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As the world rallies toward the endgame of soil-transmitted helminths (STH) elimination

by the year 2030, there is a need for efficient and robust mathematical models that would

enable STH programme managers to target the scarce resources and interventions,

increase treatment coverage among specific sub-groups of the population, and develop

reliable surveillance systems that meet sensitivity and specificity requirements for the

endgame of STH elimination. However, the considerable complexities often associated

with STH-transmission models underpin the need for specifying a large number

of parameters and inputs, which are often available with considerable degree of

uncertainty. Additionally, the model may behave counter-intuitive especially when there

are non-linearities in multiple input-output relationships. In this study, we performed a

global sensitivity analysis (GSA), based on a variance decomposition method: extended

Fourier Amplitude Sensitivity Test (eFAST), to a recently developed STH-transmission

model in Kenya (an STH endemic country) to; (1) robustly compute sensitivity index (SI)

for each parameter, (2) rank the parameters in order of their importance (from most to

least influential), and (3) quantify the influence of each parameter, singly and cumulatively,

on the model output. The sensitivity analysis (SA) results demonstrated that the model

outcome (STH worm burden elimination in the human host) was significantly sensitive

to some key parameter groupings: combined effect of improved water source and

sanitation (φ), rounds of treatment offered (τ ), efficacy of the drug used during treatment

(h), proportion of the adult population treated (ga: akin to community-wide treatment),

mortality rate of the mature worms in the human host (µ), and the strength of the

-dependence of worm egg production (γ ). For STH control programmes to effectively

reach the endgame (STH elimination in the entire community), these key parameter

groupings need to be targeted since together they contribute to a strategic public

health intervention.

Keywords: mathematical model, soil-transmitted helminths, sensitivity analysis, extended Fourier Amplitude

Sensitivity Test, Kenya
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1. INTRODUCTION

Mathematical models are nowadays gaining increasing
popularity in the study of the dynamics of infectious diseases,
particularly to examine, explain and predict the infection
transmission and eventual elimination (1–3). Over the years,
specific models have been developed for specific diseases of
global importance with the overarching aim of developing
public health strategies for control, prevention and elimination
(1, 3–5). These models provide a mathematical representation
of the underlying dynamics of the infection transmission cycle
that usually involve complex interactions between infected
individuals, susceptible hosts and the infectious materials,
and this dynamic is generally expressed as a set of dynamical
ordinary differential equations (ODEs) (5). Model outputs,
which are usually the ODE solutions over a simulation interval,
provide a dynamic representation of the transmission process
(6). Parameters used in the computation of these models are
normally estimated from observational or experimental data,
and in cases where these parameter values are unavailable, they
are often set to plausible value ranges based on literature reviews,
analogous systems, statistical inferences, or experts opinion (7).
However, most model outputs often have complex, nonlinear
relationships with the model parameters, hence inappropriate
parameter value choices coupled with parameter uncertainty can
lead to bias in model outputs (3, 8).

The study of how the uncertainty in the output of a
mathematical model or system (numerical or otherwise) might
be divided and assigned to various sources of uncertainty in its
parameters is known as sensitivity analysis (SA) (3, 9). SA is
a powerful tool for studying and understanding the underlying
behavior of a numerical model, additionally, it allows the
quantification of the sensitivity in the model outputs to changes
in each of the model parameters. Methods for performing SA
can be broadly classified into two; (1) local sensitivity analysis
(LSA) methods, which imply that the inputs are varied one at
a time by a small amount around some fixed point and the
effect of individual perturbations on the output are calculated,
and (2) global sensitivity analysis (GSA) methods, where all
inputs are varied simultaneously over their entire input space,
typically using a sampling-based approach, and the effects on
the output of both individual inputs and interactions between
inputs are assessed (10, 11). Whereas LSA methods are easier
to implement and deemed useful in some situations, they
however lack some essential desired properties as described by
Andrea and colleagues (12). GSA techniques are today becoming
increasingly more common since they explore the entire input
space (or the full spectrum of each factor), hence their results
do not depend on the central values (13). For this reason,
GSA methods possess multidimensional scaling property (12).
GSA methods include; variance-based methods (e.g., Sobol’ and
Fourier Amplitude Sensitivity Test (FAST)) (14, 15), global
screening methods (e.g., Morris method which is also called the
elementary effect method) (16), sampling-based methods (e.g.,
Monte Carlo filtering and Latin hypercube sampling with partial
rank correlation coefficient (LHS-PRCC) index) (17, 18), and the

recently developed sensitivity heat map (SHM) method (19), and
among other methods.

Whilst GSA techniques have been broadly applied to various
mathematical models in the areas of systems biology modeling
(20), environmental modeling (21, 22), and infectious diseases
modeling (3, 23–25), however, these techniques have not been
specifically applied to models studying the transmission of soil-
transmitted helminths (STH) infections, especially with regards
to Kenya infection transmission setting. Briefly, STH are part
of a group of diseases categorized as neglected tropical diseases
(NTDs) (26). Currently, the global burden of STH is estimated
at 1.9 million disability-adjusted life years (DALYs) (27), but
with up to four billion people estimated to be at risk (28). STH
are the most prevalent group of intestinal helminths (26), and
they are mainly transmitted through ingestion of nematode eggs
from contaminated soil (for the case of Ascaris lumbricoides or
Trichuris trichiura) or active penetration of the skin by larvae
in the soil (for the case of hookworms: Necator americanus and
Ancylostoma duodenale) (29). STH can be controlled through
mass treatment with either albendazole, mebendazole, levamisole
or pyrantel drugs (30), and the treatment impact can be sustained
with a revamped complementary water, sanitation and hygiene
(WASH) interventions (31).

Recently, interest has increased in the use of mathematical
models to determine the STH transmission dynamics (4, 32),
infection transmission interruption (33–36), and different
interventions impact (36). These mathematical models serve
an important role in guiding the design and implementation of
epidemiological studies and public health policy formulation
(37). STH models have incorporated variety of modeling
approaches including both deterministic (33, 36), and
individual-based stochastic simulation (32, 38). Even though
progress has been made in model formulation, parameter
estimation and application, most of these models have estimated
their parameters theoretically with little use of existing data
coupled with considerable degree of uncertainty, and with
less exploration of sensitivity analysis to determine the most
important parameters and their usefulness in influencing the
interventions impact.

