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A barrier to using Optifood linear programming (LP), which identifies nutrient gaps and supports population-
specific food-based recommendation (FBR) development, is the requirement for dietary intake data. We inves-
tigated whether Household Consumption and Expenditure Surveys (HCESs) could be used instead of individual-
level 24-h recalls (24HRs). The 24HRdata from12- to 23-month-old breastfeeding children in rural Kenya, Uganda,
Guatemala, and Bangladesh were paired with HCES food consumption data from similar areas (n = 8) and time
periods.HCES food intakes (g/week)were estimatedusing adultmale equivalents, adjusted for breastfeeding. Paired
HCES- and 24HR-definedLP inputs andoutputswere comparedusing percentage agreement.Meanoverall percent-
age agreements were 42%, 63%, and 80%, for food, food subgroup, and food-groupmodel parameters, respectively.
HCES food lists were on average 1.3 times longer than 24HR. Similar nutrient gaps (77–100% agreement), food
sources of nutrients (71–100% agreement), and FBRs (80–100% agreement) were identified. The results suggest
that HCES data can be used in Optifood analyses for 12- to 23-month-old children, despite recognized challenges
of using it to estimate dietary intakes of young children compared with older age groups. Further analyses, however,
are required for different age groups and locations to confirm expectations that it would perform equally well.

Keywords: linear programming; household consumption and expenditure surveys; infant and young child feeding;
food-based recommendations

Introduction

Linear programming (LP) has been used in tools
based on mathematical modeling, such as the
Optifood software, to identify “problem nutrients”
(nutrients for which requirements would be dif-
ficult to meet using local foods within existing
dietary patterns) and the best food sources of
nutrients in the local food supply to provide them
and to develop evidence-based, population-specific
food-based recommendations (FBRs).1–5 LP can
also be used to estimate the nutritional bene-

fits of providing access to nutritious agricultural
products, supplements, fortified foods, or special
recipes, in the context of the local diet,3,6–8 and has
been applied to inform nutrition and agricultural
program decisions in low- and middle-income
countries (LMICs).9–12 LP, therefore, is a robust
modeling approach to inform both nutrition-
specific and -sensitive programming.
Optifood contains four analytical modules.Mod-

ule 1 tests model parameters to ensure realistic diets
will be generated. Module 2 identifies the nutrition-
ally best diets within and outside of the population’s

doi: 10.1111/nyas.14709

145Ann. N.Y. Acad. Sci. 1509 (2022) 145–160 © 2021 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals LLC on behalf of New York Academy of Sciences
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-6059-2859
https://orcid.org/0000-0003-4673-5128
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnyas.14709&domain=pdf&date_stamp=2021-11-30


Optifood model parameters defined using HCES data Knight et al.

average food consumption patterns to identify
problem nutrients and best local food sources of
nutrients that are used to decide on FBRs to test.
Module 3 then tests and compares alternative sets
of FBRs in terms of the level of nutrient adequacy
that can be met if they are put into practice within
the context of current diets. The optional fourth
module optimizes diets based on cost.13
A key factor limiting the wider application of

Optifood LP analysis to inform nutrition pro-
grams has been the paucity of quantitative dietary
intake data to define the model parameters. Mod-
eling realistic diets using LP analysis in Optifood
requires data on the current food consumption
patterns of a specific population (defined by age,
sex, and region), including food types, quanti-
ties consumed, and frequency of consumption.13
Individual 24-h recall (24HR) data are the most
common source used to generate Optifood LP input
parameters.1–3,5,14–17 Unfortunately, the collection
of quantitative individual-level dietary intake data,
through 7-day observed-weighed food records (the
gold standard) or 24HRs, is complex and expensive
in terms of time and resources.18–20 These data con-
straints often make LP analyses unfeasible,18,21–23
which severely limits opportunities for evidence-
based programmatic decision making using LP.22
One potential source of routinely collected food

consumption data for LP analyses is nationally
representative and publicly accessible Household
Consumption and Expenditure Surveys (HCESs).
These surveys include Household Budget Surveys,
Living StandardsMeasurement Surveys, Household
Income and Expenditure Surveys, and Integrated
Household Surveys.18,24 These multipurpose sur-
veys are conducted in over 120 countries tomeasure
poverty and consumption patterns for consumer
price index calculations25 and collect, among other
indicators, data on household food consumption
and availability.26 HCESs are being conducted with
greater regularity, rigor, and quality, and datasets
are becoming more available to the public.26–28
Many HCESs include food consumption mod-

