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What this study adds

This is the first study to investigate the role of postnatal 90-day 
average PM2.5 exposures in determining sex-specific growth tra-
jectories in early childhood, with the goal to estimate the sensitive 
time periods when childhood growth may be most affected by 
postnatal exposures, and the change in child weight trajectory by 
categories of exposure. In a Boston-based children’s cohort from 
low-income families, using varying coefficient models we found 
that continuous medium-term PM2.5 might lead to increased 
weight in early ages, with stronger effects in males, and with LBW 
children especially vulnerable. We also found that PM2.5 quartiles 
do not modify weight trajectories. Identification of time periods 
during childhood when growth may be most affected by expo-
sures is essential to target measures of prevention.
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Background: Inconsistent evidence has assessed the impact of air pollution exposure on children’s growth trajectories. We 
investigated the role of 90-day average postnatal fine particulate matter (PM2.5) exposures by estimating the magnitude of effects at 
different ages, and the change in child weight trajectory by categories of exposure.
Methods: We obtained weight values from electronic health records at each hospital visit (males = 1859, females = 1601) from 
birth to 6 years old children recruited into the Boston-based Children’s HealthWatch cohort (2009–2014). We applied mixed models, 
adjusting for individual and maternal confounders using (1) varying-coefficient models allowing for smooth non-linear interaction 
between age and PM2.5, (2) factor-smooth interaction between age and PM2.5 quartiles. Additionally, we stratified by sex and low 
birthweight (LBW) status (≤2500 g).
Results: Using varying-coefficient models, we found that PM2.5 significantly modified the association between age and weight in 
males, with a positive association in children younger than 3 years and a negative association afterwards. In boys, for each 10 µg/m3  
increase in PM2.5 we found a 2.6% increase (95% confidence interval = 0.8, 4.6) in weight at 1 year of age and a −0.6% (95% 
confidence interval = −3.9, 2.9) at 5 years. We found similar but smaller changes in females, and no differences comparing growth 
trajectories across quartiles of PM2.5. Most of the effects were in LBW children and null for normal birthweight children.
Conclusions: This study suggests that medium-term postnatal PM2.5 may modify weight trajectories nonlinearly in young children, 
and that LBW babies are more susceptible than normal-weight infants.
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Introduction
Outdoor air pollution is a well-documented risk factor for 
human diseases,1,2 contributing to around 7.6% of global 
deaths in 2016. Air pollution is also the largest environmental 
cause of disease and premature death of children worldwide.3–6  
Its harmful effects vary by specific subpopulations, for example 
by age, sex, genetics, behavior, and socioeconomic conditions, 
leading to a severe disproportionate disease burden.6–11

Children’s first years of life are a uniquely sensitive devel-
opmental epoch of rapid body and brain growth that estab-
lishes the foundation for future physical, socioemotional, and 
cognitive health. The rapid development that occurs in early 
childhood enhances children’s vulnerability to social and envi-
ronmental stressors, such as housing instability,12 temperature 
extremes,13 infections,14 and air pollution exposure.15 Children 
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may, in fact, be more susceptible to air pollution effects because 
they spend more time outdoors and breathe faster.

Various studies have found a link between prenatal and post-
natal ambient particulate matter with an aerodynamic diameter 
of 2.5 µm (PM2.5) and several adverse health outcomes in chil-
dren, including lower birthweight,16–18 higher newborn blood 
pressure,19–21 asthma risk,22,23 preterm birth,24 and weakened 
lung function25 among others. While, to our knowledge, no 
studies have examined postnatal exposure to PM2.5 and chil-
dren’s growth trajectories, unhealthy childhood longitudinal 
weight-related outcomes have been associated with pre- and 
postnatal air pollution exposure, but results are inconsistent. 
Two studies found that higher PM10 was longitudinally associ-
ated with lower weight26 and lower body mass index (BMI),27 
and others found that increases in NOx28 and NO2

29 lead to 
children’s excessive BMI growth. There is a larger evidence base 
of studies investigating the link between prenatal air pollution 
exposure and childhood growth trajectories, but again the 
results are inconsistent.30–32

