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Abstract
Reducing neonatal and child mortality is a global
priority. In countries without comprehensive vital
registration data to inform policy and planning, sta-
tistical modelling is used to estimate the distribution
of key causes of death. This modelling presents chal-
lenges given that the input data are few, noisy, often
not nationally representative of the country from which
they are derived, and often do not report separately on
all of the key causes. As more nationally representa-
tive data come to be available, it becomes possible to
produce country estimates that go beyond fixed-effects
models with national-level covariates by incorporating
country-specific random effects. However, the existing
frequentist multinomial model is limited by conver-
gence problems when adding random effects, and had
not incorporated a covariate selection procedure simul-
taneously over all causes. We report here on the transla-
tion of a fixed effects, frequentist model into a Bayesian
framework to address these problems, incorporating a
misclassification matrix with the potential to correct for
mis-reported as well as unreported causes. We apply the
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new method and compare the model parameters and
predicted distributions of eight key causes of death with
those based on the previous, frequentist model.
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LASSO, neonatal, outcome misclassification

1 INTRODUCTION

Reducing child (under-5) mortality has been a priority for individual countries and the broader
international community for decades, but was given added impetus by the Millennium Devel-
opment Goals (MDGs) established by the United Nations (UN) in 2000. Although dramatic
reductions occurred over the MDG period until 2015, an estimated 5.3 million deaths still
occurred worldwide in children under five in 2019 (UNICEF et al., 2019). Neonatal deaths (those
in the first 28 days of life) account for 47% of under-5 child deaths (UNICEF et al., 2019), and have
reduced more slowly than those in the 1- to 59-month age group (Hug et al., 2019). The Sustain-
able Development Goals (SDGs; 2015–2030), which followed on from the MDGs, include targets
of 25 or fewer under-5 deaths and 12 or fewer neonatal deaths per 1000 live births for all countries
by 2030 (United Nations, 2017).

Understanding the cause-of-death (COD) distribution of neonatal and child deaths is impor-
tant for selecting appropriate interventions to reduce mortality. Ideally, this information would be
available through regularly updated, high-quality data collection systems that are organised at the
national level but operate at the local level. At present, only around 70 countries have high-quality
vital registration (VR) systems that regularly collect and collate causes of death (World Health
Organization, 2017), and the majority of these are high-income countries with low mortality rates.
Thus, statistical modelling remains an important tool for estimating the distribution of causes
that lead to death for all age groups, including neonates.

Nationally comparable estimates of the neonatal and 1- to 59-month COD distributions have
been produced for 190+ countries since 2005 by the Child Health Epidemiology Reference Group
(CHERG) and Maternal Child Epidemiology Estimation (MCEE) group in collaboration with
the World Health Organization (WHO). For countries without high-quality VR data, these dis-
tributions have been estimated using regression models within a frequentist framework (Liu
et al., 2016). This existing approach has several strengths but some important limitations, includ-
ing the approach to covariate selection, the lack of a mechanism to give additional weight to
country-specific data for a country’s own estimates and the inability to account for misclassifica-
tion in the reported CODs.

In this paper, we present our work on translating the existing COD estimation method into
the Bayesian framework, extending it to include country-specific random effects (RE) and handle
COD misclassification, and illustrate its application to neonatal deaths (these models have since
been adapted to estimate under-5 (Perin et al., 2022) and adolescent (Liu, Villavicencio et al., 2022)
causes of death). In Section 1, we briefly describe the existing frequentist strategy and outline
its limitations; in Section 2, we propose methods to address these limitations; in Section 3, we
outline the model building process; in Section 4, we present and evaluate our results for neonatal
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deaths and compare them with results from the previous method; and we outline the strengths,
limitations and implications of this new modelling approach in Section 6.

2 EXISTING STRATEGY AND LIMITATIONS

To produce nationally comparable neonatal COD distributions, we classify each of 194 WHO
member states (countries) into one of three groups: those with (a) high-quality VR data, (b) inad-
equate VR data and low child mortality rates, and (c) inadequate VR data and high child mortality
rates (World Health Organization, 2018). For countries in the first group, we use their VR data
directly to estimate proportional COD distributions. For countries with inadequate VR, we pre-
dict their COD proportions using a ‘low mortality model’ (group 2 countries) or a ‘high mortality
model’ (group 3 countries). In this paper, we focus on the high mortality model as this model is
more technically challenging and requires methodological innovations.

2.1 Data inputs

2.1.1 Cause-of-death data

For the high mortality model, we extracted relevant neonatal COD distributions from studies
conducted in high mortality settings since 1980. Details of the literature review are found in (Oza
et al., 2015). From the review, we identified 95 studies that reported causes for 100,119 neonatal
deaths in 37 countries (range 1–18 studies per country) between 1980 and 2013. Twenty countries
produced one study; only two (Bangladesh and India) produced more than 10.

These studies typically used verbal autopsy (VA) methods to ascertain the cause of death.
This involves interviewing relatives about the symptoms experienced by the deceased individ-
ual and using this information to assign a cause of death (World Health Organization, 2016).
These studies ranged widely in size and specific study methodologies. Where necessary, we
re-classified the recorded CODs into eight key neonatal COD categories: (1) complications of
preterm birth (‘preterm’), (2) intrapartum-related complications (‘intrapartum’), (3) congenital
disorders (‘congenital’), (4) sepsis and other severe infections (‘sepsis’), (5) pneumonia, (6) diar-
rhoea, (7) neonatal tetanus (‘tetanus’) and (8) other causes (‘other’). Case definitions are detailed
elsewhere (Oza et al., 2015).

