential micronutrient with critical roles in human  health1. Zinc deficiency among human 
populations is  widespread2,3. In sub-Saharan Africa (SSA), Zn deficiency is likely to exceed 40% of the total 
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population in many countries based on dietary Zn  supply3. In Malawi, an estimated Zn deficiency prevalence rate 
of 62% was  reported4, based on a national survey of serum Zn concentration conducted in 2015/16; this is likely 
to be higher in rural  areas5. In Ethiopia, 72% of the population was reported to be Zn  deficient6, also based on a 
national survey of serum Zn concentrations in 2015/16, also with a greater prevalence of deficiency in rural areas.

Many people in SSA rely on locally produced cereals for most of their dietary Zn supply and have limited 
access to Zn-rich plant and animal source  foods3,7. The grains of most cereals are a poor source of dietary Zn, 
which is compounded by high contents of anti-nutritional compounds such as phytates (inositol phosphate 
compounds) which inhibit the absorption of Zn and other micronutrients in the human  gut7.

Recent evidence has emerged of geospatial variation in grain Zn concentration in staple cereal crops in SSA, 
linked to soil properties and environmental covariates. This variation is likely to be of dietary significance in 
the context of dietary Zn supply, especially for rural populations. For example, in Malawi, the grain Zn concen-
tration of maize grown on Vertisols was ~ 30% larger than the grain concentration from other  soils8. Among 
smallholder communities farming on these Vertisols, a 35% greater dietary Zn supply was seen compared to 
other soils in Malawi, based on the analyses of composite  diets5. Geospatial variation in Zn concentrations of 
staple crop grains has also been observed in Uganda, where smaller grain Zn concentrations were observed in 
sandier  soils9. Evidence that soil properties and environmental covariates influence geospatial variation in the 
Zn concentration of maize grain has recently been reported in both Ethiopia and  Malawi10. For example, soil pH 
and soil organic carbon (SOC) were predictive for maize grain Zn concentration (positive relationships) in both 
countries. Mean annual temperature and a topographic index—which indicates the potential water content of 
soils arising from drainage—were positively related to grain Zn concentration for maize in Malawi. The value 
of the variogram increased at distances up to 100 km in Malawi, providing robust evidence that soil properties 
and landscape factors can influence maize grain Zn concentration at multiple  scales10.

The aim of this study was to gain a greater understanding of soil properties and environmental covariates 
influencing grain Zn concentration. The focus was on maize grain and co-located soils, sampled at locations that 
provide a wide spatial coverage of the cultivated soils of  Malawi10. In addition to general soil properties such as 
soil pH and SOC, this study sought to characterise Zn in soils in greater detail. Thus, ‘geochemically-reactive’ 
(labile) fractions of Zn were measured using stable isotopes of Zn, alongside a broader suite of standard soil 
properties including ‘total’ (aqua regia) and diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. Indices 
which characterise labile Zn in soils include the solution ⇌ solid phase distribution coefficient of an enriched 
isotopic spike  (ZnKd), which indicates Zn mobility in soil, and the isotopically exchangeable Zn fraction  (ZnE), 
which is considered to be a more accurate estimate of the potentially accessible pool to  plants11–13. In a recent 
study in Amhara Region of Ethiopia, a positive relationship between  ZnE and soil pH was  reported13, however, it 
is not yet known how this relationship might influence grain Zn concentration. For landscape factors, downscaled 
precipitation and temperature, terrain index (TIM), slope, and vegetation index were considered. An explicit, 
hypothesis testing approach was adopted, using a method to maximise power to detect significant predictors, 
based on expert ranking of the soil and environmental factors considered most likely, a priori, to influence grain 
Zn concentration and using false discovery rate (FDR) control. A similar approach was used previously to identify 
factors influencing grain selenium (Se) concentration in Amhara Region,  Ethiopia14. More information on the 
procedure is provided in the “Materials and Methods” section.

Results
Exploratory analyses. The summary statistics for maize grain Zn concentration, together with residuals 
from model fitting and cross-validation errors (see Methods) are shown in Table 1.

The summary statistics for soil properties (Table 2) indicated that most of these were markedly skewed, 
except for  ZnKd and pH, which are both reported on logarithmic scales. Skewness coefficients for the other vari-
ables ranged from − 0.26 to 18.39, and the octile skewness ranged from − 0.10 to 9.52. All these variables were 
transformed to their natural logarithms prior to further analysis, as a result of which the conventional skew-
ness coefficient and octile skewness were all restricted to the intervals [− 1,1] and [− 0.2,0.2], respectively. The 
summary statistics and exploratory plots for the residuals from an exploratory fit of the saturated models (all 
soil properties or all environmental covariates as fixed effects) indicated that an assumption of normality was 
plausible without any transformation of the data on grain Zn concentration (Supplementary Figures S1 and S2).

Table 1.  Summary statistics of Zn concentration in grain (n = 1600), of residuals from fitted exploratory 
saturated models and cross-validation errors for the E-BLUP with easting and downscales mean annual 
temperature as fixed effects.