These previous studies have some limitations that should be 
addressed to appropriately understand if air pollution affects 
body weight in early childhood. While most prior studies exam-
ined the effects of prenatal air pollution on growth trajectories, 
only a few have focused on postnatal exposure. The studies that 
examined prenatal exposure assigned the same trimester aver-
ages exposure before birth to each longitudinal weight mea-
surement. Similarly, postnatal exposure was assigned mostly 
based on only one point in time. Because early childhood is a 
time of rapid change in children’s bodies, the strength of the 
association between air pollution exposure and weight likely 
changes over different periods of growth, and the effect of 
exposure on children’s weight might vary across childhood. 
Postnatal exposure measured at each weight/age measurement 
addresses this issue. In addition, previous studies used expo-
sure measurements obtained from ground monitors, leading to 
possible exposure misclassification, or using land-use regres-
sion models, which provided limited temporal variability in 
exposure. Finally, several methods have been applied to model 
growth trajectories as the non-linear relationship between age 
and weight33–35; most used parametric models or linear splines 
with specified age knots, but no study has used penalized 
splines, which is a semiparametric regression approach that 
does not require the investigator to assume a prior shape on the 
trajectory of growth.

The present study aimed to build on our study30 in the 
Children’s HealthWatch Boston cohort, where we found that 
prenatal high PM2.5 concentrations may influence weight tra-
jectories in early childhood. Specifically, we evaluated the role 
of time-varying postnatal 90-day average PM2.5 exposure, as 
estimated by a spatio-temporal exposure model, on sex-spe-
cific growth trajectories in early childhood. First, we identi-
fied the sensitive time periods when childhood growth may 
be most affected by postnatal exposures, which is essential to 
effectively target measures of prevention in young children. 
To this end, we evaluated the non-linear interaction between 
age and PM2.5 on weight with time-varying coefficient models, 
after adjusting for growth trajectories. Second, to replicate the 

results of previously published studies, we assessed the change 
in child weight trajectory by categories of exposure by esti-
mating an interaction between a smooth effect of age and cat-
egorical exposure defined by PM2.5 quartiles. We applied these 
models to all children combined, stratified by sex and by birth-
weight status.

Data and methods

Study population

Our study population included, for the years 2009–2014, 
participants from the Boston site of Children’s HealthWatch, 
an ongoing five-city sentinel surveillance study investigat-
ing associations between socioeconomic hardships and the 
health of young children and their caregivers (https://chil-
drenshealthwatch.org/). Trained research assistants adminis-
tered surveys to caregiver-child dyads seeking medical care in 
the emergency department (ED) at Boston Medical Center.36 
Eligibility criteria included child age ≤48 months; residency in 
Massachusetts; caregiver ability to speak English or Spanish; 
respondent living in the child’s household; and consenting to 
be interviewed.36 Caregivers of critically ill or injured chil-
dren were not approached, nor were those interviewed within 
the previous six months. Institutional review board approval 
was obtained from Boston University Medical Campus 
Institutional review board before data collection and renewed 
annually.

For this study, we included information from the 
Children’s HealthWatch survey on history of breastfeeding 
and caregiver’s characteristics. Maternal variables consisted 
of age (years), self-identified race/ethnicity (Hispanic, Black 
non-Hispanic, White non-Hispanic, other/multiple races), 
BMI (kg/m2), nativity (US born or Immigrant), educational 
attainment (less than high school, high school or General 
Educational Development graduate, postsecondary educa-
tion), smoking status in the last 5 years (yes/no), and house-
hold food security status.37–39

In addition, we matched the Children’s HealthWatch sur-
vey with children’s electronic health records (EHR), based on 
medical record number, date of interview, sex, and date of 
birth. For each visit from the EHR, we extracted the child’s 
residential address, date of birth, age (months), sex, weight 
(kilograms), birthweight (grams), gestational age (weeks), 
and visit type (inpatient, outpatient, ED). EHR missing values 
for gestational age and birthweight were imputed using the 
Children’s HealthWatch survey data. We did not have ade-
quate measurements of height, as heights are sometimes not 
recorded in the EHR or are often inaccurate due to time con-
straints, effort, or equipment needed to adequately measure 
height in the clinical setting. To mirror clinical usage, we also 
computed the weight-for-age z-scores as applied previously by 
Gamliel et al.,40 and previously used in Children HealthWatch 
publications.

Exposure

We used concentrations of PM2.5 obtained from a spatio-tem-
poral hybrid model41 already applied in similar settings42,43 that 
provides daily exposure estimates at a spatial resolution of 1 
km2 grid. This model incorporates satellite Aerosol Optical 
Depth data, ground monitors, spatial predictors, such as pop-
ulation and traffic density, as well as temporal predictors, such 
as meteorological data. Model performance was validated by 
10-fold cross-validation, which indicated negligible bias (slope 
of observed versus predicted observations = 0.99) and high spa-
tio-temporal accuracy (out-of-sample R2 = 0.87)41 of the result-
ing exposure estimates.