2.1.2 Covariate data

We considered 14 explanatory variables for inclusion in our model. Nine of these were continuous
metrics: under-five mortality rate (U5MR), neonatal mortality rate (NMR), general fertility rate
(GFR), low birthweight rate (LBW), proportion of women delivering with a skilled birth attendant
(SBA), adult female literacy rate (FLR), proportion of babies protected at birth against tetanus
(PAB), diphtheria/pertussis/tetanus vaccine coverage (DPT), and Bacillus Calmette–Guerin vac-
cine coverage (BCG). The other five covariates were binary (yes/no) and relate to individual
studies: whether reported deaths were from the early neonatal period (‘per.early’; 0–6 days, refer-
ence 0–27 days); whether reported deaths were from the late neonatal period (‘per.late’; 7–27 days,
reference 0–27 days); whether the study was conducted in Sub-Saharan Africa (SSA); whether
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the study was conducted in South Asia (SA); and whether the study distinguished between
prematurity and low birth weight (‘premvslbw’).

2.2 Frequentist modelling approach

We selected ‘intrapartum’ as our baseline cause for a multinomial model as all studies reported
deaths due to intrapartum-related complications and they represent a relatively high proportion
of deaths in high mortality settings. Our frequentist COD modelling approach followed three
steps: (1) select covariates using logistic regression for each (non-baseline) COD Equation (2)
with selected covariates, build a multinomial regression model for all causes simultaneously
and obtain estimated model coefficients; and (3) apply the estimated model coefficients to
national-level covariates to produce country-specific COD distributions. The outcome for each
regression equation in step 1 was the log of the ratio of deaths attributed to the given cause rela-
tive to deaths attributed to the baseline cause, and we used out-of-sample goodness of fit (GOF)
under a jackknife (leave-one-out) procedure to select covariates for each equation.

Not all studies reported CODs in the eight key categories we model. To account for unreported
causes, we re-wrote the multinomial likelihood function based on assumptions about which cause
category deaths from an unreported cause would have been assigned. For example, if preterm,
congenital, or sepsis were unreported, we assumed deaths from these to be in the ‘other’ category.
If pneumonia, diarrhoea, or tetanus were unreported, these were assumed to have been included
in the sepsis/severe infection category.

Detailed methods have been described by Oza et al. (2015) and are summarised in Online
Supplement Text E1.

2.3 Limitations of this modelling approach

These multinomial models have been used for 15 years by the CHERG-MCEE team, with various
minor extensions and modifications over time, to produce neonatal COD estimates for the UN.
However, some key issues led us to investigate further improvements and alternative modelling
approaches.

First, our current modelling strategy does not give additional weight to input data from a
given country for that country’s modelled estimates. Therefore, empirical data from a particular
country do not influence that country’s modelled COD proportions any more than data from other
countries. Previously, almost all the studies in our input database were small and not nationally
representative, and it was not obvious that the national-level estimates for a country should be
particularly influenced by data points from small non-national studies. However, an increasing
number of countries now have data from nationally representative VA studies, and efforts are
underway to increase the number of such studies (COMSA, 2020).

Second, the current covariate selection approach is an efficient method to search over a large
space of covariate combinations. However, two potential limitations with this method are that (1)
it does not evaluate all possible covariate combinations and (2) we select covariates for a multino-
mial model using binomial models. We used individual binomial equations for covariate selection
because a similar multinomial approach would be computationally prohibitive.

Finally, apart from the out-of-sample approach to covariate selection, there are no other
stability-enhancing components in the modelling process to minimise the impact of noisy data
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and the risk of overfitting. The input data in our models contains substantial noise due to mea-
surement error in both the outcome COD and covariate data, which can compromise model
stability. Misclassification of CODs could arise from, for example recording errors, differing case
definitions and causal hierarchies across studies, or poor interviewee recall in VAs; covariate
measurement error can arise from imprecise measurements of difficult-to-measure metrics.

3 PROPOSED NEW METHODS

Various statistical methods are available which can address each of the above limitations, but
implementing them within the existing classical (frequentist) framework proved challenging.

A mixed effects (ME) model with random country-specific intercepts is a way to give more
weight to country-specific empirical data. These models are based on a hierarchical structure that
assumes that some parameters do not vary (i.e. the fixed effects [FE] component) while others are
treated as random variables (i.e. the random effects [RE] component) (Snijders, 2005).

Further, regularisation techniques are a promising set of methods to simultaneously address
the covariate selection and stability issues, by placing a penalty on model complexity. Most of
these methods focus on two ways in which instability arises in the context of out-of-sample pre-
dictions: (1) increasing the number of covariates increases model complexity and therefore the
risk of overfitting the model to the data; and (2) large coefficient values can increase instability. A
subset of regularisation methods exist that enable covariate selection within a multinomial frame-
work without being computationally prohibitive. Least absolute shrinkage and selection operator
(LASSO) and ridge regressions are examples of such regularisation methods (James et al., 2013).
Their general approach is based on including all covariates in the model and maximising the
log-likelihood minus a penalisation/regularisation term, which is a function of the model coeffi-
cients. This results in coefficient values with reduced magnitude. Increasing the penalisation term
in the LASSO regression pushes some covariates to zero (or very close to zero), hence perform-
ing a type of covariate selection within the multinomial model itself. We attempted to implement
the LASSO regression within our frequentist multinomial modelling framework by adding a
penalty term to the likelihood function. The implementation appeared to work in terms of shrink-
ing covariate coefficients towards zero as the LASSO penalty increased in value. However, we
consistently ran into convergence problems.

To address these implementation challenges, we propose shifting our multinomial logistic
regression model from a frequentist framework implemented in Stata (http://www.stata.com) to
a Bayesian framework in R (R Core Team, 2020), incorporating both country-specific RE and the
Bayesian LASSO for covariate selection.