Estimation of epidemiological parameters like infection
transmission rate, relative contribution of infectious materials to
the environment by the host and the average number of new
parasite offsprings caused by one typical parasite (simply, the
reproduction number; Ro), is an essential task when analyzing
STH transmission models (33). However, in some situations,
some parameters of interest may not be estimated directly from
the available data (39). Hence, an indirect approach may be
adopted in which a mathematical model of the transmission
process is formulated and fitted to the data (40). In the
process, the parameters estimated may have uncertainty due
to noise in the data, but this will depend on the parameter
estimation approach chosen for the model (41). Standard
statistical approaches can be used to quantify the uncertainty
in parameter estimates that emanate from the noise in the data
(42). However, these approaches may not sufficiently provide
insight into the sensitivity of the estimates to the model output
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(43). Therefore, sensitivity analysis is desired when model-based
approaches are used to interpret epidemiological data (3).

To the best of our knowledge advanced sensitivity analysis
techniques involving STH transmission models has been rarely
investigated and adopted. This study will add to the body
of knowledge on application of sensitivity analysis methods
to the broader category of infectious disease models. The
main objective of this article was therefore to investigate and
apply a robust global sensitivity analysis method: the extended
Fourier Amplitude Sensitivity Test (eFAST), a global variance
decomposition based method, to STH transmission model
previously developed by Okoyo and colleagues (36), in order
to quantify the uncertainty in the parameters estimated and to
determine the most useful parameters to the model output. Our
sensitivity analysis process fully used the available data from the
Kenyan STH transmission setting. These results are significant
to the Kenyan STH control program and to the global STH
community, especially at this time when control programs are
aiming to eliminate STH by the year 2030 (44, 45).

2. MATERIALS AND METHODS

2.1. Data and Data Sources
Since the year 2012, Kenya has been conducting a nation-
wide deworming program mainly among the pre-school and
school-aged children (46). This program targeted to reduce the
prevalence of STH infections to below 1%, and subsequently
to interrupt the infection transmission as per the world health
organization (WHO) guidelines (47) and targets (44). The data
for monitoring and evaluation (M&E) to assess the program
impact is independently collected by the KenyaMedical Research
Institute (KEMRI). Therefore, in this analysis, we used the
five-year (2012-2017) data on STH infections collected by the
M&E team of the deworming program (48). Key indicators
collected included type of worm, number of eggs observed in
each individual surveyed, rounds of treatment administered,
treatment coverage, and information on WASH conditions.
Other model parameter values were based on previous studies
conducted in Kenya.

2.2. Model Specification
In this study, we are referring to a previously formulated and
analyzed STH transmission interruption model in Kenya by
Okoyo and colleagues (36). Briefly, this model studied the
dynamics of STH transmission and elimination in three age
groups; pre-school aged children (PSAC: 2–4 years), school aged
children (SAC: 5–14 years), and adults (above 14 years) as well
as the dynamics of infectious materials in the environment.
It sought to determine the effect of two interventions, mass
drug administration (MDA) and WASH, and the projected STH
elimination period considering the impact of each of the these
two interventions.

We consider the below model from the previous work (36),

dMp

dt
= βp(1− φ)L− (µ + cp)Mp

dMc

dt
= βc(1− φ)L− (µ + cc)Mc

dMa

dt
= βa(1− φ)L− (µ + ca)Ma

dL

dt
=

[

(1− φ)
∑

i

f (Mi; k, γ )niλi

]

−

[

µL + (1− φ)
∑

i

βini

]

L; for i = p, c, a















































































(1)

Where,Mp,Mc, andMa are the mean worm burdens in the three
age groups (PSAC, SAC and adults) respectively; L is the per
capita infectiousness of the shared reservoir; βi (for i = p, c, a) is
the strength of infectious contact with the reservoir for each age
group, respectively (i.e., the transmission rate); µ is the mortality
rate of the mature worms in the hosts; λi (for i = p, c, a) describes
the relative per capita contributions of infectious materials by
each age group (i.e., the contamination rate); ni (for i = p, c, a)
is the proportion of the population in each age group; µL is the
rate of decay of infectious materials in the environment; and φ

is the simulated combined effect of improved water source and
sanitation (i.e., WASH) at individual level. The treatment effect
illustrating the impact of MDA on the mean worm burden and
egg production output for each age group was denoted as,

ci =
−ln(1− gih)

τ
; for i = p, c, a (2)

where gi (for i = p, c, a) denotes the proportion of individuals
treated in each age group per treatment round, h the drug efficacy
and τ the interval between the treatment rounds. Additionally,
the function,

f (Mi; k, γ ) =
Mi

[1+ Mi
k
(1− e−γ )]k+1

; for i = p, c, a (3)

describes the mean egg production rate from each age group with
the mean worm burden (Mi) which assumed a negative binomial
distribution with aggregation parameter (k), and the resulting
impact of the density-dependence of egg production from each
host’s worm burden described by the parameter, exp(−γ ).

Further details about this model’s Equation (1) description,
formulation and analysis are provided in the paper by Okoyo
and colleagues (36). In the current study, we aimed to perform
sensitivity analysis on this model’s output for each of the
parameters described in Table 1. To the best of our knowledge,
this is the first application of a global sensitivity analysis method
to a fully age structured STH transmission model of this nature
(ODE model). Specifically, we performed sensitivity analysis
using a robust and efficient global sensitivity analysis method
to compute the first and total-order sensitivity indices of each
parameter to enable us rank the influence and quantify the
significant effect of each parameter to the model outcome (worm
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TABLE 1 | Input parameters for the analyzed model.