We geocoded children’s addresses obtained from the EHR 
(96.2%) to parcel MASSGIS 2019 and the remaining addresses 
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to ArcGIS Online World Geocoding Service. Of all addresses 
listed in the EHR, we excluded 0.15% geocoded as Locality, 
PostLoc, and Postal level, and 1% which did not match to any 
address. We calculated PM2.5 moving average over a 90-day 
period before each visit and assigned it to the relevant geocoded 
current address at each visit.

Sample selection

After merging data from the Children’s HealthWatch survey, 
EHR and PM2.5, our dataset included 4,755 caregiver-child dyads 
with a total of 120,728 child EHR visits. Because we hypothe-
sized that exposure-related variation in weight during the first 
months after birth is likely due to prenatal rather than postnatal 
exposure, we excluded child EHR visits within the first 6 months 
of age (n = 28,189). Since our analyses focused on early child-
hood, we also excluded child EHR visits after 72 months of age  
(n = 6,695). We then excluded observations with: missing 
weights, implausible weight values based on the CDC defini-
tion,44 missing data for other covariates, and 0.04% of hospital 
visits with PM2.5 above 30 µg/m3, leaving a final dataset with 
48,381 child EHR visits corresponding to 3,460 mother-child 
dyads.

Statistical analyses

We applied generalized additive mixed models to investigate 
the impact of time-varying 90-day average PM2.5 on weight in 
early childhood through two main model specifications. First, 
to identify the sensitive time periods when childhood growth 
may be most affected by postnatal exposures, we applied a 
varying coefficient model to evaluate the nonlinear interac-
tion between age and PM2.5, adjusting for growth trajectories. 
Second, to identify whether exposure to different levels of 
PM2.5 modifies weight trajectories, we applied a factor-smooth 
interaction model, which included an interaction between 
a potentially nonlinear effect of age and categories of PM2.5 
on childhood weight measurements. We applied each of these 
models to all children combined and separately for males and 
females because of prior evidence of sex differences in body 
composition, growth patterns, and air pollution susceptibil-
ity.8,45–47 In addition, we ran stratified analyses by low birth-
weight (LBW, birthweight <2500 g) and normal birthweight 
(NBW, birthweight ≥2500 g), which previous studies suggested 
to be a potential effect modifier of the relationship between air 
pollution and growth trajectories.26,30,48

In both varying coefficient models and factor-smooth inter-
action models, we log-transformed the outcome measurements, 
weight (in kg), because of the right-skewed nature of the original 
distribution, resulting in a normal distribution of the residuals. All 
models included a random intercept for each child and a random 
slope for child’s age, to account for longitudinal correlation among 
repeated weight measurements taken on the same child and to 
capture each child’s deviation from the average trajectory.49,50

We selected the covariates a priori based on the literature 
on children’s weight-related measures shown to be biologically 
related to childhood postnatal weight, or as confounders of the 
association between weight and PM2.5.

18,26,30 In all models, we 
adjusted for maternal age, BMI, educational attainment, race/
ethnicity, nativity, smoking, and child’s gestational age. We also 
included the number of visits for each child as we hypothesized 
that the higher the number of visits the worse the child’s health 
condition might be, which in turn could affect their growth tra-
jectory. To adjust for seasonality, we included sine and cosine 
terms of date of birth. We used a penalized spline term to model 
the non-linear relationship between the continuous covariates 
and the outcome.51 We modeled the weight trajectory with a 
penalized spline of child’s age, which flexibly fit the non-linear 
relationship between age and weight.

Varying coefficient model

To estimate the impact of PM2.5 at each age, we included in the 
model a non-linear interaction between the smooth function of 
age and linear term for PM2.5, with a varying coefficient term. 
The model is as follows:

log weight   b b age f age age PM

covariates
1 2 5( ) = + ( ) + ( ) + ( )

+
00 0 * .*β

,,

where the b00 and b01 are the random intercept and age slope 
for each child, respectively, f(age) is the penalized cubic spline 
of age representing the average potentially non-linear growth 
trajectory across all children in the analysis; β(age) × PM2.5 is the 
varying coefficient term that represents the non-linear interac-
tion between PM2.5 and age, as a function of age. The coefficient 
β(age) can be interpreted as the effect of PM2.5 on weight at each 
specific value of age, given background nonlinear growth.