Concentration of Zn in maize grain 
mg  kg−1

Residuals from model, soil properties as 
covariates

Residuals from model, environmental 
covariates Cross-validation errors

Mean 21.8 0.00 0.00 0.00

Median 21.5  − 0.31  − 0.24  − 0.28

Minimum 10.0  − 12.19  − 11.84  − 10.91

Maximum 48.1 27.51 25.34 25.86

Standard deviation 4.5 4.21 4.11 3.98

Skewness 0.6 0.78 0.61 0.68

Octile skewness 0.05 0.07 0.07 0.09
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Ranking of predictor variables as predictors of Zn concentration in grain. As described in the 
“Materials and Methods” section, the identification of variables to include as fixed effects (covariates) in statisti-
cal models for the target variable of interest, was done by a sequential set of hypothesis tests about the candidate 
variables in turn, with control of the False Discovery Rate (FDR) to allow for the fact that this process involves 
testing of multiple hypotheses. To maintain the power with which valid predictors are detected, a method called 
α-investment was used. This method is most effective when the tests are conducted in a sequence with the pre-
dictors most likely to be related to the target variable considered first. Before examination of the data a ranking 
of the soil properties and of the environmental covariates was elicited from an expert panel, and the rankings 
are presented in Table 3, with the first-ranked property the one thought most likely to be predictive of Zn con-
centration in grain. The first-ranked soil property, Zn extracted in calcium nitrate, is interpreted as a measure of 
soluble Zn and is an intensity variable, related to the concentration of Zn in the soil solution. Such Zn could be 
expected to be readily available to the growing crop. The next variable, pH, was included because of its potential 
effects on the uptake of Zn by the plant.

The isotopically exchangeable Zn  (ZnE) and DTPA-extracted Zn  (ZnDTPA) are capacity measures reflecting 
the reservoir of Zn in the soil available to re-supply that which has been removed from the soil  solution13. The 
former variable was ranked first because DTPA is used at a small concentration (0.005 M) which may not be a 
fully efficacious extractant. The ‘total’ Zn extracted by aqua regia  (ZnAR) was ranked lower because it may include 
soil Zn which is unavailable to plants. Soil organic carbon (SOC) was included after  ZnDTPA and ahead of  ZnAR. 
This was based on evidence for larger concentrations of Zn in maize grain growing on soils with larger organic 
 inputs15, potentially through effects on Zn availability and as a source of Zn. The effective cation exchange capac-
ity (eCEC), and the sum of oxalate-extractable Fe, Mn and Al oxides were then included; these properties of the 
soil may influence the overall capacity to retain cations such as Zn. The solid ⇌ solution distribution coefficient 
 (ZnKd), which is a measure of how strongly the soil adsorbs Zn, was included last.

Table 2.  Summary statistics of soil properties (n = 1600) proposed as predictors of Zn concentration in grain. 
*The subscripts AR, S, DTPA, Kd and E denote the total (aqua regia extractable), soluble (calcium nitrate 
extractable), potentially available (DTPA extractable), the solid-solution distribution coefficient, and the 
isotopically exchangeable (isotopic dilution) fractions. SOC denotes soil organic carbon. eCEC denotes the 
effective cation exchange capacity. Oxalates denotes the sum of oxalate-extractable Fe, Al and Mn oxides.

Variable

Original variables Loge-transformed

TransformedUnits Mean Median Standard deviation Skew Octile skew Mean Median Standard deviation Skew Octile skew

ZnAR* (mg  kg−1) 39.60 32.9 38.79 12.11 0.27 3.45 3.49 0.66 0.02  − 0.08 Yes

ZnS (mg  kg−1) 0.22 0.05 1.39 18.39 0.74  − 2.78  − 2.95  − 1.29 0.53 0.19 Yes

ZnDTPA (mg  kg−1) 2.12 0.86 5.29 9.52 9.52  − 0.03  − 0.15 1.09 0.68 0.13 Yes

ZnE (mg  kg−1) 7.13 4.06 11.06 7.36 0.56 1.47 1.40 0.94 0.17 0.10 Yes

ZnKd Log(L  kg−1) 2.57 2.64 0.77  − 0.26  − 0.10 No

pH 6.32 6.25 0.66 0.66 0.13 No

SOC (%) 1.11 0.95 0.64 1.76 0.31  − 0.04  − 0.05 0.52 0.17 0.02 Yes

Oxalates (mg  kg−1) 3683 3186 2339 2.78 0.24 8.06 8.07 0.54 0.23  − 0.06 Yes

eCEC cmolc  kg−1 7.26 5.67 5.80 2.11 0.35 1.69 1.74 0.81 –0.84  − 0.07 Yes

Table 3.  Sequence of predictors for grain Zn concentration (both soil properties and environmental 
covariates) for testing with the α-investment. *The subscripts AR, S, DTPA, Kd and E denote the total (aqua 
regia extractable), soluble (calcium nitrate extractable), potentially available (DTPA extractable), the solid-
solution distribution coefficient, and the isotopically exchangeable (isotopic dilution) fractions, respectively. 
SOC denotes soil organic carbon. eCEC denotes effective cation exchange capacity. Oxalates denotes the sum 
of oxalate-extractable Fe, Al and Mn oxides.