No. Notation Definition Assumed distribution Input value range (min, max) Measurement

1. βp Infection transmission rate among PSAC Uniform (0.455, 1.82) Rate

2. βc Infection transmission rate among SAC Uniform (0.49, 1.96) Rate

3. βa Infection transmission rate among adults Uniform (0.385, 1.54) Rate

4. µ Mortality rate of the mature worm in the host Uniform (0.5, 2.0) Years

5. µL Mortality rate of the free-living infectious materials in environment Uniform (0.115, 0.46) Years

6. np Proportion of PSAC in the population Uniform (0.025, 0.1) Population proportion

7. nc Proportion of SAC in the population Uniform (0.125, 0.5) Population proportion

8. na Proportion of adults in the population Uniform (0.35, 1.4) Population proportion

9. λp Relative contributions of PSAC to the environment Uniform (1.25, 5.0) Rate

10. λc Relative contributions of SAC to the environment Uniform (2.0, 8.0) Rate

11. λa Relative contributions of adults to the environment Uniform (1.75, 7.0) Rate

12. k Over-dispersion (aggregation) parameter Uniform (0.285, 1.14) Rate

13. γ Strength of density dependence of worm egg production Uniform (0.00175, 0.007) Rate

14. φ Combined improved water and sanitation (WASH) effect Uniform (0.25, 1.0) Coverage proportion

15. τ Interval between treatment rounds per year Uniform (0.25, 1.0) Treatment rounds

16. gp Proportion of PSAC treated Uniform (0.25, 1.0) Treatment proportion

17. gc Proportion of SAC treated Uniform (0.25, 1.0) Treatment proportion

18. ga Proportion of adults treated Uniform (0.25, 1.0) Treatment proportion

19. h Drug efficacy Uniform (0.25, 1.0) Efficacy level

The references for the initial values were provided during the original model formulation and analysis (36).

burden elimination). This kind of analysis is important in
enabling STH control programmes to target the scarce resources
to the most influencing parameters that would directly impact on
reducing the host’s worm burden, hence facilitating an efficient
way of reaching STH elimination.

2.3. Overview of Sensitivity Analysis
Methods
SA methodological approaches can be divided into three
categories based on their methodology: (1) mathematical;
(2) statistical; and (3) graphical (12, 49). The classification
of SA methodology aids in determining whether or not a
method is appropriate for a certain model and analysis goal.
Table 2 summarizes some of the commonly used sensitivity
analysis methods.

Mathematical methods are used to determine how sensitive a
model’s output is to a given input’s range of fluctuation. These
methods usually entail computing the output for a few input
values that indicate the input’s probable range. These methods
do not account for variance in the output owing to variance
in the inputs, but they can be used to examine the impact of
a wide range of input values on the output (50). Mathematical
approaches can aid with input screening, verification and
validation, as well as identifying inputs that require additional
data or investigation (51). Mathematical methods include
nominal range SA, break-even analysis, difference in log-odds
ratio, automatic difference, and among others.

Statistical approaches entail running simulations with
probability distributions allocated to the inputs and analyzing
the impact of variation in the inputs on the output distribution
(52). One or more inputs are varied at a time, depending on

the method. Statistical approaches can be used to determine the
effect of interactions among numerous inputs. Various strategies,
such as Monte Carlo simulation, Latin hypercube sampling, and
other methods, can be used to determine the range and relative
likelihood of inputs (53). A variety of strategies can be used to
assess the model’s sensitivity to individual or groups of inputs
(52). Statistical approaches include regression analysis, analysis
of variance, response surface methods, FAST method, mutual
information index, and among others.

Graphical approaches illustrate sensitivity using graphs,
charts, or surfaces. In general, graphical tools are used to
show how variations in inputs affect an output (54). Graphical
approaches can be used to screen a model before further
investigation or to illustrate complex input–output dependencies
(55). For a better depiction, graphical methods can be utilized to
supplement the results of mathematical and statistical methods
(56). Graphical methods include scatter plots, cobweb plots,
contribution to the sample mean (CSM) plots, and among others.

2.4. Sensitivity Analysis Using eFAST
Method
The Fourier Amplitude Sensitivity Test is a global sensitivity
analysis method based on the variance decomposition technique,
it was developed by Cukier and colleagues in the early 1970s
(58). This GSA method uses sinusoidal functions (x = f (Ns))
and the orthogonality property of the Fourier Series (FS) (59)
to give an approximation of the total model variance in terms
of the real and imaginary coefficients of the FS (57). First-order
index of a particular factor, say Xi, is given by the proportion of
this total variance attributable to the FS harmonics caused by that
particular factor (Xi). The first numerical implementation of this
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TABLE 2 | A summary of key sensitivity analysis methods, stating whether they are local or global methods, their ability to detect interactions between inputs and handle

nonlinearities in the model, their computational cost, number of parameter evaluations and aims.

Methods Type Interactions Nonlinearities Computational cost Evaluations Aim(s)

One-way Local No No Low OAT Rank

Multi-way Local No No Low MAT Rank

Local-derivative Local No No Low OAT Rank

Morris Global Yes Yes Medium OAT Screen

Sobol Global Yes Yes High MAT Rank, Screen

FAST/eFAST Global Yes Yes High MAT Rank, Screen

DGSM Global Yes Yes Medium OAT Screen

Sensitivity index Local No No Low OAT Rank

Importance index Global No Yes Low OAT Rank

CCi Global No No Medium OAT Rank

SRCi Global No No Medium OAT Rank

PRCi Global Yes No Medium OAT Rank

SRCCi Global No Yes Medium OAT Rank

PRCCi Global Yes Yes Medium OAT Rank

The table was adopted from a sensitivity analysis methods review paper (57).

FAST: Fourier Amplitude Sensitivity Test; eFAST: extended Fourier Amplitude Sensitivity Test.

DGSM: Derivative-based global sensitivity measures; CCi : Pearson’s correlation coefficient; SRCi : Standardized regression coefficient.

PRCi : Partial regression coefficient; SRCCi : Spearman rank correlation coefficient; PRCCi : Partial rank correlation coefficient.

OAT: One-at-a-time; MAT: Many-at-a-time.

calculation was done in the early 1980s by McRae and colleagues
(60). However, themajor limitation of the FAST approach, is that,
it can only compute the first-order indices of each factor, not the
total order indices.

Saltelli and colleagues (15), extended the FAST method to
include the computation of the total-order indices of each
parameter, giving rise to the extended FAST (eFAST)method. The
eFAST gives quantitative information contained in the first and
total-order sensitivity indices (SI). This method is more efficient
than the other variance-based methods, like Sobol method, since
it calculates all indices in one set of model evaluations (61).
However, just like most variance-based methods, eFAST is more
computationally expensive than the derivative and regression-
based methods.