From this model, we extracted the coefficients from the vary-
ing coefficient term to obtain estimates and standard errors of 
the association of PM2.5 on weight at 12, 24, 36, 48, and 60 
months of age. We report the results as percent change in weight 
for 10 µg/m3 increase in PM2.5.

We tested the global significance of the interaction age- PM2.5 
using global P values from the varying coefficient models, with 
the null hypothesis being that the non-linear varying coefficient 
is 0 across all ages (H0: β(age) = 0). We set the overall signifi-
cance level to α = 0.05 for all the analyses and estimated 95% 
confidence intervals (CIs) for each effect estimate.

Factor-smooth interaction model

We then examined whether weight trajectory varied according 
to categories of PM2.5 exposure as defined by quartiles of the 
exposure distribution by including in the model an interaction 
term between the weight trajectory represented by the spline of 
age and PM2.5 quartiles. In the model above we replaced f(age) + 
β(age) × PM2.5 with f(age) × PM2.5,k, where k = 1,2,3,4 represent 
PM2.5 quartiles. The output of this model produces weight tra-
jectories for each PM2.5 quartile represented by the smooth func-
tion of the relationship between age and the logarithm of weight.  
These curves can be interpreted as the weight trajectory for the 
subjects exposed to each category of PM2.5 concentration during 
the entire follow-up time.

All the analyses were performed using the mgcv package in R 
software (version 3.6.1). Because of the computational require-
ments of the models, we used bam which is an implementation 
of GAM for large datasets. The code for the models is reported 
in the Supplemental Digital Content, section 1; http://links.lww.
com/EE/A166.

Sensitivity analyses

Because no previous study has shown a clear age threshold to 
delineate the separated effects of pre- and postnatal air pollution 
on weight, we repeated all the analyses using 3 and 12 months as 
follow-up starting points instead of 6 months. We used weight-
for-age z-scores as an outcome to validate our findings with a 
measure typically used in clinical settings. Previous studies found 
an association between prenatal PM2.5 and child weight or obe-
sity. Therefore, we also ran the models for all children adjusting 
for prenatal PM2.5 averaged over the full pregnancy period. We 
also adjusted for household food security in the model.

Finally, for the models using categories of PM2.5, to compare 
our results with previously published studies, we ran additional 
analyses where instead of using a penalized spline for age, we 
used either a truncated polynomial or a natural cubic spline. In 
these models, we placed internal knots at 12 and 36 months. 
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(See Supplemental Digital Content, section 2; http://links.lww.
com/EE/A166 for the R code).

Results
Table 1 details the study characteristics for both mothers and 
children. Both sexes were evenly represented between the 3460 
children (males = 1859, females = 1601). Approximately 90% 
of the children were born to either a Black non-Hispanic or a 
Hispanic mother, 76% were breastfed and 88% were at healthy 
weight at birth. Mothers’ average age was 29 years, and more 
than 30% reported a BMI that corresponds with obesity (BMI > 
30 kg/m2). Approximately 70% never smoked in the last 5 years 
and 77% obtained at least a high school diploma. Gestational 
age and birthweight were highly correlated (around 80%). 
Children had most of their visits before 40 months of age (third 
quartile—42 months). The number of visits varied markedly 
among children with the median number at 50, ranging between 
2 and 400, and interquartile range (IQR) of 57. The median time 
difference between visits was 25 days with an IQR of 71 days. 
More than 67% of visits were recorded as outpatient, 30% at 
the ED and only 3% were inpatient. The median concentration 
of the 90-day average PM2.5 was 8.4 µg/m3 with an IQR of 1.7 
µg/m3, below the daily National Ambient Air Quality Standard.

Varying coefficient model results

Figure 1 presents estimates from the varying coefficient model for 
all children combined and by sex. The plots depict the relation-
ship between weight and PM2.5 as a smooth function of age, and 
each point on the curve represent the percent change in weight 

per 10 µg/m3 increase in the 90-day average PM2.5 at each age. 
Areas in which the CIs of the curve do not contain the zero line 
indicate the intervals of age with a significant association between 
weight and PM2.5. Table 2 presents the percent change in weight 
for a 10 µg/m3 increase in the 90-day average of PM2.5 for selected 
ages, for boys and girls, and by birthweight status, obtained from 
the varying coefficient estimates plotted in Figures 1 and 2.