3.1 Shifting to a Bayesian framework

The Bayesian framework is well suited to address the challenges discussed above. First, while ME
models for multinomial logistic regression have been developed for the classical framework, their
flexibility is limited (Hedeker, 2003). A similar model for multinomial data has been developed
from the Bayesian perspective (Albert & Chib, 1993) and has been widely used (Burda et al., 2008;
Jostins & McVean, 2016) and adapted for specific scenarios such as data sparsity (Cawley et al.,
2007) and high dimensions (Yau et al., 2003). Moreover, adding in RE and implementing the
LASSO are both straightforward in the Bayesian framework through the use of priors and Markov
chain Monte Carlo (MCMC) sampling from the posterior distributions.

http://www.stata.com
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We address two key methodological issues in order to implement the Bayesian neonatal COD
models. First, we implement our method of dealing with unreported CODs (see Section 1) by spec-
ifying a matrix that can be incorporated as data in the modelling framework, so that (as before) all
studies can be included in the multinomial model. Second, we implement the Bayesian LASSO
with selection of the penalty term 𝜆. Approaches exist to select 𝜆 during model estimation (Park
& Casella, 2008), but since our model is designed to make out-of-sample predictions we require
an alternative approach that maximises out-of-sample GOF.

3.2 Derivation of Bayesian multinomial model with random effects

Our proposed statistical model has several components including the basic multinomial model,
the misclassification matrix and the LASSO penalisation term. These are described below.

3.2.1 Basic model

Suppose there exist C mutually exclusive causes of death, and that we have a sample of Ns deaths
from a given study s, each of which is (correctly) classified into one and only one of the C cat-
egories. If we denote the distribution of true CODs in the sample (i.e. our eight key causes) as
T1,s,T2,s, … ,TC,s and if the sample is random, we can assume that these observations come from
a multinomial distribution,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

T1,s

T2,s

· · ·
TC,s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∼ Multinomial

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Ns,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

P1,s

P2,s

· · ·
PC,s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

where Pc,s represents the probability that a death is due to cause c in the population in which
study s is conducted. This can be rewritten as

Ts ∼ Multinomial(Ns,Ps). (1)

Because the C causes are mutually exclusive, it follows that
∑C

c=1Pc,s = 1.

3.2.2 Misclassification matrix

Non-reporting of CODs can occur in studies as described previously and, to make matters worse,
patterns of non-reporting may differ across studies. However, we can deal with this by specifying
unreported causes as parts of residual causes. For each study, there is a specific misclassification
matrix with the general form

Ms ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ms
1,1 Ms

1,2 · · · Ms
1,C

Ms
2,1 Ms

2,2 · · · Ms
2,C

· · · · · · · · · · · ·
Ms

Ds,1 Ms
Ds,2 · · · Ms

Ds,C

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2)
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where Ms
d,c is the probability that, in study s, a death from true cause c is recorded as being due to

cause d. Since studies record only one cause per death, each column of this matrix must add up
to 1:

∑Ds
d=1Ms

d,c = 1 for all c = 1, … , C. The number of different recorded causes of death in this
study is Ds and this can vary between studies. In fact, studies might not only differ in the type of
recorded causes of death, but also in the number of these. Some recorded causes might appear
only in some studies.

Using (2), for a given study s, we can express the recorded COD multinomial probability dis-
tribution as Ms × Ps, where Ms is the study-specific misclassification matrix and Ps is the study’s
true probability distribution. Because Ms is not necessarily invertible, we cannot directly estimate
Ps from the probability distribution of recorded causes. Nevertheless, we can still use the distribu-
tion of the recorded causes of death along with the misclassification matrix to estimate the model
coefficients, as follows.

3.2.3 Proposed model

Suppose the probabilities Pc,s can be predicted by the values of a set of K explanatory variables
X1,s,X2,s, … ,XK,s. In a multinomial regression framework, we assume that the logarithm of the
odds of each cause of death relative to a reference cause are linearly dependent on these explana-
tory variables. This is expressed as a system of C−1 linear equations corresponding to each cause
of death (excluding the reference category),

log(P2,s∕P1,s) = 𝛽2,0 + 𝛽2,1X1,s + 𝛽2,2X2,s + · · · + 𝛽2,KXK,s

log(P3,s∕P1,s) = 𝛽3,0 + 𝛽3,1X1,s + 𝛽3,2X2,s + · · · + 𝛽3,KXK,s

· · ·
log(PC,s∕P1,s) = 𝛽C,0 + 𝛽C,1X1,s + 𝛽C,2X2,s + · · · + 𝛽C,KXK,s (3)

Notice that the 𝛽-coefficients (including the intercepts) do not have the study subindex s. This
is a FE model that assumes the associations of the explanatory variables with the causes of death
are constant across all studies. We relax the assumption that the baseline log-odds are the same
in each study by adding study-specific RE to the intercepts. Using matrix notation, and including
RE, the model in Equation (3) can be expressed as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

log(P2,s∕P1,s)
log(P3,s∕P1,s)

· · ·
log(PC,s∕P1,s)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

U2,s

U3,s

· · ·
UC,s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛽2,0 𝛽2,1 · · · 𝛽2,K

𝛽3,0 𝛽3,1 · · · 𝛽3,K

· · · · · · · · · · · ·
𝛽C,0 𝛽C,1 · · · 𝛽C,K

⎤
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
X1,s

· · ·
XK,s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

where the terms Uc,s are study specific and can be modelled as RE with mean 0 across all studies.
The notation in Equation (4) could be simplified to

LPs ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

log(P2,s∕P1,s)
log(P3,s∕P1,s)

· · ·
log(PC,s∕P1,s)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= Us + 𝜷 × Xs, (5)



8 MULICK et al.

where Us and Xs are the study-specific vectors of RE and explanatory variables, respectively, and
𝜷 is the matrix of FE common to all studies.

3.3 Bayesian LASSO

In a Bayesian framework, we implement LASSO covariate selection by penalising large 𝛽 coef-
ficients in a subset of the FE parameters that could potentially result in overfitting the data. We
do this by imposing a double exponential (also referred to as Laplace) prior distribution on them
in the model specification (Park & Casella, 2008). Unlike the frequentist LASSO, the Bayesian
LASSO shrinks the magnitude of the parameters without completely reducing them to zero,
allowing covariates to have negligible effects for some outcomes and non-negligible effects for oth-
ers. Shrinking the parameters has the additional advantage of stabilising the model if, due to the
large number of parameters to be estimated with potentially high uncertainty, model convergence
is slow or difficult.