2.4.1. Computation of the First-Order Sensitivity

Index (SIi)
In FAST/eFAST method, input parameters are varied to bring
about variation in model output, this variation is quantified using
the standard statistical notion of variance;

s2 =

∑N
i=1

(

yi − ȳ
)2

N − 1
(4)

where, N is the sample size (equivalently, the number of model
runs), yi the ith model output, and ȳ the sample mean.

The algorithm then partitions the output variance, allocating
fractions of the variance explained by variation in each input
parameter (i.e., partial variation). Allocation of variation in
FAST/eFAST is achieved by varying different parameters at
different frequencies, while encoding the identity of parameters
in the frequency of their variation (61). The strength of each
parameter’s frequency in the model output is then measured

using Fourier analysis. Thus, how strongly a parameter’s
frequency propagates from input to the output serves as the
measure of the model’s sensitivity to the parameter.

Mathematically, we consider the function,

Y = f (X) = f (X1,X2, ...,Xn) (5)

where Xi = [0, 1]; for i = 1, 2, ..., n.
The key aim of FASTmethod is to apply the Ergodic theorem (62)
to transform the n-dimensional integral

∫ 1

0

∫ 1

0
...

∫ 1

0
f (X1,X2, ...,Xn)dX1dX2...dXn (6)

to a one-dimensional integral.
Consider a multi-dimensional Fourier transformation of the
function f that allows a variance-based decomposition of the
samples in the input space along a curve defined as,

xi(s) = Gi(sin(ωis)); for i = 1, 2, ...., n (7)

Where x = (x1, x2, ..., xn) denotes a general point in the input
space that has been sampled, ωi is the ith user-specified angular
frequency corresponding to each input, sǫR is a variable over
the range (−∞,∞), and Gi is the ith transformation function
(63). Varying s allows a multi-dimensional exploration of the
input space since xis are being simultaneously varied. Typically,
we require n to be between 1,000 to 10,000 samples from the
input space.
After applying the function f , the resulting scalar output
(denoted by Y) produce different periodic functions based on
different ωi. If the output Y is sensitive to changes in the ith input
factor, the periodic function of Y corresponding to frequency ωi

will have a high amplitude.
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Specifically, we express the model, Y = f (s) =

f (x1(s), x2(s), ..., xn(s)) as a Fourier series;

Y = f (s) =
∞
∑

p=−∞

Apcos(ps)+ Bpsin(ps) (8)

Using a domain of frequencies given by pǫZ =

−∞, ...,−1, 0, 1, ...,∞, then the Fourier coefficients Ap and
Bp are defined as,

Ap =
1

2π

∫ π

−π

f (s)cos(ps)ds (9)

and

Bp =
1

2π

∫ π

−π

f (s)sin(ps)ds (10)

Therefore, the mean and variance of Y in Equation (8) can be
approximated, respectively, as,

E(Y) ≈
1

2π

∫ π

−π

f (s)ds (11)

and

Var(Y) ≈
1

2π

∫ π

−π

f 2(s)ds− E2(Y) (12)

Further, by applying the Parseval’s theorem (64) to the
approximations of the mean Equation (11) and the variance
Equation (12), we can get,

Var(Y) ≈ 2
∞
∑

p=1

(

A2
p + B2p

)

(13)

Thus, the FAST first-order sensitivity index (SIi) can be defined
as,

SIi =
Var(Yi)

Var(Y)

=

2
∑∞

q=1

(

A2
q.ωi

+ B2q.ωi

)

2
∑∞

p=1

(

A2
p + B2p

)

≈

∑M
q=1

(

A2
q.ωi

+ B2q.ωi

)

∑n
i=1

∑M
q=1

(

A2
q.ωi

+ B2q.ωi

)

(14)

whereM denotes the maximum harmonic (usually about 4 or 6)
(65). The first-order sensitivity index SIi represent the fraction of
the model output variance due to the input variable (Xi). A large
index (i.e., SIi > 0.1) means a significant first-order effect (61).

TABLE 3 | The first and total-order sensitivity indices (SI) of each parameter calculated using eFAST method for the case of Ascaris lumbricoides.

PSAC (Mp) SAC (Mc) Adults (Ma) Infectious materials (L)

Parameters SIi SITi SIi SITi SIi SITi SIi SITi

βp 0.1701 0.1755 0.0989 0.0994 0.0669 0.0673 0.1263 0.1271

βc 0.0977 0.0981 0.1290 0.1367 0.0787 0.0791 0.1047 0.1050

βa 0.0647 0.0652 0.0649 0.0657 0.1202 0.1322 0.0893 0.0904

µ 0.4005 0.4526 0.3637 0.4182 0.4255 0.4918 0.3453 0.3884

µL 0.1210 0.1286 0.0859 0.0925 0.0748 0.0802 0.1235 0.1334

np 0.0364 0.0367 0.0275 0.0278 0.0320 0.0323 0.0496 0.0501

nc 0.0453 0.0463 0.0671 0.0689 0.0324 0.0328 0.0700 0.0715

na 0.1031 0.1067 0.1091 0.1127 0.1088 0.1139 0.1358 0.1405

λp 0.0572 0.0577 0.0312 0.0316 0.0252 0.0255 0.0680 0.0686

λc 0.0881 0.0940 0.1497 0.1594 0.0675 0.0731 0.1336 0.1434

λa 0.2434 0.2649 0.2465 0.2725 0.2588 0.2853 0.2970 0.3299

k 0.0769 0.0785 0.0640 0.0661 0.0669 0.0688 0.0922 0.0940

γ 0.1759 0.1855 0.1718 0.1823 0.1716 0.1827 0.1819 0.1939

φ 0.5603 0.6762 0.5680 0.6913 0.5409 0.6897 0.5458 0.6956

τ 0.1431 0.1538 0.1772 0.1889 0.1500 0.1621 0.1636 0.1740

gp 0.0669 0.0688 0.0308 0.0310 0.0286 0.0288 0.0405 0.0407

gc 0.0389 0.0399 0.0520 0.0556 0.0329 0.0338 0.0705 0.0727

ga 0.1440 0.1528 0.1606 0.1704 0.2301 0.2476 0.1889 0.2019

h 0.2694 0.3013 0.2697 0.2998 0.2848 0.3201 0.2696 0.2979

We assumed a sampling size of n = 1, 000 and time t = 100 years. The SI presented here were the average values for the time interval.
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FIGURE 1 | Comparison of the total-order sensitivity index of the parameters among the hosts using the eFAST method of sensitivity analysis for the case of Ascaris