Across all children combined, Figure 1 shows that the non-lin-
ear relationship between weight and PM2.5 is decreasing, with a 
positive association between weight and PM2.5 in children less 
than 2 years old. The relationship became negative and nonsig-
nificant after 30 months. As shown in Table 2, at 12 months, 
we found a 1.7% increase (95% CI = 1.0, 2.5) in weight for 
10 µg/m3 increase in PM2.5, while at age 48 months, we found 
a -0.54% increase (95% CI = −1.67, 0.61) in weight. The plots 
show a similar descending patterns for both boys and girls 
(Figure 1). In boys, we found that PM2.5 significantly modified 
the association between weight and age (P-value for interaction 
males <0.001; females 0.16). Specifically, we found a positive 
association between weight and PM2.5 in children less than 2 
years old, whereas in children older than 2 years, we found a 
nonsignificant negative association between these variables. 
For example, we found a 2.6% increase (95% CI = 0.8, 4.6) in 
weight at 1 year of age and a −0.6% (95% CI = −3.9, 2.9) at 
age 5 associated with a 10 µg/m3 increase in PM2.5 (Table 2). We 
found a similar pattern but with smaller associations in girls, 
with a suggestion of a positive association between weight and 
PM2.5 at ages less than 2 years, becoming negative afterwards.

When we stratified by birthweight, we found that most of the 
association is attributable to LBW children (Figure  2), with a 
decreasing trend that mirrors the unstratified analysis, although 

Table 1.

Characteristics of 3460 caregiver-child dyads, weight measurements and exposure by children’s sex in the Children’s HealthWatch 
cohort, Boston (2009–2014).

 All children Males Females

 N (%) Mean (SD) N (%) Mean (SD) N(%) Mean (SD)

Maternal characteristics       
 Age (years)  28.8 (6.6)  28.8 (6.6)  28.8 (6.7)
 BMI (kg/m2)  28.5 (7.1)  28.6 (7.4)  28.2 (6.7)
Maternal nativity       
 US born 2172 (62.8)  1167 (62.8)  1005 (62.8)  
 Immigrant 1288 (37.2)  692 (37.2)  596 (37.2)  
Maternal race/ethnicity       
 Black non-Hispanic 2058 (59.5)  1113 (59.9)  945 (59.0)  
 Hispanic 97 (28.3)  522 (28.1)  457 (28.5)  
 White non-Hispanic 338 (9.8)  182 (9.8)  156 (9.7)  
Other/multiple races 85 (2.4)  42 (2.3)  43 (2.7)  
Education       
 College graduate/Master’s/Tech School 1622 (46.9)  876 (47.1)  746 (46.6)  
 High school graduate or General Educational Development 696 (20.1)  379 (20.4)  317 (19.8)  
 Some high school or less 1142 (33.0)  604 (32.5)  538 (33.6)  
Ever smoked in the last 5 years       
 Yes 953 (27.5)  502 (27.0)  451 (28.2)  
 No 2507 (72.5)  1357 (73.0)  1150 (71.8)  
Child characteristics       
Weight (kg)  13.9 (5.1)  14.1 (4.9)  13.5 (5.3)
Gestational age (weeks)  38.0 (3.2)  37.8 (3.2)  38.2 (3.0)
Breastfeeding       
 Yes 2641 (76.3)  1419 (76.3)  1222 (76.3)  
 No 819 (23.7)  440 (23.7)  23.7 (23.7)  
Food security       
 Yes 2339 (67.6)  1277 (68.7)  1062 (66.3)  
 No 1121 (32.4)  582 (31.3)  539 (33.7)  
Birthweight status       
 ≤2500 g 439 (12.7)  223 (12.0)  216 (13.5)  
 >2500 g 3021 (87.3)  1636 (88.0)  1385 (86.5)  
Exposure       
PM2.5—90 days average  8.5 (1.4)  8.5 (1.4)  8.5 (1.4)
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more clearly for boys. The results are prevalently null for normal 
birthweight boys and girls. In boys, in the first 24 months of life, 
PM2.5 is positively associated with weight which became negative 
after 60 months of age. The shape of the relationship differed in 
the LBW girls with a negative association that became significant 
around 48 months of age. For example, in boys we found a 7.98% 
(95% Cl: 5.67, 10.36) increase in weight at 12 months, and a 
0.68% (95% Cl: −2.42, 3.87) increase in weight at 48 months.

Factor-smooth interaction model results

In Figure 3, we present the weight trajectories by quartiles of 
postnatal PM2.5 exposure, estimated with penalized spline terms, 
for all children combined and stratified by sex. We did not find 
differences in growth trajectories by different levels of PM2.5 for 
all children combined and by sex.