3.3.1 Formal model definition

Our proposed method specifies Equation (5) in the statistical model and uses an MCMC sam-
pling algorithm to build it in a Bayesian framework. Note that the vector of true causes of death is
unobserved, but with a specification for the true cause distribution, a vector of observed reported
causes and a (known) misclassification matrix, we can specify a multinomial distribution for
the observed reported causes. Let Ns denote the sample of deaths from a given study s, and Ms
the misclassification matrix defined in Equation (2), our Bayesian model can be summarised as
follows:

LIKELIHOOD:

Rs ∼ Multinomial(Ns,Ms × Ps) distribution of recorded, observed CODs

Ps =
exp(LPs)

1 +
∑

i∈I exp(LPi)
proportions of true, (un)observed CODs

LPs = Us + 𝜷 × Xs log-odds of true, (un)observed CODs
Us ∼ N(0,Σc) study-specific random effects

PRIORS:

Σc ∼ Unif(0, b) for each cause c
𝛽c,k ∼ Laplace(0, 𝜆) for each cause c and LASSO constrained variable k
𝛽c,k∗ ∼ N(0, 0.5) for each cause c and unconstrained variable k∗

including intercept

Note that Rs, Ns and Xs are observed data, whereas Ms is assumed to be known. The vector
parameters in 𝚺 = (Σ2, … ,ΣC) contain C−1 standard deviations of the RE, one for each cause
except for the reference category. These standard deviations have uniformly distributed priors
controlled by hyperparameter b. For simplicity, we assumed there is no correlation between
RE of different causes, although this could be modelled in other ways. The intercepts and any
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𝛽-coefficients we do not want to be constrained in the LASSO are given normally distributed pri-
ors with mean 0 and standard deviation 0.5. The remaining 𝛽-coefficients have a Laplace (double
exponential) prior with mean 0 and scale 𝜆 > 0. The hyperparameter 𝜆 is the penalty imposed by
the LASSO method. We use out-of-sample cross-validation to select optimal 𝜆 and b parameters,
described in the next section.

3.3.2 Estimation of country-level COD mortality fractions with credible
intervals

Once the model has estimated 𝜷 and Us correcting for potential misclassification we can estimate
the expected distribution of true COD in any country for which we have covariate data as

Pc,s =
exp(Uc,s + 𝜷c × Xs)

1 + exp(U2,s + 𝜷2 × Xs) + · · · + exp(UC,s + 𝜷C × Xs)
. (6)

using the posterior means of the fixed- and random-effects coefficients.
When using this model to estimate country-level COD fractions, we need to account for two

sources of uncertainty: (a) uncertainty surrounding the FE parameter estimates; and (b) uncer-
tainty about how to select the most appropriate RE Uc,s for the country that we want to estimate,
particularly if that country was not represented in our input data. In a Bayesian framework, cred-
ible intervals around the COD fractions can account for both sources of uncertainty. We compute
these credible intervals by repeatedly estimating the COD distribution using values of 𝛽 and rel-
evant (described below) RE drawn from MCMC chains generated during model estimation. We
use n = 1000 sets of estimates from equally spaced MCMC iterations after burn-in, although the
selected sets can also be determined by a thinning parameter or even randomly selected. We thus
obtain n sets of estimated mortality fractions for each country, from which we find the 2.5th and
97.5th centiles (to obtain 95% credible intervals) and mean values (to obtain point estimates) for
each COD.

3.3.3 Choice of random effects

An important question is how to select relevant RE from the matrices Ui in each iteration
i = 1, … , n, because the choice affects both the point estimates and the credible intervals. Each
Ui contains a vector of RE for each study in the estimation dataset. There are several ways of
deciding which is the most appropriate vector for a given country; we illustrate three below:

(a) We could assume Us = 0 in all iterations, which may seem a sensible strategy for countries not
represented in the input data. However, this is an extreme option representing a strong prior
belief that the country’s COD distribution is exactly predicted by the model’s FE, when no evi-
dence suggests this. As such it will produce overly narrow credible intervals, with variability
determined only by FE estimate uncertainty. We did not explore this option further.

(b) Choose a vector Us at random from the matrix in each iteration. This strategy relaxes the belief
that the country’s COD distribution is exactly predicted by the model’s FE by drawing from a
wide range of RE at each iteration. In expectation, these RE sum to zero, having little effect
on the point estimate, but because many different RE are drawn the uncertainty in the COD
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distribution estimate is large. We expect wide credible intervals with variability dependent
on Σc from the RE distribution and uncertainty from its estimates, in addition to uncertainty
from the FE estimates.

(c) An intermediate option is to assume that a subset of the RE, which may not necessarily sum to
zero, are relevant for a given country. We randomly select the Us vector in each iteration from
this subset. This replaces the belief that the country’s COD distribution is exactly predicted
by the model’s FE with the belief that a certain subset of studies are useful for the country’s
predictions. This might move the point estimate away from the FE predictions and will pro-
duce credible intervals of a width somewhere in between options (a) and (b), with variability
determined as in (b) but incorporating less uncertainty in the selection of relevant RE.

We implement options (b) and (c) to avoid understating the uncertainty in country-level pre-
dictions, particularly for countries in which we have no nationally representative data. Thus, for
countries with no studies or only non-nationally representative studies in the input data, we use
option (b) to obtain wide credible intervals with little effect on point estimates. For countries
with nationally representative studies, we use option (c) drawing from a subset of Ui contain-
ing only their nationally representative RE. This gives narrower credible intervals than option
(b), acknowledging that we have more confidence in these estimates, and may move the point
estimates away from the FE means.