lumbricoides. The greater the sensitivity index, the more critical the parameter is to the model. The red dotted line indicated the cut-off sensitivity index value (SI = 0.1)

above which a parameter was deemed significantly influential to the model outcome. Bp: PSAC infection transmission rate, Bc: SAC infection transmission rate, Ba:

adults infection transmission rate, Mu: mature worm mortality rate, MuL: infectious materials mortality rate, np: PSAC population proportion, nc: SAC population

proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative contributions by

adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, Tau: interval between treatment rounds per

year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy.

FIGURE 2 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of PSAC (Mp) for the case of Ascaris lumbricoides. betap: PSAC infection transmission rate, betac: SAC infection

transmission rate, betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion,

nc: SAC population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI = 0.1) above which a parameter was deemed significantly influential to the model outcome.
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FIGURE 3 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of SAC (Mc) for the case of Ascaris lumbricoides. betap: PSAC infection transmission rate, betac: SAC infection

transmission rate, betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion,

nc: SAC population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI = 0.1) above which a parameter was deemed significantly influential to the model outcome.

2.4.2. Computation of the Total-Order Sensitivity

Index (SITi )
Theoretically, the eFAST method (a GSA method) can compute
sensitivity index of any order, as was given by Saltelli and
colleagues (15). However, the computation for high order effects
is cumbersome when the number of input parameters is large.
A simple way for computation of the total order effect of each
input parameter was therefore proposed by Homma and Saltelli
(66), and it is summarized below Equation (15). Accordingly,
the total-order sensitivity index (SITi ) can be defined as the
summed sensitivity index of the entire complementary set of
parameters (i.e., all parameters except i) using their identification
frequencies. Therefore, SITi is then calculated as the remaining
variance after the contribution of the complementary set (sci )
is removed.

SITi = SIi − SIi,ci

= SIi(1− SIci )

= 1− SIci

(15)

Where the SIi and SIi, ci represents the first-order and high-order
effects respectively. SIci is the sum of all the SIi1 ,i2 ,...,is terms that
excludes the index (i). Therefore, the SITi includes the higher-
order, nonlinear interactions between the parameter of interest

and complementary set of parameters. A large index (i.e., SITi >

0.1) means a significant total-order effect (61).

3. RESULTS

3.1. Ascaris lumbricoides
The calculated sensitivity index for each parameter for the case
of Ascaris lumbriocoides is presented in Table 3. Both the first-
order (SIi) and total-order (SITi ) sensitivity indices for each host
is presented. From the table, WASH coverage (φ) was the most
influential parameter across all the hosts, while population of the
PSAC (np), fecundity parameter for PSAC (λp), and proportion
of PSAC treated (gp) were the least influential parameters
among PSAC, SAC, adults and the infectious materials in the
environment, respectively.

The comparison of the total-order sensitivity index (SITi ) for
each parameter among the hosts is outlined in Figure 1. From the
figure, φ was the most influential (sensitive) parameter among
all the hosts, followed by µ, h, λa, ga, γ , τ , and then na. Other
parameters like βp, βc, βa, µL, and λc were only influential in
some specific hosts, directly related to these parameters, but
not in all the hosts. However, parameters like np, nc, λp, k, gp,
and gc were not influential, or rather did not meet the pre-
defined cut-off value of SI = 0.1, and hence did not contribute
significantly to the model outcome (i.e., elimination of the worm
burden). Additionally, the Supplementary Figure S1 shows the
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FIGURE 4 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of adults (Ma) for the case of Ascaris lumbricoides. betap: PSAC infection transmission rate, betac: SAC infection

transmission rate, betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion,

nc: SAC population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI = 0.1) above which a parameter was deemed significantly influential to the model outcome.

most influential (sensitive) parameters as indicated by both first
and total order indices and compared among all the hosts and
infectious materials.

Figures 2–4 compare the first-order (SIi) and total-order
(SITi ) sensitivity indices for each parameter for PSAC, SAC,
and adults respectively, while that for infectious materials is
given in the supplementary file (Supplementary Figure S2). All
parameters, except φ, were not influential (or rather did not
meet the SI=0.1 cut-off value) if we only consider the first-order
sensitivity index (i.e., the influence of a single parameter on its
own). However, several parameters showed significant influence
(sensitivity) when we considered them in the presence of others
(total-order sensitivity) (Figure 1).

3.2. Hookworm
The calculated sensitivity index for each parameter for the case of
hookworm is presented in Table 4. Both the first-order (SIi) and
total-order (SITi ) sensitivity indices for each host is presented.
From the table, the adult parasite death rate (µ) was the most
influential parameter among the PSAC, adults and infectious
materials in the environment, while WASH coverage (φ) was
the most influential parameter among the SAC. The population
of the PSAC (np) was the least influential parameter across all
the hosts.

The comparison of the total-order sensitivity index (SITi ) for
each parameter by the hosts is outlined in Figure 5. From the

figure, µ was the most influential (sensitive) parameter among
all the hosts, followed by φ, λa, h, βp, γ , ga, and then τ . Other
parameters like βc, βa, and λc were only influential in some
specific hosts, directly related to these parameters, but not in
all the hosts. However, parameters like np, nc, na, µL, λp, k,
gp, and gc were not influential, or rather did not meet the pre-
defined cut-off value of SI = 0.1, and hence did not contribute
significantly to the model outcome (i.e., elimination of the worm
burden). Additionally, the Supplementary Figure S3 shows the
most influential (sensitive) parameters as indicated by both first
and total order indices and compared among all the hosts and
infectious materials.