Order Soil property Order Environmental covariate

1 ZnS* 1 Downscaled mean annual precipitation

2 pH 2 Topographic index

3 ZnE 3 Enhanced vegetation index

4 ZnDTPA 4 Slope

5 SOC 5 Downscaled mean annual temperature

6 ZnAR

7 eCEC

8 Oxalates

9 ZnKd
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The first-ranked environmental covariate was down-scaled precipitation, reflecting conditions for plant 
growth and which also influence soil climate and processes such as immobilisation. The topographic index is 
informative about the distribution of water in the landscape and so the local soil climate and water supply to the 
crop, but also relates to position in the soil catena moving from the erosion on interfluves to the accumulating 
positions at the topographical bottom. The remotely sensed vegetation index was then included, as a direct meas-
ure of the environment for plant growth as influenced by water supply and soil conditions. Slope was included 
as an additional variable reflecting landscape position. Downscaled mean annual temperature was included last 
as a potential proxy variable for altitude and associated environmental factors.

Model-fitting. The sequential fitting of models with predictors ordered as in Table 3 resulted in the reten-
tion of the 2nd- 3rd- and 4th-ranked soil properties, pH,  ZnE and  ZnDTPA as predictors for grain Zn concentra-
tion. The corresponding p-values and the corresponding thresholds under FDR control with α-investment are 
shown in Fig. 1a,b. Table 4 shows the estimated parameters for this model, relative to the null model with east-
ings as the only fixed effect. Figure 2 shows the variogram functions for the null model (eastings the only fixed 
effect) and for the models in which the selected soil predictors are added in succession. The variogram function 
summarises the variance parameters of the random effects in the LMM. The variogram is half the expected 
squared difference between two observations of the variable as a function of the distance between them. The 
variance of the iid random effect (the nugget variance) is a constant component of this value, and there is an 
additional contribution from the correlated random effect which depends on distance in a way determined by 
the f and k parameters. The sum of variances of the iid and correlated random effects is the upper bound of the 
variogram and gives the variance in the dependent variable not accounted for by the fixed effects. The reduction 
in this variance achieved by adding the soil properties is a small proportion (0.034) of the value of the variance 
for the model with eastings only, this is the quantity reported as the approximate adjusted  R2 value for the model 
in Table 4  R2

adj, equal to the difference of the sums of the two variance components for the null model and the 
model with predictors included expressed as a proportion of the sum of variance component of the null model. 
However, note that most of the variance in both models comes from the iid component, τ2. This is the so-called 

Figure 1.  The p-values (open circles) for successive tests on predictors added to the model for grain Zn from 
(a) soil properties and (b) environmental covariates. Tests are on addition of variables in the order given in 
Table 1. The solid circles are the threshold for rejection of each null hypothesis under the FDR control.
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nugget variance, partially attributable to sources of variation spatially correlated over very short distances and 
also potential measurement errors (which are likely to be small). Most of the random variation in grain Zn 
is therefore fine-scale, representing factors varying over short distances and Fig. 2 shows that this quantity is 
unaffected by the inclusion of soil properties as predictors. A larger proportion of the spatially correlated vari-
ation seen in the variable,  R2

adj,c (0.069), is accounted for by the inclusion of the soil properties as fixed effects, 
although much remains unexplained. The quantity  R2

adj,c is the difference between the variance of the correlated 
random effects, σ2, for the null model and the model with predictors included, expressed as a proportion of the 
correlated variance for the null model. The effect of this small, though statistically significant, success of the 
model in accounting for variation in Zn grain concentration is seen in the somewhat smaller upper bound on 
the variograms for the models with the soil properties included (Fig. 2).

Soil pH has a positive coefficient, indicating that, overall, the less acid soils have a larger concentration of Zn 
in grain. There is also a positive coefficient for  ZnDPTA and a smaller but negative one for  ZnE. The mechanistic 

Table 4.  Fitted models for soil properties and maize grain Zn concentration in Malawi. *β0–β4, fixed effects 
coefficients β0 is a constant and βi is the coefficient for the ith random effect;  R2

adj, the difference between 
the sum of the variances of the random effects for the null model and the proposed model expressed as a 
proportion of the sum for the null model;  R2

adj,c, the difference between the variance of the correlated random 
effect (σ22,variance of the iid random effect (nugget variance); σ2, variance of the correlated random effect; ϕ, 
distance parameter of the Matérn correlation function. **The subscripts E and DTPA denote the isotopically 
exchangeable (isotopic dilution), and potentially available (DTPA extractable) fraction, respectively.

Predictand

Predictor and coefficient

R2
adj R 2adj,c κ τ2 σ2 ϕ*β0 β1 β2 β3 β4

Maize Zn Easting pH **ZnE ZnDTPA

Null model 9.884 0.019 1.0 14.995 3.277 21.123

8.420 0.018 0.4027  − 0.0736 0.6007 0.0342 0.069 1.0 14.596 3.051 20.867

Figure 2.  Variogram functions for the null model (eastings only) for maize grain zinc concentration, and for 
successive models with selected soil properties added as predictors.
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interpretation of these coefficients must be approached with caution because they partly reflect the mutual 
correlation among the fixed effect variables, and so are conditional on the other variables present in the model.