When in addition we stratified by birthweight status 
(Figure 4), we found differences among the weight trajectories 
and PM2.5 levels only among LBW children. In the LBW sub-
group, we found small differences in the trajectories after 60 
months of age. The direction of the association was different for 
males and females for concentrations above the third quartile 
(>9.3 µg/m3).

In sensitivity analyses, we found that changing the starting 
point for the follow-up from 6 months to 3 or 12 months did 
not modify the results. Similarly, neither the inclusion of house-
hold food security nor the specification of an autocorrelation 
structure altered the associations between PM2.5 and weight 
(data not shown). Using weight-for-age z-scores as an outcome 
did not change the results of the varying coefficient model for 
all children combined and by sex (Supplemental Digital Content 
eFigure 1; http://links.lww.com/EE/A166). Similarly, adjust-
ing for prenatal PM2.5 in the models did not change the results 
(Supplemental Digital Content eFigure 2; http://links.lww.com/
EE/A166).

Finally, we found that the models for the weight trajectories 
specified using the truncated polynomial or natural cubic splines 
were consistent with our main models with penalized splines 
(Supplemental Digital Content eFigures 3 and 4; http://links.
lww.com/EE/A166).

Discussion
To the best of our knowledge, this is the first study to explore 
the role of time-varying postnatal PM2.5 as an effect modifier on 
sex-specific growth trajectories and to examine the non-linear 

Figure 1. Associations between time-varying 90-day PM2.5 averages and children’s weight as smooth function of age estimated from the time-varying coef-
ficient model (solid line) for all children combined and by sex. Panels depict the smoothing function derived from the varying-coefficient term representing the 
interactions between the concentrations of PM2.5 and age. Estimates are computed as % change in weight for an increase of 10 µg/m3 of PM2.5 concentrations 
at each value of age. Confidence bands (dashed lines) represent the 95% pointwise CI for the change in weight. Areas in which both dashed bands (upper and 
lower) fall above or below the zero line indicate intervals of age values with a significant association between PM2.5 exposure and weight.
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interaction between age and postnatal PM2.5 on early childhood 
weight. In a Boston cohort of children from families with low 
income, we found that the impact of exposure decreases with 
age, mostly in males, with a positive association in children 
younger than 2 years old, and reversing direction as children 
age, turning negative around 2–3 years of age. We also found 
that high and low levels of PM2.5 do not modify weight trajecto-
ries. In addition, we found that most of the identified association 
was attributable to LBW status, and sex differences in the shape 
of the effect.

While the results from the two models may seem contradic-
tory, in fact they investigate the effect of PM2.5 on children’s 
growth from two different angles. The nonlinear interac-
tion in the varying coefficient model specifically shows how 
weight varies with continuous PM2.5 concentration at each 
age, therefore indicating during which periods in early life the 
child’s body is more affected by pollution. The second model, 
which has been previously applied in the literature in relation 
to prenatal exposure, presents instead how child weight tra-
jectories change for different categories of the exposure. This 
latter model is less flexible because it categorizes pollution, 
reducing the variability of the continuous exposure to four 
categories.

No previous study examined the nonlinear interaction between 
PM2.5 and age on childhood weight using varying coefficient mod-
els. This approach, which includes an interaction term between 
two continuous variables, flexibly allows estimation of the magni-
tude of the impact of PM2.5 at each age, and therefore identification 
of the time periods during childhood when growth may be most 
affected by postnatal exposures. Thus, there are no other studies 
that are directly comparable to ours. Nevertheless, a few studies 
have investigated longitudinal child weight measurements as a 
measure of growth using time-varying exposure. A Korean cohort 
of children26 found a negative association between time-varying 
postnatal exposure to PM10 measured from monitoring stations 
and children’s weight. Similar to our results, they found greater 
vulnerability in LBW children. The PM10 concentrations in this 
study were substantially higher than in our study. Other studies 
that examined longitudinal growth used different outcomes (such 
as BMI or BMI z-score) in older cohorts,52 or used different expo-
sures such as NO2

29 and annual average daily traffic.28,53 Similar 
to our study these studies found increases in weight in males com-
pared to females.52 In these studies, pollution was measured once 

during the follow-up, while our continuous postnatal exposure 
allowed us to look at air pollution effects throughout childhood 
and not just at a point in time, leading to a better understanding of 
the effects of air pollution on growth by age.