Figures 6–8 compare the first-order (SIi) and total-order
(SITi ) sensitivity indices for each parameter for PSAC, SAC,
and adults respectively, while that for infectious materials is
given in the supplementary file (Supplementary Figure S4). All
parameters, except µ and φ, were not influential (or rather did
not meet the SI=0.1 cut-off value) if we only consider the first-
order sensitivity index (i.e., the influence of a single parameter
on its own). However, several parameters showed significant
influence (sensitivity) when we considered them in the presence
of others (total-order sensitivity) (Figure 5).

3.3. Trichuris trichiura
The calculated sensitivity index for each parameter for the case
of Trichuris trichiura is presented in Table 5. Both the first-order
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TABLE 4 | The first and total-order sensitivity indices (SI) of each parameter calculated using eFAST method for the case of hookworm.

PSAC (Mp) SAC (Mc) Adults (Ma) Infectious materials (L)

Parameters SIi SITi SIi SITi SIi SITi SIi SITi

βp 0.2366 0.2429 0.1877 0.1890 0.1516 0.1527 0.2023 0.2038

βc 0.0848 0.0861 0.1112 0.1162 0.0793 0.0803 0.0974 0.0993

βa 0.0877 0.0892 0.0649 0.0657 0.0773 0.0843 0.1005 0.1054

µ 0.5748 0.6580 0.5575 0.6448 0.5664 0.6661 0.5524 0.6298

µL 0.0665 0.0670 0.0788 0.0795 0.0311 0.0313 0.0577 0.0582

np 0.0159 0.0161 0.0245 0.0246 0.0190 0.0191 0.0358 0.0360

nc 0.0203 0.0208 0.0281 0.0287 0.0207 0.0212 0.0392 0.0399

na 0.0754 0.0774 0.0763 0.0782 0.0685 0.0704 0.0896 0.0930

λp 0.0515 0.0518 0.0278 0.0279 0.0213 0.0214 0.0525 0.0527

λc 0.0810 0.0838 0.1675 0.1734 0.0538 0.0561 0.1134 0.1184

λa 0.3169 0.3440 0.3299 0.3637 0.3387 0.3731 0.3804 0.4231

k 0.0569 0.0576 0.0675 0.0685 0.0535 0.0545 0.0745 0.0755

γ 0.1685 0.1757 0.1677 0.1751 0.1677 0.1765 0.1814 0.1904

φ 0.5695 0.6435 0.5790 0.6459 0.5590 0.6593 0.5495 0.6293

τ 0.1245 0.1314 0.1798 0.1883 0.1151 0.1218 0.1351 0.1403

gp 0.0586 0.0612 0.0390 0.0394 0.0308 0.0310 0.0380 0.0384

gc 0.0453 0.0461 0.0392 0.0420 0.0282 0.0288 0.0585 0.0598

ga 0.1290 0.1363 0.1450 0.1530 0.1611 0.1717 0.1317 0.1394

h 0.2629 0.2835 0.3180 0.3415 0.2446 0.2680 0.2472 0.2660

We assumed a sampling size of n = 1000 and time t = 100years. The SI presented here were the average values for the time interval.

FIGURE 5 | Comparison of the total-order sensitivity index of the parameters among the hosts using the eFAST method of sensitivity analysis for the case of

hookworm. The greater the sensitivity index, the more critical the parameter is to the model. The red dotted line indicated the cut-off sensitivity index value (SI = 0.1)

above which a parameter was deemed significantly influential to the model outcome. Bp: PSAC infection transmission rate, Bc: SAC infection transmission rate, Ba:

adults infection transmission rate, Mu: mature worm mortality rate, MuL: infectious materials mortality rate, np: PSAC population proportion, nc: SAC population

proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative contributions by

adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, Tau: interval between treatment rounds per

year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy.

(SIi) and total-order (SITi ) sensitivity indices for each host is
presented. From the table, WASH coverage (φ) was the most

influential parameter across all the hosts. The least influential
parameters were; proportion of SAC treated (gc), proportion of
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FIGURE 6 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of PSAC (Mp) for the case of hookworm. betap: PSAC infection transmission rate, betac: SAC infection transmission

rate, betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion, nc: SAC

population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI=0.1) above which a parameter was deemed significantly influential to the model outcome.

PSAC treated (gp) and fecundity parameter for PSAC (λp), and
these parameters had varied values across each of the hosts (i.e.,
PSAC, SAC, and adults) and the infectious materials.

The comparison of the total-order sensitivity index (SITi ) for
each parameter by the hosts is outlined in Figure 9. From the
figure, φ was the most influential (sensitive) parameter among
all the hosts, followed by h, µ, λa, ga, τ , γ , and then na. Other
parameters like βp, βa, and λc were only influential in some
specific hosts, directly related to these parameters, but not in
all the hosts. However, parameters like βc, µL, np, nc, λp, k,
gp, and gc were not influential, or rather did not meet the pre-
defined cut-off value of SI=0.1, and hence did not contribute
significantly to the model outcome (i.e., elimination of the worm
burden). Additionally, the Supplementary Figure S5 shows the
most influential (sensitive) parameters as indicated by both first
and total order indices and compared among all the hosts and
infectious materials.

Figures 10–12 compare the first-order (SIi) and total-order
(SITi ) sensitivity indices for each parameter for PSAC, SAC
and adults respectively, while that for infectious materials
is given in supplementary file (Supplementary Figure S6).
All parameters, except φ and h, were not influential (or
rather did not meet the SI = 0.1 cut-off value) if we only
consider the first-order sensitivity index (i.e., the influence of
a single parameter on its own). However, several parameters
showed significant influence (sensitivity) when we considered

them in the presence of others (total-order sensitivity)
(Figure 9).

4. DISCUSSION

Recently, elimination of NTDs has gained focus and increased
interest among the control programmes in the endemic
countries around the globe (67–69). This interest has seen more
fundings made available from international agencies for the
donation of drugs, revamped (re)mapping of new transmission
areas, consolidation of WASH efforts in the communities,
and innovative ways of achieving global elimination (70, 71).
Resources are becoming available for the treatment of STH
infections through either school-based deworming (SBD) or
community-based deworming (CBD) strategies (72). However,
little mathematical modeling studies have been conducted to
assess and investigate key parameters influencing transmission
and elimination of STH infections. In this study, we assessed
and estimated the sensitivities of key parameters influencing the
elimination of STH infections in Kenya. The results of this study
would be helpful in guiding the design and implementation of
an efficient STH elimination strategy in the country, since it has
clearly indicated which parameters are siginificantly influencing
STH elimination and are thus worth investing in.