The only environmental covariate selected by the FDR procedure is the last-ranked one, a positive coefficient 
for mean annual temperature. Table 5 shows the estimated parameters for this model, relative to the null model 
with eastings as the only fixed effect, and Fig. 3 shows the variogram functions. As with soil properties, the over-
all proportion of the random variation in grain Zn accounted for by the fixed effects is small (0.093), but again 
a much larger proportion of the spatially correlated variance is reduced by inclusion of the covariate (0.523).

The summary statistics for the cross-validation errors are in Table 1 and their exploratory plots are in Fig-
ure S3. The assumption of normal errors appears plausible. The mean standardised squared prediction error is 1, 
but the median is 0.37. This is smaller than expected; the 95% confidence interval for the median under a valid 
model is [0.40, 0.51], and the kriging variances may be somewhat large, possibly due to outlying observations in 
the data, so inferences will be conservative in the sense that uncertainty is slightly overestimated.

Table 5.  Fitted models for environmental covariates and maize grain Zn concentration in Malawi. *β0–β4, 
fixed effects coefficients β0 is a constant and βi is the coefficient for the ith random effect;  R2

adj, the difference 
between the sum of the variances of the random effects for the null model and the proposed model expressed 
as a proportion of the sum for the null model;  R2

adj,c, the difference between the variance of the correlated 
random effect (σ2) for the null model and the proposed model expressed as a proportion of that variance for 
the null model; κ, smoothness parameter of the Matérn correlation function; τ2, variance of the iid random 
effect (nugget variance); σ2, variance of the correlated random effect; ϕ, distance parameter of the Matérn 
correlation function.

Predictand

Predictor and Coefficient

R2
adj R2

adj,c κ κ τ2 σ2 ϕ*β0 β1 β2

Maize Zn Easting Mean Annual Temperature

Null model 9.884 0.019 1.0 14.995 3.277 21.123

 − 0.222 0.010 0.073 0.093 0.523 1.0 15.008 1.564 15.592

Figure 3.  Variogram functions for the null model (eastings only) for maize grain zinc concentration, and for 
successive models with selected environmental covariates added as predictors.
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Spatial mapping. Spatial patterns of grain Zn concentration show larger values in the Shire valley in the 
south, and along the margins of Lake Malawi (Fig. 4a). These trends in grain Zn at national scale should be inter-
preted with caution over small regions where the covariate changes markedly. The prediction error variances in 
Fig. 4b show the variation in uncertainty over the country. For example, the concentrations are smaller around 
the Mulanje Massif in the south east of the country and the Nyika Plateau in the North. Whilst this may reflect 
the influence of the mean annual temperature covariate, the kriging variances are greater over the Mulanje Mas-
sif and the Nyika Plateau.

Figure 5a shows the probability that Zn grain concentration falls below a threshold of 18.6 mg  kg−1. This 
threshold was defined as supplying a proportion of the Zn dietary Estimated Average Requirement (EAR) that is 
equivalent to the proportion of 50% dietary energy intake from maize in a typical diet. In Fig. 5b, these values are 
presented as ‘calibrated phrases’ to communicate probabilistic information about uncertain  variables6,16–18. Over 
much of the central, northern and more western parts of the country the probability is in the interval 33–66%, 
interpreted as ‘about as likely as not’. In these regions further measurements would be needed before deciding 
whether interventions are needed, for example agronomic biofortification by fertiliser  application19, because the 
dietary supply of Zn from the locally-grown staple crop is small.

Discussion
Based on a median grain Zn concentration of 21.5 mg   kg−1 and a reference daily maize intake of 343 g 
 capita−1  day−1 from food balance  sheets20, the typical dietary intake of Zn from maize alone in Malawi is 7.4 mg 
capita  d−1. This intake represents 72% of an EAR of 10.3 mg capita  d−1 for Zn in adult woman of 18–24 years. 
However, the spatial structure observed in grain Zn concentrations from the survey, and their range from 
10–48 mg  kg−1 indicates that the dietary intake of Zn from the locally-produced staple maize crop could vary 
markedly for an individual, 3.4–16.5 mg Zn capita  d−1 from maize, or 34–160% of the EAR for Zn.. This observa-
tion highlights the importance of the effect of location on the likely prevalence of Zn deficiency among popula-
tions, especially where there is a reliance on a single dietary staple  crop10. From a previous dietary recall  survey7, 
median Zn intake per capita was previously estimated to be 8.5 mg  d−1 and with a median intake per Adult Male 
Equivalent (AME) of 10.0 mg  d−1. Lower intakes are likely in rural areas and among poorer households who 
have more limited access to more Zn-rich food sources such as meat, fish, and  vegetables7. These populations 
are also less likely to benefit from current large-scale food fortification policies, as they are likely to consume 
a smaller proportion of fortified  foods21. From food supply data at a national level, it was previously estimated 
that Malawi has a dietary Zn supply of < 14 mg  capita−1  day−1, compared with a supply of ~ 20 mg  capita−1  day−1 
in many higher-income  countries22.