4 MODEL BUILDING PROCESS

4.1 Misclassification matrix

We specified the misclassification matrix Ms separately for each study using the logic from
our previous method for handling unreported CODs (Section 1). We recorded deaths that were
reported as one of our eight key causes with 100% probability as that cause by placing a 1 in the
relevant cell of Ms. Unreported deaths from intrapartum, preterm, congenital and sepsis causes
were assumed to have been recorded under ‘other’ causes of death, and we placed an additional
1 in the ‘other’ row of Ms in the cell corresponding to the relevant column for the missing cause,
thus representing a 100% probability that these deaths were recorded as ‘other’. Unreported deaths
from pneumonia, diarrhoea and tetanus were first assumed to have been reported as ‘sepsis’, if
‘sepsis’ was reported in the study, or as ‘other’ if not, and we placed 1s in the ‘sepsis’ or ‘other’
row, respectively, following the same procedure. Using this method, each column, representing
our key CODs, contained a single 1 and each row, representing studies’ reported CODs, contained
one or more 1s. The maximum number of unreported causes was four, from one study, where
pneumonia, diarrhoea, tetanus and sepsis deaths were unspecified, and we assumed they were
reported under ‘other’.

4.2 Model building process

We used the same 95 studies from the previous round of frequentist modelling of neonatal COD
estimation (Section 1.1) (Oza, 2019), in fitting the Bayesian model. Sixteen of the studies were
nationally representative of the country in which they were conducted (Figure e1, Online Supple-
ment), and 10 came from countries that were still considered high mortality during the prediction
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period (2000–2015, see Section 4.3). As before, we let ‘intrapartum’ be the reference COD in
the multinomial model and build equations for the other seven causes (detailed in Section 1.2)
compared to ‘intrapartum’. Each model equation contained an intercept term, 14 covariates
(Section 1.1) and a RE term, all of which were allowed to vary by COD.

4.2.1 Fixed effects

We modelled all covariates linearly, with no polynomial effects or interactions. The beta matrix
therefore contained 105 coefficients for estimation.

The early and late period indicators (as well as the intercept) for each COD (21 coefficients)
were given N(0, 0.5) priors free from the LASSO penalisation to ensure the two mortality periods
can have different COD distributions where appropriate. The remaining 84 coefficients were each
subject to LASSO by imposing the Laplace(0, 𝜆) prior. We explored 𝜆 values of 5, and 10 to 250
in increments of 20. This wide range allows for different values of b to suggest different optimal
values of 𝜆.

4.2.2 Random effects

We tagged each study with an indicator variable for the RE term and identified whether it was
nationally representative. This resulted in 95 sets of RE, and the U matrix therefore contained 665
RE coefficients for estimation.

We gave the RE distributions N(0, 𝜎c) priors, and gave each 𝜎c the hyperprior Unif (0, b). The
hyperprior controlled by b imposes a ceiling on the RE standard deviations that helps the model
to avoid overfitting RE to noisy data, which could potentially eliminate the predictive value of
FE, and limits the extent to which study data can influence country predictions. We impose a
hard upper limit on b to avoid drastic differences in mortality fractions between two countries
with the same epidemiological situation (same levels of predictive covariates), but which provided
different study-level evidence. For example, when b = 0.21 only 5% of RE in a particular cause’s
posterior distribution should affect the FE odds for that cause by a magnitude greater than 1.51
or its reciprocal. We let this be the upper limit of influence and explored two more restrictive
constraints of b = 0.07 and b = 0.14.

4.3 Formal selection of 𝝀 and b using cross-validation

We selected 𝜆 and b jointly by partitioning the data set into k subsets and performing a k-fold
cross-validation over a selection of values of both parameters. With k = 10, we found that the
error curves were sensitive enough to the choice of the partition to suggest different values for 𝜆,
providing evidence for high variability but (because k is low relative to sample size) no theoretical
guarantee of unbiasedness. Instead, we therefore used leave-one-out cross-validation, in which
the error curve is theoretically highly variable but approximately unbiased (Jiang et al., 2002). We
set k at 95, the number of studies in our dataset.

For each combination of 𝜆 and b, we ran a full leave-one-out analysis in the following way:
we remove a study from the input data, run the MCMC model with the remaining 94 studies and
predict the distribution of deaths in the out-of-sample study using the posterior means of the FE.
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We ignored RE at this stage because, using the scheme we describe in Section 2.3.3, there were
no suitable RE to use in a single out-of-sample estimate of the COD distribution.

We repeat this 95 times, leaving a different study out each time so that we obtain
an out-of-sample predicted COD distribution for each left-out study. For each study and
COD, we calculate the squared differences between predicted and observed deaths, weight
them by the ratio of the predicted deaths to the total deaths over all studies and CODs,
and sum these errors over all studies and CODs to obtain a weighted mean square error
(wMSE) for each jackknife sample. We compare the wMSE across jackknife samples (over
different values of 𝜆 and b) and select the combination that produces the lowest absolute
value.

4.3.1 Parameters for the MCMC convergence

To avoid the effects of autocorrelation and ensure convergence, we ran models in four parallel
chains of 10,000 iterations each and an initial burn-in sequence of 2000. We used trace and Gel-
man plots (Brooks & Gelman, 1998) of the coefficients to determine the number of iterations to
burn, choosing the iteration at which the slowest parameter had converged over all four chains
(flat locally weighted regression lines on MCMC trace) and the chains showed evidence of conver-
gence (scale reduction factor below 1.1 over majority of iterations). We determined the number
of post-burn iterations from the parameter with the strongest autocorrelation, ensuring that the
four trace lines cycled through the posterior median at least twice beyond the burn point. For
this reason, we did not thin our posterior distributions: biasing effects of autocorrelation should
average out, given the large number of iterations and chains.

Further modelling details are available in Online Supplement Text E2. We used R v3.5.2 for all
analyses (R Core Team, 2020). Bayesian analyses were implemented in JAGS (Plummer, 2003)
with wrapper functions from the R2jags package (Su & Yajima, 2020).

Statistical code is available on https://github.com/amulick/MCEE-neo.

5 RESULTS AND EVALUATION

We ran leave-one-out models on a 2.8 GHz machine with eight parallel processors, each of which
completed in∼16.5 h using approximately 26 GB of RAM. Total computation time including final
model estimation was approximately 700 h. Further details are available in Online Supplement
Text E3.