We performed a global sensitivity analysis of an STH-
transmission model using 19 parameters thought to influence
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FIGURE 7 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of SAC (Mc) for the case of hookworm. betap: PSAC infection transmission rate, betac: SAC infection transmission rate,

betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion, nc: SAC

population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI = 0.1) above which a parameter was deemed significantly influential to the model outcome.

the transmission and elimination of STH infections in Kenya.
These parameters can be conveniently broadly grouped as;
(i) intervention-related, (ii) worm-related, (iii) population-
related, and (iv) transmission and fecundity-related parameters.
Intervention-related parameters analyzed included the combined
effect of improved water source and sanitation (i.e., WASH
coverage; φ), rounds of mass treatment (i.e., MDA) offered per
year (τ ), proportion of individuals treated in every treatment
round (gi for i = p, c, a), and the efficacy of the drug used during
treatment (h). Worm-related parameters included mortality rate
of the mature worms in the human host (µ), mortality rate of
the free-living infectious materials in the environment (µL), and
the strength of the density dependence of worm egg production
(γ ) and the over-dispersion (aggregation) parameter of the worm
burden distribution (k). Population-related parameters included
the proportion of each host in the overall population (ni for
i = p, c, a). Transmission and fecundity-related parameters
included infection transmission rate among each host (βi for
i = p, c, a) and the relative contribution (contamination) to the
environment by each host (λi for i = p, c, a), respectively.

Sensitivity indices for each parameter were calculated and
compared for each human host as well as for the infectious
materials. SI values ranged from zero to one, with zero value
indicating that the parameter had no influence (effect) on the
model outcome (elimination), while the value one indicating that

the parameter had a strong influence on the model outcome.
First-order SI (SIi) values indicated the single influence of a
particular parameter in the absence of the effect of the other
parameters, while the total-order SI (SITi ) values demonstrated
the combined effect of a parameter taking into account the effect
of other parameters. A cut-off value of SI = 0.1 was adopted (61),
SI values above this cut-off were considered to be significantly
influential to the model outcome with significance increasing
with the increase in the SI value. On the other hand, SI values
below the cut-off were considered to have non-significant (little)
influence with zero value indicating no influence.

All the intervention-related parameters (φ, τ , and h) analyzed
in this study were found to be significantly most influential to the
model outcome for all the three parasites (Ascaris lumbricoides,
hookworm and Trichuris trichiura). These results indicate that
for a control programme to effectively eliminate these threemajor
parasites, prioritization ofWASH interventions and optimization
of its coverage coupled with interventions that directly kill the
adult worms in the human hosts (i.e., interventions like MDA to
at-risk individuals) should always be optimized. This modeling
results agree with past studies that have shown that the impact of
an intervention strategy employed and its specific properties like
the efficacy of the drug used and the number of times (rounds) the
drug is administered, can be very sensitive to the reproduction
number [Ro: i.e., a summary parameter for the intensity of an

Frontiers in Public Health | www.frontiersin.org 12 March 2022 | Volume 10 | Article 841883

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Okoyo et al. Sensitivity Analysis of Soil-Transmitted Helminth Model

FIGURE 8 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of adults (Ma) for the case of hookworm. betap: PSAC infection transmission rate, betac: SAC infection transmission

rate, betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion, nc: SAC

population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI = 0.1) above which a parameter was deemed significantly influential to the model outcome.

TABLE 5 | The first and total-order sensitivity indices (SI) of each parameter calculated using eFAST method for the case of Trichuris trichiura.

PSAC (Mp) SAC (Mc) Adults (Ma) Infectious materials (L)

Parameters SIi SITi SIi SITi SIi SITi SIi SITi

βp 0.1331 0.1449 0.0471 0.0473 0.0507 0.0509 0.0524 0.0526

βc 0.0300 0.0302 0.0859 0.0949 0.0208 0.0209 0.0284 0.0288

βa 0.0428 0.0434 0.0569 0.0579 0.1269 0.1408 0.0622 0.0642

µ 0.3532 0.3903 0.3488 0.3911 0.3803 0.4261 0.2932 0.3274

µL 0.0388 0.0405 0.0254 0.0266 0.0255 0.0267 0.0356 0.0388

np 0.0405 0.0407 0.0304 0.0305 0.0240 0.0241 0.0344 0.0346

nc 0.0263 0.0266 0.0303 0.0308 0.0177 0.0178 0.0248 0.0258

na 0.0992 0.1023 0.1103 0.1136 0.1214 0.1256 0.1270 0.1319

λp 0.0313 0.0319 0.0196 0.0200 0.0146 0.0148 0.0222 0.0227

λc 0.0935 0.0982 0.1536 0.1608 0.0648 0.0696 0.1086 0.1187

λa 0.2658 0.2876 0.2555 0.2799 0.2953 0.3206 0.3047 0.3423

k 0.0939 0.0960 0.0766 0.0789 0.0810 0.0833 0.0840 0.0865

γ 0.1486 0.1548 0.1467 0.1527 0.1476 0.1549 0.1533 0.1614

φ 0.5558 0.6513 0.5592 0.6590 0.5386 0.6504 0.5281 0.6398

τ 0.1905 0.2112 0.2281 0.2512 0.1960 0.2199 0.1824 0.2007

gp 0.0697 0.0804 0.0187 0.0189 0.0237 0.0238 0.0250 0.0253

gc 0.0199 0.0206 0.0793 0.0927 0.0249 0.0259 0.0413 0.0439

ga 0.1892 0.2052 0.1979 0.2156 0.3180 0.3531 0.2632 0.2882

h 0.3944 0.4501 0.4122 0.4722 0.3744 0.4347 0.3535 0.4088

We assumed a sampling size of n = 1000 and time t = 100 years. The SI presented here were the average values for the time interval.
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FIGURE 9 | Comparison of the total-order sensitivity index of the parameters among the hosts using the eFAST method of sensitivity analysis for the case of Trichuris

trichiura. The greater the sensitivity index, the more critical the parameters are for the model outcome. Bp: PSAC infection transmission rate, Bc: SAC infection

transmission rate, Ba: adults infection transmission rate, Mu: mature worm mortality rate, MuL: infectious materials mortality rate, np: PSAC population proportion, nc:

SAC population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, Tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy.