Geographical differences in Zn intake have been reported previously in Malawi, based on (1) direct compo-
sitional analysis of dietary intakes in two different  locations5, and (2) from national-scale dietary surveys linked 

Figure 4.  Grain Zn concentration in maize grain across Malawi. (a) Empirical Best Linear Unbiased 
Predictions, and (b) the prediction error variance (expected squared error) of the E-BLUP.
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to food composition data based on convenience  sampling7. The current spatially representative survey of maize 
grain Zn concentration is consistent with data from both of those earlier studies. Siyame et al.5 reported a median 
Zn intake among adult women of 4.8 (1st and 3rd quartiles 3.5, 6.4; n = 55) and 6.4 (1st and 3rd quartiles, 3.5, 
6.4; n = 58) mg  capita−1  d−1 in Zombwe and Mikalango Extension Planning Areas (EPAs), respectively. Zombwe 
EPA is in the Northern region (within a light green area in Fig. 4, representing low grain Zn concentrations), 
compared with Mikalango EPA which is in the Southern region (a dark green area in Fig. 4, representing high 
grain Zn concentrations). Siyame et al. noted that these differences corresponded with a reported ~ 30% greater 
grain Zn concentration in maize growing on Vertisol soil types of higher pH in Mikalango EPA, than maize 
growing on the more acidic soils typical of Zombwe EPA, as reported earlier by Chilimba et al.8. Joy et al.7 also 
used data from Chilimba et al. together with new food composition data obtained by convenience  sampling23. 
Among 179 EPAs across the country, median Zn supply per AME ranged from 4.4 mg  d−1 in Kalumba EPA (n = 16 
households) to 15.8 mg  d−1 in Masambanjati EPA (n = 32). Again, these contrasts are consistent with the current 
study, whereby Kalumba EPA is in the Central region, and falls within an area shaded lighter green (maize grain 
Zn concentration of 13.1–21.4 mg  kg−1), and Masambanjati EPA which is in the Southern region, and falls within 
an area shaded darker green (maize grain Zn concentration of 21.5–24.2 mg  kg−1).

The predictive value of soil factors for maize grain Zn concentration was significant, albeit the three factors 
reported here (pH, isotopically-exchangeable Zn, DTPA-extractable Zn) explained only a small proportion of 
the random spatial effects (adjusted R2 = 0.034) within the overall model, once the fixed spatial trend effect had 
been accounted for. A positive relationship between soil pH and maize grain Zn concentration is consistent 
with contrasts reported between soil  types5,8,23, and with trends reported for maize grain Zn concentration in 
Ethiopia and  Malawi10. Furthermore, increasing soil pH has been shown to increase the pool of isotopically 
exchangeable Zn in soils, and therefore its potential plant  availability13. In this study, the isotopically exchange-
able Zn fraction had significant predictive power for maize grain Zn concentration, as did DTPA-extractable 
Zn (a more conventional measure of plant Zn availability in soils), even after controlling for the effects of soil 
pH using FDR adjustments.

Relationships between SOC and grain Zn concentration were not observed in this current analysis. In a previ-
ous study using these data, in which soil pH and SOC were the only two soil factors included in the analysis, a 
significant but weak positive correlation was observed between SOC and maize grain Zn concentration in both 
Ethiopia and  Malawi13. That previous report was consistent with survey-based observations that the preferential 
use of locally sourced organic materials by smallholder farmers can improve grain Zn concentrations in maize 
(in  Zimbabwe15) and wheat  (Ethiopia24) cropping systems. A lack of association between SOC and maize grain 
Zn concentration in this analysis should be treated with caution. Whilst the SOC effect was > 0.05, it is pos-
sible that the predictors included previously in the analysis are correlated with SOC, and so act as a proxy. For 
example, DTPA-extractable Zn and SOC were shown to be correlated in the studies of both Manzeke et al.15 
and Mossa et al.13.

Figure 5.  Probability that the concentration of Zn in maize grain across Malawi is < 18.6 mg  kg−1 based on (a) 
numerical scale, (b) expressed according to ‘calibrated phrases’.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7986  | https://doi.org/10.1038/s41598-022-12014-w

www.nature.com/scientificreports/

The positive relationship between mean annual temperature and grain Zn concentration had the largest 
predictive power of all the soil properties and environmental covariates tested in this study. However, this factor 
still only accounted for a relatively small proportion of the variation in grain Zn concentration due to random 
spatial effects (adjusted R2 = 0.093), once the fixed spatial trend effect had been accounted for within the overall 
model. The reason why a greater mean annual temperature leads to increased maize grain Zn concentration 
may be due to smaller grains and greater transpiration occurring under warmer conditions. This observation 
could be used to support the design of future surveys, which might be able to incorporate further information 
on temperature and other climate-related and spatially correlated landscape factors.