5.1 Cross-validation

We ran leave-one-out analyses at each of the 42 combinations of 𝜆 and b. Figure 1 plots the
out-of-sample wMSE against values of 𝜆 over three values of b. The initial decline of these curves
is a reflection of the overfitting of the FE coefficients of the model (i.e. the effect of the covariates
used for prediction) to the input data, and the later incline reflects underfitting; thus the value of
𝜆 at the minimum wMSE indicates the model with the best out-of-sample fit. These curves were
steeper and had lower minima at higher b values, such that the most accurate predictions were
achieved with the least restrictive cap on 𝜎c (b = 0.21).
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F I G U R E 1 Weighted mean square error (wMSE) from out-of-sample neonatal cause-of-death predictions
plotted against values of fixed-effects shrinkage parameter 𝜆 over three values of random effect distribution
hyperpriors b.

This illustrates that the selection of the best predictive model depends on both 𝜆 and b. Among
the combinations of 𝜆 and b examined, we obtained the worst out-of-sample prediction (wMSE >

5 × 106) when the FE are most flexible by both parameters (𝜆 = 5, b = 0.07)—a clear example of
overfitting. As we restrict the magnitude of the FE by increasing 𝜆, the out-of-sample prediction
initially improves over all three values of b. At the same time, as we ‘relieve’ the FE from having
to fit the data by allowing the model to have larger RE (increasing b; moving from the black to
the red to the green line in Figure 1), we also improve out-of-sample prediction. The combination
of these two measures prevents overfitting, but eventually with large enough 𝜆we restrict the FE
coefficients too much and predictions worsen again. This limit appears at lower 𝜆 if the RE are
allowed to explain more data variability with larger b.

5.2 Final models

To understand the differences between these three best-fit models, we ran a final model for each
of them using all data points. Trace and Gelman plots for the covariates and nationally represen-
tative random country effects showed good convergence in all three models. Most of the seven 𝜎c
parameters were sampled consistently at or near b.

The difference in LASSO-constrained beta estimates was generally small (Figure 2), although
some estimates were notably weaker in the 𝜆= 190 and b= 0.07 model compared to the other two
models. In this model, other causes of death, compared with other CODs, show greater differences
particularly in the GFR and SBA coefficients. These differences balance in the unconstrained
coefficients: for example, the GFR and SBA coefficients are estimated less strongly positive than
the other two models, but the unconstrained coefficient per.early is estimated more strongly neg-
ative than the other two models, which is more easily visible when viewed on the same scale. This
highlights the interaction between 𝜆 and b described in Section 4.1.

The difference in RE was greater (Figure 3) among the three models. Although some esti-
mates were similar between them, most were markedly different with, as expected, larger effects
appearing in models with larger values of b.
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F I G U R E 2 Bayesian fixed effects coefficients compared between three neonatal cause-of-death models
with different values of fixed-effect shrinkage parameters 𝜆 and random effect distribution hyperpriors b.

5.3 Predictions

We used the model with the best out-of-sample fit (𝜆 = 30 and b = 0.21) to predict COD dis-
tributions in 80 countries between the years 2000 and 2015 inclusive. For 8 of the 80 countries,
nationally representative data were available: Bangladesh and Morocco had two nationally rep-
resentative studies and Afghanistan, India, Indonesia, Mozambique, Nepal and Pakistan had a
single study. Unless otherwise noted, to make comparisons easier we present results in this section
using single years rather than the full 16-year prediction period.

5.3.1 Frequentist versus Bayesian

Figure 4 and Table 1 compare predicted proportions of all causes of death between the clas-
sical frequentist model and our proposed Bayesian model (FE only) in 2015. This provides
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F I G U R E 3 Bayesian random effects coefficients compared between three neonatal cause-of-death models
with different values of fixed-effect shrinkage parameters 𝜆 and random effect distribution hyperpriors b. Sixteen
sets of random effects are from the studies with nationally representative input data for their country.

comparable estimates in that the proportions differ only in the method used to develop the
predictive model.

Predicted proportions for intrapartum, preterm and sepsis were distributed roughly equally
on either side of the line of equivalence; for the other causes one of the models tended to pre-
dict larger proportions than the other. The median difference in absolute terms was largest
for congenital proportions (Bayesian estimates 3% lower than frequentist); in relative terms
the difference was greatest for diarrhoea (Bayesian estimates on average three times higher).
However, both models assigned relatively small proportions (maximum 0.25) to both of these
causes.

Within each cause, we highlight outliers (countries whose estimate is greater than 3 stan-
dard deviations from the average difference between the two methods) with a triangle. There
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F I G U R E 4 Predicted Bayesian fixed-effects cause-of-death proportions compared with predicted
frequentist proportions in 2015 for 80 countries.

T A B L E 1 Differences in predicted cause-of-death fractions for 2015, Bayesian compared to frequentist, for
80 countries

COD Absolute difference: Median [IQR] Relative difference: Median [IQR]

Congenital 0.03 [−0.05,−0.01] 0.73 [0.64,0.85]

Diarrhoea 0.01 [0.01, 0.01] 3.24 [2.80,3.76]

Intrapartum −0.02 [−0.04, 0.02] 0.94 [0.85,1.09]

Pneumonia 0.01 [0.00, 0.02] 1.17 [1.03,1.30]

Preterm 0.01 [−0.01, 0.03] 1.04 [0.97,1.10]

Sepsis −0.01 [−0.02, 0.02] 0.93 [0.85,1.09]

Tetanus 0.00 [0.00, 0.01] 1.59 [1.05,2.18]

Other 0.01 [0.00, 0.02] 1.16 [1.02,1.33]

was only one such difference: Sudan’s Bayesian pneumonia estimate was markedly lower than
its frequentist estimate.