FIGURE 10 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of PSAC (Mp) for the case of Trichuris trichiura. betap: PSAC infection transmission rate, betac: SAC infection

transmission rate, betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion,

nc: SAC population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI = 0.1) above which a parameter was deemed significantly influential to the model outcome.
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FIGURE 11 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of SAC (Mc) for the case of Trichuris trichiura. betap: PSAC infection transmission rate, betac: SAC infection

transmission rate, betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion,

nc: SAC population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI=0.1) above which a parameter was deemed significantly influential to the model outcome.

infection transmission (73)] and the overall model outcome
(33). If these parameters are optimized, then the impact of the
intervention is enhanced implying faster elimination of the worm
burden in the hosts (3). However, for the gi for i = p, c, a, only ga
was significantly influential while gp and gc were not influential
at all for any of the parasites. This could be explained by the
fact that in this model, substantial proportion of the individuals
considered were adults, implying that if greater proportion of
adults were treated then they would certainly influence the
elimination of the worms in the entire community (35).

Mixed impacts on sensitivity analysis regarding worm-related
parameters were observed. µ and γ were the only single most
important parameters across all the three parasites and hosts.
Adult worm mortality rate highly influenced the model outcome
since morbidity is related to the number of worms harbored,
people with light intensity (few worms) usually do not suffer
from the infection (74). Therefore, higher mortality rate indicate
reduced worm burden in the host. On the other hand, µL was
only sensitive among the PSAC as well as infectious materials in
the environment and for the case of Ascaris lumbricoides only.
This finding is supported by previous epidemiological studies
that have shown high STH (especially Ascaris lumbricoides)
burden among pre-school children (75). This high worm burden
in these younger children is attributable to their frequent
interaction with the contaminated environment especially when

they are playing with the soil, eating soil (geophagy), or practicing
open defecation (75, 76). Therefore, changes in the mortality
rate of the infectious materials in the environment will certainly
influence the level of worm burdens in the PSAC owing to
their high interaction with the environment. However, from
our results, k did not show any significant importance for
any parasites and hosts. We note that k in our model was
defining the aggregation parameter that controls the extent of
the over-dispersion of the worm population in the host, with
a highly aggregated distribution when k < 1 and a more
evenly distributed worm population for large k (i.e., k > 1)
(77). In terms of influencing the elimination of worm burden
in the community, this parameter has been shown to be less
important (33, 78).

For the population-related parameters (ni for i = p, c, a),
only adult population (na) was observed to be influential among
all the hosts as well as infectious materials, but only for
the case of Ascaris lumbricoides and Trichuris trichiura. This
finding can be mainly attributed to the high adult population
proportion considered in the model. Further, given that for a
long time STH interventions have been focused toward school-
going children and driven their prevalence to lower levels (48,
79), adults have now emerged as the new reservoir for the
infections (80, 81), thus for elimination of STH (especially
Ascaris lumbricoides and Trichuris trichiura) to be achieved,
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FIGURE 12 | Plot of the first (solid red line with cloudy areas showing confidence intervals) and total-order (solid black line with cloudy areas showing confidence

intervals) sensitivity indices of the parameters of adults (Ma) for the case of Trichuris trichiura. betap: PSAC infection transmission rate, betac: SAC infection

transmission rate, betaa: adults infection transmission rate, mu: mature worm mortality rate, muL: infectious materials mortality rate, np: PSAC population proportion,

nc: SAC population proportion, na: adults population proportion, lambdap: relative contributions by PSAC, lambdac: relative contributions by SAC, lambdaa: relative

contributions by adults, k: over-dispersion parameter, gma: strength of density dependence of worm egg production, phi: WASH effect, tau: interval between

treatment rounds per year, gp: proportion of PSAC treated, gc: proportion of SAC treated, ga: proportion of adults treated, and h: drug efficacy. The black dotted line

indicated the cut-off sensitivity index value (SI=0.1) above which a parameter was deemed significantly influential to the model outcome.

interventions should target adults (akin to CBD strategy), indeed
our model already showed that this group greatly influenced the
model outcome. In fact, Kenya has now began implementing,
in pilot basis, the delivery of community-based mass treatment
for STH infections, alongside the long-standing school-based
MDA (37, 82, 83). This strategy aims to reduce the infection
burden in the entire community, thus achieve the elusive
STH elimination.

Similarly, transmission and fecundity-related parameters,
βi and λi for i = p, c, a, respectively, showed differing
levels of influence on the model outcome relative to
the specific host and worm species. The model analysis
showed that infection transmission as well as environmental
contamination was amplified by the pre-school children
and adult population respectively. The high transmission
rates in pre-school children could be due to their regular
interaction with the contaminated environment (84). Whilst
the high environmental contamination (fecundity) by adults
can be explained by the density-dependence effects (adults
proportion was high in the model), as well as the fact that
adults currently harbor higher burden of the infections
due to their low treatment coverage levels (79). If the high
transmission rate among the pre-school children and high
contamination rate by the adults are left un-addressed by the
control programmes, then elimination period of STH might
drag further.

5. CONCLUSION

This model sensitivity analysis demonstrated that for STH
control programmes to effectively eliminate STH worm burden
(and within a short period) in the entire community, key
parameter groupings; combined effect of improved water source
and sanitation, rounds of treatment offered, efficacy of the
drug used during treatment, proportion of the adult population
treated, mortality rate of the mature worms in the human
host, and the strength of the density-dependence of worm egg
production, need to be targeted and should be well coined within
the package of interventions offered by the control programmes.
This modeling results are significant to the Kenyan STH control
program and to the global STH control community since it
clearly Elucidate key parameters to be targeted for inclusion
within the STH intervention packages, which is important
information that is needed especially at this time when control
programs globally are aiming to eliminate STH by the year 2030.
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