Strengths of the current study include the use of a formal hypothesis testing framework and FDR control 
based on expert ranking of potential soil properties and environmental covariates which influence maize grain 
Zn concentration. Such a robust statistical approach is well-suited to this type of survey in which the sam-
pling frame was conditioned to maximise the spatial coverage of a geographical area. Using this approach, we 
have identified soil properties (pH, isotopically exchangeable Zn, DTPA-extractable Zn) and an environmental 
covariate (mean annual temperature) that explain some of the spatially correlated variation in maize grain Zn 
concentration. This study was not designed to quantify the effects of how crop variety (Genotype, G) or farmer 
practices (Management, M) will influence grain Zn concentrations. Genotypic variation in maize grain Zn con-
centration is already being used to breed biofortified varieties of maize, for example, the grain Zn concentration 
of new hybrid maize varieties released in Guatemala (ICTA HB–18, ICTA B-15) and Colombia (BIO-MZN01) 
are  reported25 to contain 15% and 36%, respectively in the two countries, above target levels of ~ 30 mg  kg–1. 
Multiple agronomic factors will affect yield, yield components, and grain micronutrient concentrations across 
multiple scales. These include the use of both standard NPK- and Zn-containing fertilisers and the use of organic 
soil amendments, which can increase maize grain Zn  concentrations15,19,26. Future surveys could be designed to 
determine the contribution of G and M factors, together with complex G × E × M interactions, to gain a greater 
more understanding of the factors which influence variation in grain Zn concentration, and to design practical 
interventions to increase the dietary supply of Zn through crops.

Materials and methods
The field sampling and analyses of grain, soil pH, and SOC was described previously by Gashu et al.10, with 
further details provided here.

Sampling design. The sampling domain was defined as all raster cells in the European Space Agency Cli-
mate Change Initiative data within  Malawi27 for which ‘cropland’ was used in the land use description. The 
primary objective of this sampling was to support spatial prediction for mapping of the variables measured. 
Such a sampling design requires good spatial coverage, to minimise the distance between any location where a 
prediction is made and the nearest sample to support that  prediction28. It also requires an additional subset of 
close pairs of points to support the statistical modelling required as a basis for spatial  prediction29. We formed an 
initial ‘spatial coverage’ target sample set of 1710 locations, including 820 fixed points from the 2015/16 Demo-
graphic and Health Survey of Malawi, 890 additional locations, plus a further 190 close-pair sample  locations10.

Field sampling. Sampling was undertaken by trained teams as described in Gashu et al.10. From a total of 
1812 sites where grain and soil samples were taken, 1790 had location accuracy of ≤ 9 m. A further 16 sites had 
location accuracy of 10–17 m, whilst six locations had positional uncertainties of 2,900–5,000 m most likely due 
to either poor satellite signal or enumerators not giving the devices enough time to establish the location. These 
latter six locations, along with 204 locations from which crops other than maize were sampled (sorghum, rice, 
pearl millet, finger millet) were excluded from the analyses reported in this paper, giving a sample size of 1602 
locations.

Grain and soil analyses. Grain samples were prepared and analysed using methods described in Gashu 
et  al.10. Briefly, Zn concentration in grain determined using inductively coupled plasma mass spectrometry 
(ICP-MS; iCAPQ, Thermo Fisher Scientific, Bremen, Germany) following acid digestion with 6  mL of 70% 
Trace Analysis Grade (TAG)  HNO3 in a Multiwave microwave. Soil parameters were determined using methods 
described in Mossa et al.13 and Gashu et al.14: soil  pH(water) in a soil:water suspension ratio of 1:2.5; total nitrogen 
(N); total carbon (C, dry combustion); soil organic C (SOC) based on the difference between total C and meas-
ured inorganic C; effective cation exchange capacity (eCEC) and exchangeable cations using hexaminecobalt 
trichloride solution; amorphous oxides (AlOx, FeOx, MnOx) using ammonium oxalate extraction; Olsen P; 
DTPA-extractable Zn; isotopically exchangeable Zn  (ZnE). Two data points were excluded, one with a grain Zn 
concentration less than the limit of detection and one with a missing  ZnKd value, giving a final sample size of 
1600.

Extraction of environmental covariates. A set of environmental covariates, possibly correlated to Zn 
status of grain through effects on crop growth and soil conditions, were identified for consideration. We obtained 
the MERIT Digital Elevation  Model30, and the associated values for surface slope and the topographic index, 
which measures the tendency of water to accumulate at a location in so far as this is determined by overland 
flow. We also obtained the downscaled values for mean annual temperature and precipitation in the CHELSA 
data  set31. Finally, we obtained the Enhanced Vegetation Index (EVI) based on data from the MODIS remote 
sensor  satellite32. Specifically, we used the average value of the 250-m EVI product (MOD13Q1) over the period 
2000–2016.
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Data analyses. Linear mixed model (LMM). There are two overall objectives. The first is to identify rela-
tionships between soil properties and the concentration of Zn in maize grain. The second is to model the spatial 
variation of Zn concentration in maize grain at national scale to support mapping of this variable, exploiting 
any relationships with the environmental covariates for which there is evidence. A Linear Mixed Model (LMM) 
framework was used in which the variable is modelled as a combination of fixed effects (linear functions of soil 
properties or environmental covariates), a correlated random effect, and an independent and identically distrib-
uted (iid) random error (nugget effect) which incorporates variation due both to measurement error and factors 
that vary over short distances relative to the spacing of sample points. A LMM is necessary for modelling to sup-
port spatial prediction, and for testing hypotheses about relationships between grain Zn concentration and soil 
properties, because the sample sites were not selected by a probability sampling design that would enable them 
to be treated as independent and modelled using other methods, such as ordinary least squares  regression28,33. 
Here, the random effect was a Gaussian random field with a spatial covariance  structure33,34. This spatial LMM 
provides a basis for interpolation of the variable of interest, whereby the prediction error variance (expected 
squared error) is minimised conditional on the LMM. This prediction is called the best linear unbiased predic-
tor (BLUP), and the BLUP based on a fitted LMM to data is called the empirical BLUP (E-BLUP). For a spatial 
LMM, in which the only fixed effect is an unknown mean, the E-BLUP is equivalent to the ordinary kriging 
 prediction35, if spatial covariates are incorporated in the fixed effects then the E-BLUP is equivalent to the krig-
ing prediction with an external drift.