5.3.2 Bayesian: Fixed versus random effects

Figure 5 compares point estimates from FE only and fixed- plus random-effects predictions for
countries with nationally representative input data (except Morocco, because its studies preceded
2000). For most countries and CODs, the fixed- plus random-effects predicted proportion lies
between the empirical proportion than the predicted proportion based on the FE only. There
were some exceptions: (1) Bangladesh (2002), congenital; (2) India, diarrhoea; (3) Mozambique,
intrapartum and other; (4) Nepal, diarrhoea and tetanus; and (5) Pakistan, congenital. For these,
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F I G U R E 5 Fixed-effects only versus fixed- plus random-effects estimates of cause-of-death (COD)
distributions in countries contributing nationally representative data to the Bayesian model. Red squares mark
the study COD proportion and indicate the absolute number of deaths it represents. Bangladesh is represented
twice because it provided two nationally representative studies. Afghanistan, India and Mozambique do not
appear in all causes because their studies did not report deaths in the same categories that we report.

the estimates incorporating the RE were all further away from the empirical proportion than the
estimates based on the FE only.

The first exception occurred because Bangladesh has two empirical data points (2002 and
2008), both of which informed its RE, and these fell on either side of the FE prediction for con-
genital. Bangladesh’s fixed- plus random-effects prediction equation drew randomly from both
RE to produce the posterior distribution of point estimates, so that the mean prediction averaged
out the two RE. For all other CODs, Bangladesh’s empirical data points were on the same side of
the FE estimates.

The second and third exceptions occurred because of non-reporting of key CODs. India did
not report pneumonia deaths and Mozambique did not report congenital, diarrhoea or tetanus
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deaths, so the misclassification matrix for these studies redistributed some of the deaths they did
report into these causes. In this way, the RE for each model COD are not expected to necessarily
pull all proportions in the same direction as the empirical data.

The fourth and fifth exceptions likely occurred due to chance. The average RE (Nepal: diar-
rhoea and tetanus, Pakistan: congenital) were all very close to zero and the change in predictions
due to adding the RE were very small (Figure 5). Thus, the slight pull in the opposite direction
was likely due to the prediction algorithm sampling, by chance, more RE on the opposite side of
zero than the empirical data would suggest.

In general, though not exclusively, the empirical proportions representing larger numbers of
deaths pull the RE estimates more strongly towards themselves than proportions representing
fewer deaths. This can be seen by comparing Nepal (2004) and Pakistan (2006): Pakistan’s study
reported on larger numbers of deaths and their RE predictions for nearly all CODs are closer to
their empirical data than Nepal’s predictions are to their empirical data.

5.4 Uncertainty ranges

Figure 6 compares the 2015 mortality proportions and uncertainty ranges across four causes of
death between the classical frequentist model and our proposed Bayesian model for countries
with the highest burden of neonatal mortality and/or nationally representative input data. This
shows the joint effect of moving to a Bayesian framework and adding RE into the model in coun-
tries where the differences in number of deaths would be most extreme. Most estimates from
countries without nationally representative data are close to the frequentist point estimates, or
within the uncertainty limits of the frequentist estimates. In general, the Bayesian credible inter-
vals are more symmetric around the point estimates than the bootstrapped frequentist confidence
intervals.

Table 2 summarises, for 80 countries with available data, differences in the widths of the uncer-
tainty intervals. For countries without nationally representative data, the Bayesian intervals were
generally wider than the frequentist, particularly for pneumonia and preterm CODs.

In contrast, estimates for the countries that did provide nationally representative data gener-
ally have narrower Bayesian than frequentist uncertainty intervals. This is because the algorithm
calculating the fixed- plus random-effects estimate is drawing from only one or two relevant RE,
rather than all 95 RE. Fewer RE add less variability to the posterior distribution; thus its 2.5th and
97.5th centiles are closer together. This has the initially counterintuitive consequence that coun-
tries providing more nationally representative data, such as Bangladesh and Morocco with two
studies, can have wider uncertainty intervals than they would had they provided only one study.

6 DISCUSSION

We developed a new approach within a Bayesian framework for estimating the distribution of
causes of death at national level based on COD data from national and subnational studies and
data on covariates. Compared with the previous frequentist approach, this approach resulted in
similar estimates on average for the most common causes of death, but some differences in the
estimates for the less common causes. The incorporation of RE into the model led to somewhat
increased levels of uncertainty, with the exception of countries with nationally representative
studies, where estimated uncertainty was not unexpectedly decreased. We believe that the wider
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F I G U R E 6 Mortality proportions and uncertainty ranges for select neonatal causes of death in 2015
compared between a classical frequentist model with bootstrapped confidence intervals and our proposed
Bayesian model (fixed- plus random-effects estimates) with credible intervals. In descending order from left to
right are a union of 20 countries with the highest burden of neonatal mortality in 2015, and 8 countries that
contributed nationally representative studies to the Bayesian model. Countries contributing nationally
representative data are highlighted in bold italic.

uncertainty ranges generated under the new approach better reflect real uncertainty that exists
given the substantial scope for misclassification in verbal autopsy studies.

By working within the Bayesian framework, we were able to incorporate features which we
could not in a frequentist setting. First, we were able to better incorporate empirical data from
nationally representative studies through the use of RE, so that estimates for countries with empir-
ical data from nationally representative studies are ‘pulled towards’ those empirical data. Second,
we were able to examine the associations between a set of predictors and all causes of interest
simultaneously with the Bayesian LASSO, rather than selecting predictors in a more naïve pro-
cess with each cause individually or in an exhaustive and computationally prohibitive search
across predictors in the multinomial space. Third, we were able to recast our method for mapping
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T A B L E 2 Widths of Bayesian credible intervals compared to widths of bootstrapped frequentist
confidence intervals for selected 2015 predicted COD fractions in 80 countries. Values greater than zero
indicate how much wider the Bayesian intervals are, in absolute value, than the frequentist intervals

COD n Median [IQR]

Countries without nationally representative studies

Congenital 72 0.01 [0.00, 0.02]

Intrapartum 72 0.02 [−0.01, 0.04]

Pneumonia 72 0.02 [0.01, 0.03]

Preterm 72 0.11 [0.08, 0.12]

Countries with nationally representative studies

Congenital 8 −0.02 [−0.03,−0.01]

Intrapartum 8 −0.04 [−0.06,−0.03]

Pneumonia 8 0.01 [−0.02, 0.02]

Preterm 8 −0.06 [−0.07,−0.04]

between causes as they are reported and specific causes of interest (the misclassification matrix),
opening up possibilities for future extensions discussed below.