This is also the first study to examine postnatal PM2.5 as an 
effect modifier of age on childhood weight and is therefore 
not directly comparable to other studies. While we did not 
find differences in growth trajectories by quartiles of postnatal 
PM2.5 exposure, in our previous investigation using Children’s 
HealthWatch data prenatal PM2.5 and growth trajectories,30 we 
found differences in childhood weight trajectories between levels 
of prenatal PM2.5 exposure. This different finding could be due 
to the different impact of prenatal versus postnatal time-vary-
ing exposures. Similarly, we found that these associations were 
different by sex and by LBW status. Other studies assessing pre-
natal effects on childhood growth found null,31 negative,32 and 
positive54 effects. In line with our findings, some of these stud-
ies26,30,48 found differences by sex, with stronger effects in males 
compared to females.

Inhalation of PM pollution before birth was found to adversely 
affect child weight by increasing inflammatory potential of fetal 
adipose tissue,55–57 which may prime children for greater weight 
or adiposity later in life.58,59 Toxicological studies, in fact, point 
to the inflammatory effects of air pollution,60 suggesting that PM 
concentrations may increase adiposity as well as lead to met-
abolic dysfunctions,61 and that exposure to particulate matter 
may induce downregulation of brown adipose genes and upreg-
ulation of white adipose genes, suggesting a path for obesity.62,63

Possible differences by sex were previously highlighted in epi-
demiological settings48 and can be explained by biological sex 
differences in body composition and growth patterns, and clear 
sex differences in the distribution of adiposity.47 Gender-specific 
differences may also be due to social and cultural differences in 
the ways in which males and females interact with their physical 
and social environments.64

We also found differences by birthweight status, with most 
of the effect in LBW children. LBW is a leading cause for peri-
natal morbidity and mortality65–67 and is a known risk fac-
tor for neurological and developmental adverse outcomes in 
childhood and adulthood.68,69 Several studies found an associ-
ation between air pollution and LBW.16,70–73 Our rate of LBW 
is higher than the national average.74 However, given that we 
have a sample that includes predominantly women of color, 

Table 2.

Percent change in weight for 10 µg/m3 increase in 90 days average PM2.5 for selected ages during growth, predicted from the varying 
coefficient model, in the Children’s HealthWatch cohort, Boston (2009–2014).

 Overall Birtweight ≤ 2500 Birtweight > 2500

 % change (95% CI) % change (95% CI) % change (95% CI)

All children    
 At 12 months 1.74 (1.00, 2.47) 3.14 (1.50, 4.81) 0.82 (0.09, 1.56)
 At 24 months 0.53(−0.26, 1.32) 1.11 (−0.13, 2.36) 0.49 (−0.07, 1.04)
 At 36 months −0.16(−0.95, 0.63) −0.89 (−2.26, 0.51) 0.15 (−0.47, 0.78)
 At 48 months −0.54(−1.67, 0.61) −2.84 (−4.74, −0.90) −0.18 (−1.07, 0.72)
 At 60 months −0.94(−2.26, 0.41) −4.76 (−7.31, −2.14) −0.51 (−1.74, 0.73)
Males    
 At 12 months 2.65 (1.68, 3.63) 7.98 (5.67, 10.36) 0.73 (−0.24, 1.71)
 At 24 months 0.90 (−0.11, 1.94) −0.53 (−2.90, 1.91) 0.58 (−0.15, 1.31)
 At 36 months 0.14 (−0.87, 1.16) 0.02 (−2.39, 2.49) 0.43 (−0.40, 1.26)
 At 48 months −0.12 (−1.57, 1.36) 0.68 (−2.42, 3.87) 0.28 (−0.90, 1.47)
 At 60 months −0.59 (−2.32, 1.17) −3.49 (−6.94, 0.09) 0.13 (−1.50, 1.78)
Females    
 At 12 months 0.63 (−0.39, 1.68) −2.03 (−4.74, 0.77) 1.0 (−0.17, 2.20)
 At 24 months 0.09 (−0.69, 0.88) 0.77 (−2.45, 4.10) −0.08 (−1.38, 1.24)
 At 36 months −0.45 (−1.34, 0.46) 1.58 (−5.30, 2.28) −0.09 (−1.40, 1.23)
 At 48 months −0.98 (−2.25, 0.30) −5.0 (−9.23, −0.58) −0.02 (−1.90, 1.90)
 At 60 months −1.52 (−3.25, 0.25) −8.15 (−13.28, −2.72) −1.15 (−3.33, 1.07)

Models adjusted for sine and cosine of date of birth, type of visit, number of visits, gestational age, mother’s age, nativity, BMI, education attainment, race/ethnicity, and smoking status in the last 5 years.
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the rates reflect the higher LBW rates in those groups, in turn 
reflecting societal stressors that trigger more LBW.75 No other 
study examined the sensitive time periods when childhood 
growth may be most affected by postnatal exposures, and the 
change in child weight trajectory by categories of exposure by 
birthweight status. 