Statistical inference and false discovery rate (FDR) control with α-investment. In a LMM 
framework, the evidence that a fixed effect coefficient is significantly different from zero can be tested by cal-
culating the Wald  statistic33, and the evidence that adding fixed effects to a simpler model achieves a significant 
improvement by computing the log-ratio statistic:

where ℓ1 and ℓ0 denote, respectively the maximised log-likelihoods from fitting the model with the additional 
fixed effects, and the simpler model without them. Under the null hypothesis, where the additional fixed effects 
are not related to the dependent variable, this statistic is asymptotically distributed as chi-square with degrees 
of freedom equal to the number of additional fixed effects.

We used this approach to hypothesis testing for the identification of independent variables (covariates) to 
include as fixed effects in models for target properties of interest. However, a step-wise procedure in which candi-
date predictors are considered and accepted or rejected on the basis of a hypothesis test is not a robust approach 
to variable  selection36,37. A statistically consistent approach to variable selection is to treat it as a problem in 
multiple hypothesis  testing38. That is to say, to recognise that the sequence of tests in step-wise variable selection 
do not constitute a set of tests of single hypotheses, each of interest in themselves, but rather that the interest is 
in which subset of candidate covariates appears to be related to the target  variable39. The probability that a set 
of tests, all of which are of null hypotheses, result in incorrect rejections may be substantially larger than the 
threshold at which individual tests are conducted. One approach to multiple hypothesis testing is to control the 
false discovery rate (FDR) over a set of  tests40. The FDR is the proportion of false rejections of null hypotheses 
out of those rejected. Various methods have been proposed to control FDR over a set of multiple  tests41. A FDR 
control does reduce the power to detect real effects among a set of predictors. One way to reduce this loss of 
power, while maintaining FDR control, is by the method of α-investment42. This can be applied to a sequence 
of tests, and the power to detect real effects is increased when those null hypotheses most likely to be false (on 
the basis of a priori expectation, not exploratory analysis of data on the dependent variable) are tested at the 
beginning of the sequence. This is because the threshold against which the p-value for a test in the sequence is 
examined can be varied according to a quantity called the α-wealth which is depleted when null hypotheses are 
accepted and increased when they are rejected, while still controlling FDR.

Here, we used FDR control with α-investment43. Models were fitted sequentially, starting with a ‘null model’ 
with the only fixed effect a spatial trend identified in exploratory analysis of the data. This model was used, rather 
than a model with a constant mean as the only fixed effect, because the latter model would violate assumptions 
of second-order stationarity when a spatial trend is  pronounced35. The null model was fitted by maximum likeli-
hood (ML). The first predictor was then included as a fixed effect and the model refitted. The log-likelihood ratio 
statistic (Eq. 1) was then computed. If the p-value for this test exceeded 0.05 then the predictor was dropped, 
otherwise it was provisionally retained, and the next predictor was considered. Once all the predictors had been 
considered the p-values for each were compared to thresholds according to the α-wealth controlling FDR (here 
0.05). The predictors for which the p-values fell below the α-wealth (FDR threshold) were then definitively 
retained, and the final model refitted this time by residual maximum likelihood (REML).

To apply this method, we required separate rankings of the soil properties and the environmental covariates 
as potential predictors of the Zn concentration in maize grain. These rankings were based on a priori expecta-
tions, based on understanding of the processes involved, and not from exploration of relationships between 
the available predictor variables and the target variables of interest. However, once a predictor is included in 
the ranking, a second predictor strongly correlated with it is unlikely to include much additional information 
about the target variable, and so is placed lower in the ranking that it would be based on process considerations 
alone. Whilst a poorly-informed ranking, which fails to reflect the relative importance of a predictor, can reduce 
our power to detect real effects as significant, the FDR is always controlled at the specified rate. An approach 
to variable selection based on FDR control with α-investment is therefore conservative, in the sense that FDR 
control reduces the risk of fitting an unduly complex model as a result of multiple hypothesis testing, and that 

(1)L = 2(ℓ1 − ℓ0)
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an effective ranking simply increases the power of the procedure to detect those predictor variables for which 
there is evidence for a relationship with the target variable.

Rankings were provided by a panel meeting of soil and plant scientists. Before the meeting, the two lists of 
potential predictors available (soil properties and environmental covariates), and information on the correlations 
among the predictors within each group (Figure S4), were circulated among the panel members. Panel members 
were asked to share their views on the processes by which these might determine the concentration of Zn in 
grain. At the meeting, the principles of the approach to FDR control, and key points outlined in the previous 
two paragraphs were presented. The two sets of predictors were then ranked through a discussion, facilitated by 
statisticians with experience in group elicitation, who ensured that the discussion was not dominated by a few 
voices and that statistical concepts were understood correctly (e.g. how correlations between predictors might 
influence the process). Rankings of the two groups of predictors were obtained by a consensus.