Including RE for countries with nationally representative studies has several important advan-
tages. Countries with nationally representative COD information not only contribute to estimates
for all countries through the model’s FE coefficients, but also have greater influence on the
estimates for that country which likely reduces bias (Bouwmeester et al., 2013; McCulloch &
Neuhaus, 2011). This also is intuitively a pleasing compromise between what countries report,
which may have limitations (Menéndez et al., 2020), and what would be expected given the evi-
dence from other areas with similar levels of mortality, intervention coverage and other health
system characteristics. To our knowledge, there are no other methods that allow for such a
systematic compromise in estimating causes of mortality. Allowing nationally representative
COD measurement to have more influence may also encourage the collection of such data,
which would increase the accuracy and usability of future estimates as well as the capacity in
low-resource countries for such measurement.

We also incorporated cross-validation to determine the degree of penalisation in the Bayesian
LASSO. Although the Bayesian LASSO is often implemented with a fixed restriction or with a
hyperprior for the restriction parameter (Park & Casella, 2008), we chose the degree of restric-
tion according to the cross-validation error for more robust out of sample prediction (Efron &
Tibshirani, 1995).

In addition to its advantages, the proposed method in the Bayesian framework is more flexible
than the previous method in the frequentist setting, which we expect to allow for further improve-
ment. For example, cause of death ascertainment can be prone to measurement error, particularly
when using verbal autopsy (World Health Organization, 2016). With our new approach, this has
potential for resolution through an extension to the misclassification matrix. This framework may
also allow increased accounting for uncertainty and measurement error in the covariates for pri-
mary data, which often is not available at the same level of resolution for which the causes of
mortality were measured (Liu et al., 2016).

We used credible intervals to estimate the uncertainty in predicted cause distributions for all
countries by resampling from the MCMC-estimated RE for each study, and among only those
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estimates from nationally representative studies for countries with such studies. This may in
practice lead to the counterintuitive result that estimates from a country with more than one
nationally representative study appear more uncertain than estimates from a country with only
one nationally representative study. However, because studies from the same area may report dif-
ferent causes due to differences in study methods such as cause ascertainment (Murray et al.,
2014) or due to epidemiologic changes over time, an increase in uncertainty may be warranted.
Analogously, estimates from countries with a single nationally representative study may have
uncertainty intervals that are too narrow because they likely do not account for uncertainty due
to possible error in the COD classification or variation in trends over time.

The proposed method is in contrast to those used by the Global Burden of Disease (GBD) con-
sortium (Murray et al., 2020) for estimating the causes of mortality. This group looks at many
separate causes for different age groups, including data from incomplete vital registration and
registries for specific syndromes and aetiologies of disease. After all causes are estimated sepa-
rately with Gaussian processes, they are then restricted to an age-specific envelope (total number
of deaths due to all causes) in a separate process (Murray et al., 2020), although their methods
and data sources are not publicly available in detail (Schwab, 2020). The method proposed here
is not directly comparable to GBD methods because each are based on different source infor-
mation. When approaching compositional data such as causes of death, addressing components
individually as done by GBD is generally unbiased, but there are caveats for estimating the vari-
ance of separately estimated components which are subsequently fitted to an envelope (Begg &
Gray, 1984; Fürnkranz, 2002; Hsu & Lin, 2002). The estimated variance for each component is
used in the GBD method for harmonising the many causes to fit the mortality envelope (Murray
et al., 2020) and so may introduce bias in the resulting estimates. The vast amount of input data
used by GBD allows for the estimation of many different causes, which would be computationally
difficult in the multinomial framework. However, the ‘squeezing’ process made necessary by the
many different causes may lead to inaccuracies. The method proposed here is computationally
complex, but it is executed in a single systematic framework that is used widely in other similar
problems with compositional measures (Haan & Uhlendorff, 2006) and with attractive statistical
properties that are well documented (Engel, 1988).

The proposed method is, as with many statistical methods, limited by the quality of primary
measurements. Causes of death in high mortality and low-resource settings are often subject to
specific types of measurement error (Adewemimo et al., 2017). Both the amount of information
related to causes of death in areas without vital registration (Datta et al., 2021) as well as the meth-
ods for measuring causes of death in such areas (Kalter et al., 2020; McCormick et al., 2016) are
improving. However, historic COD measurements are likely unique, as health systems change
and mortality among neonates and children declines. So, historic causes of mortality may need
bespoke measures when attempting to correct for them (Yadav & Arokiasamy, 2014), which our
extension to the misclassification matrix has potential to do. Another important limitation of the
proposed method is the amount of time and computational resources necessary for implementa-
tion. We used parallel computing on a multinode high-performance computing cluster for these
analyses. Such resources are not widely available and are associated with both financial- and
time-related costs, as an analyst must learn both the method and the protocol of the computing
cluster. High-performance computing, however, is becoming more accessible and may be less of
a barrier in the future (Clark, 2020).

Although there have been important advances in vital registration as well as sample registra-
tion systems for measuring causes of death for all individuals, there are still gaps in these systems
that will likely make modelling causes of death necessary for the foreseeable future (Amouzou
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et al., 2020). Advances in the accuracy of COD estimates translate into better knowledge of what
contributes most to age-specific mortality and how health systems can be configured for the
biggest impact (Walker & Friberg, 2017). Although the proposed method has improved predic-
tions in several aspects relative to previous methods, more improvement is possible and is the
subject of further research. Future work related to incorporating measurement error as well as
predicting causes of mortality with increased resolution for narrower age groups is ongoing and
is likely to increase the usability and reliability of COD estimates.
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