Our study has some limitations. There is potential for selec-
tion bias, as participants were selected from a pool of caregivers 
of young children seeking health care in a hospital ED. Children 
identified in EDs may present worse overall health. Being from 
families with lower incomes, children may be more vulnerable 
to the negative effects of PM2.5 exposures. Reporting bias may 

Figure 2. Associations between time-varying 90 days PM2.5 averages and children’s weight for all children combined and by sex as smooth function of age 
estimated from the time-varying coefficient model (solid line) by birthweight status (bw). Estimates are computed as % change in weight for an increase of 10 µg/
m3 of PM2.5 concentrations at each value of age. Confidence bands (dashed lines) represent the 95% pointwise CI for the change in weight. Areas in which both 
dashed bands (upper and lower) fall above or below the zero line indicate intervals of age values with a significant association between PM2.5 exposure and weight.
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also occur if caregivers refrain from reporting the true extent of 
problems, but EHR data are available for external validation 
and reporting is unlikely to be differential based on exposures. 
The use of weight in kilograms as an outcome does not allow 
one to draw conclusions on possible effects on overall children’s 
health. In addition, weight measurements might be incorrectly 
measured, resulting in nondifferential outcome misclassifica-
tion. Our study population includes prevalently low-income, 
Black non-Hispanic or Hispanic mothers, therefore our results 
may not be generalizable to the US population age 0–6 years, 
though reflective of families of color with low incomes. While 
we focused on the 90-day average PM2.5 exposure, there is no 
agreement in the literature regarding which exposure window 
is most important to understand the association between post-
natal PM2.5 and child growth. Future studies should examine 
which time window(s) is most relevant. Finally, despite the use of 

medium-term exposure being original, it might result in under-
estimation of the impact compared to the long-term effects often 
assessed in the previous literature.

This study’s strengths include its focus on a large, sentinel, 
racially and ethnically diverse sample of families with a diffi-
cult-to-reach population of young children who have access 
to health care. The sentinel sample is a strength as a dynamic 
form of data collection designed to signal early trends and iden-
tify and monitor policy effects and disease burdens before they 
become widely prevalent, allowing timely interventions to be 
developed. In addition, because we used highly spatio-tempo-
rally resolved exposure linked to each participant’s address at 
each visit we may have reduced the impact of exposure misclas-
sification. The linkage with the EHR provided us with a large 
sample size with 3,460 children each with multiple measure-
ments. Finally, we applied modern statistical methods suitable 

Figure 3. Predicted weight trajectories from birth to 72 months of age (6 years) by quartiles of 90-day average PM2.5 for all children combined and for males and 
females. Weight trajectories were modeled using penalized cubic splines; the models were adjusted for sine and cosine of date of birth, type of visit, number 
of visits, gestational age, and mother’s characteristics, which is age, nativity, BMI, education attainment, race/ethnicity and smoking status in the last 5 years.
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for studying longitudinal cohorts with heterogeneity in the 
number of measurements and allowing for complex model 
terms. The application of generalized additive mixed models 
is advantageous because it allows us to flexibly model growth 
trajectories. To check for the consistency of our growth trajecto-
ries, we found similar results using two different specifications 
of the growth curves (truncated polynomial and natural cubic 
spline) that have been previously used in the literature. These 
functions were shown to have a greater predictive performance 
for growth in children with respect to simpler linear splines.33

In conclusion, our study extends the literature by focusing on 
the impact of PM2.5 at each age of early childhood, pointing to 
the detrimental effects of air pollution on childhood growth. The 
joint investigation of growth trajectory and time-varying PM2.5 
exposure allowed us to identify the time periods during which 
child’s growth is more susceptible to the impact of pollution 
exposure. Our findings suggest that in the first two years of life, 
medium-term PM2.5 exposure may lead to increased weight, with 
stronger effects in males, and with most of the effect in LBW chil-
dren. These results are relevant to low-income communities of 
color. Further studies are needed to replicate our findings in other 
geographies and nationally representative study populations. 
Future research should focus on other factors that either inde-
pendently or in synergy with air pollution affect young children’s 
growth to understand the implications of early exposure and pos-
sibly make the connection with lasting effects on health risks at 
older ages. Identifying these factors will aid in designing policies 
and interventions that can best support optimal child growth.
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