Exploratory data analysis and model-fitting. Summary statistics of the predictor variables were first 
examined along with the octile skewness  coefficient44, which is robust to the effect of outlying observations. 
Whereas variables with (conventional) skewness in excess of 1.0 typically require  transformation35, the equiva-
lent guide value of the octile skewness is 0.2. Those with a pronounced octile skew coefficient were transformed 
to natural logarithms before they were used. The data on Zn concentration in maize grain were examined using 
the plot.geodata function from the geoR  library45. This allows to examine the data for evidence of pronounced 
spatial trends by examining plots of the variable against the northings and eastings, and spatial plots of the data, 
coded with colour symbols to indicate the quartiles of the data set to which they belonged. ‘Saturated’ explora-
tory models for grain Zn concentration with (1) all soil properties as fixed effects, along with a trend in the 
eastings identified from the spatial plots, and (2) all environmental covariates and easting as fixed effects were 
then fitted, and the summary statistics and histograms of the residuals were examined to decide whether grain 
Zn concentration required transformation for an assumption of normality to be plausible in either or both cases. 
These exploratory models were fitted by ordinary least squares.

The LMMs were fitted using the likfit function in the geoR package for the R  platform45,46. This method finds 
estimates of the parameters of the random effects by ML or REML. The former method is appropriate when two 
LMM with different fixed effects structures are to be compared. The latter is most appropriate when forming a 
model for prediction because bias in the estimated random effects is reduced when the fixed effects are more 
complex than a constant mean. The model-fitting procedure for LMMs is described  previously33,45. Briefly, 
the estimated parameters for the random effects comprise the variance of the iid error (τ2), the variance of the 
spatially correlated random component (σ2), a distance parameter which quantifies the spatial scale over which 
the correlated random effect shows spatial dependence (ϕ), and a parameter which describes the smoothness 
of the spatial process (κ). This latter parameter can be challenging to estimate, so we used a profiling  method45 
in which the parameter is fixed at each of a set of discrete values and the others are fitted by ML. The value of κ 
for which the likelihood was largest was selected. This was done for the null model, and the selected value of κ 
was then used for all others.

The LMM with environmental covariates, to be used for spatial mapping, was examined by a cross-validation 
method in which each observation was extracted from the data set in turn and the E-BLUP and its prediction 
error variance computed from the remaining data. The summary statistics and exploratory plots of the errors 
were examined to evaluate the plausibility of assumptions of normal errors. The standardised squared prediction 
errors, the square of the difference between the observed value and the E-BLUP divided by the prediction error 
variance, were calculated and their mean and median values computed. We expected the mean value to be close 
to 1 and the median to be close to 0.455 for a valid  model47.

Spatial prediction. Once a LMM was fitted with selected predictors from among the environmental covari-
ates, the E-BLUP was computed for each raster cell at which the selected covariates were  recorded33. The predic-
tion can be thought of as a combination of a ‘regression-type’ component, based on the selected covariate(s), and 
a ‘kriging-type’ prediction from the random effects. The prediction minimises the expected value of the predic-
tion error variance, a quantity which is also calculated, and which quantifies the uncertainty of the prediction. 
The kriging variance along with the spatial predictions of Zn concentration were then presented as a map using 
ArcGIS (version 10.4.1; Environmental Systems Research Institute, ESRI, https:// www. esri. com/ en- us/ home).

Because the uncertainty of E-BLUP predictions can be quantified in this way, one may also examine the 
uncertainties attached to interpretations of the map of grain Zn concentration. For example, the expected average 
requirement of Zn on a population-weighted  basis22 is ~ 10.3 mg  capita−1  day−1. Given a reference daily maize 
 intake20 of 342.8 g  capita−1  day−1, and an energy density for maize of 3.79 kcal  g−1, the daily energy intake from 
maize is 342.8 × 3.79 kcal = 1,299.2 kcal, which is 61.9% of the average daily energy requirement (ADER) in 
 Malawi48. Therefore, if maize is to provide the same proportion of the EAR of Zn, as it does of the ADER, then 
the concentration of maize in grain must equal 18.6 mg  kg−1. A policy maker could therefore examine the map 
of grain Zn concentration provided here and identify where the concentration is below this threshold. However, 
these predictions are uncertain. If one assumes normal prediction errors, the probability that grain Zn falls 
below the threshold at a location can be computed from the normal distribution function, with mean equal to 
the E-BLUP at that location and variance equal to the E-BLUP prediction error variance. These probabilities 
were also presented as a map using ArcGIS (version 10.4.1; ESRI).

Statement on grain samples. All the methods were carried out in accordance with relevant guidelines 
and regulations, including ethical approvals (as the samples were taken with the informed consent of the fam-

https://www.esri.com/en-us/home
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ers), permissions for sampling from relevant district and local authorities. Full details are in Gashu et al.10. Trans-
fers of material between laboratories complied with national and institutional  regulations49.

Data availability
All the data are freely available from the corresponding author and available on line at https:/github.com/rmlark/
GeoNutrition.
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