ules that use closed food questionnaires to ask
respondents which foods were consumed by house-
hold members over the past 7 or 14 days and their
quantities. Increasingly, while not designed for this
purpose, household-level consumption data are
being repurposed to estimate individual-level food
consumption.25,28 The most common method, for

redistributing food consumed at the household-
level to individuals within the same household,
is the use of adult male consumption equivalent
(AME). In this approach, the estimated energy
requirement of each family member is divided by
those of an average adult male,26,29 and the AMEs of
all household members are summed to give a total
household AME. Each quantity of food reported
as being consumed within a household is then
redistributed among individuals within that house-
hold according to their AME quotient, whereby an
individual’s AME is divided by the household AME
and multiplied by the quantity of each food.29
Validation studies comparingAME-redistributed

HCES food consumption data with those derived
from 24HRs show that estimates of population-
level food and nutrient intakes, nutrient intake gaps,
and/or prevalence of inadequacies in Bangladesh,
Uganda, Ethiopia, Cameroon, and Mongolia are
similar.30–36 However, three recent studies caution
against using these methods for estimating dietary
intakes of breastfeeding infants and young children,
whose dietary patterns may differ from older age
groups, because the methods tend to overestimate
energy and nutrient intakes in this age group.30,34,35
However, this limitation could be addressed by
assuming that breastmilk provides on average the
estimated 67%, 55%, and 39% of the median energy
requirements for infants aged 6–8, 9–11, and 12–23
months, respectively.37 To our knowledge, the use
of HCES data for estimating LP model parameters
for dietary modeling has not been validated. Its use
for estimating LP model parameters for children
under 2 years of age would expand opportunities to
design evidence-based national- or regional-level
complementary feeding recommendations globally.
Given the potential of using HCES data as an

LP input when quantitative dietary data are not
available, in this study, we aimed to determine the
percentage agreement between LP input param-
eters generated using AME-redistributed HCES
consumption data and individual 24-HR data. We
used the LP input parameters from the HCES data
and the 24-HR data separately in the Optifood
LP software to identify “problem nutrients” and
formulate FBRs for 12- to 23-month-old children.
We then compared the problem nutrients and FBRs
generated using the two sets of data. We conducted
this analysis in LMICs located in eight diverse
geographical regions. The results of this study
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will indicate whether HCES data can be used to
developmodel parameters and generate FBRs using
LP analyses in Optifood. These FBRs could then
be field tested and used to inform programmatic
decisions for infant and young child nutrition.

Materials and methods

Data sources
Pairs of individual- and household-level food
consumption data were identified. The inclusion
criteria for these datasets were that they were (1)
collected from 12- to 23-month-old children living
in an LMIC, (2) the sample size of each 24HR
dataset was ≥50 children, (3) paired HCES-derived
household-consumption data and individual-level
dietary data were available for the same geographic
area, (4) the paired HCES and 24HR datasets were
collected within approximately 3 years of each
other, and (5) paired HCES data were collected
using questionnaires that included ≥100 foods.

Estimation of input parameters for the LP
analyses
The input model parameters, which were generated
from the individual- and household-level consump-
tion data, included a list of available foods, amedian
daily portion size for each food (g/day), an upper
and lower limit on the number of servings per week
for each food, food subgroup, and food group, and
a median number of servings per week for each
food group (model goals). These parameters were
generated, for each dataset, using a Microsoft R©

Access 2010 program developed to process dietary
consumption data for analysis with Optifood.38

The food lists consisted of foods and beverages
consumed by ≥5% of the households with a child
aged 12–23 months (HCES data) or by the child
(24HR data). Food or beverage items were excluded
if they had no nutritional value (e.g., water, tea, and
condiments) or, for the HCES data, if they would
not typically be consumed by young children (e.g.,
alcoholic beverages). Breastmilk was included in all
food lists.
The portion sizes (g/day), for each food in the

food list from 24HR data, weremedian daily intakes
for the consumers of each food. For breastmilk,
the daily portion size was estimated by multiplying
the recommended daily energy intake by 0.39
(recommended proportion of energy intake from
breastmilk for 12- to 23-month-old children) and

converting it to a gram weight assuming an energy
content of 0.66 kcal/g.39 For HCES data, daily
portion sizes for 12- to 23-month-old children were
estimated using an AME quotient. Specifically, an
AME for each household member was estimated by
dividing their energy requirement (defined by age,
sex, and pregnancy/lactation status if available) by
the energy requirement of an adult male aged 18–
29.9 years.29 The AME for a 12- to 23-month-old
child was adjusted for recommended breastmilk
intakes (i.e., AME was 61% of the median daily
energy requirements).37 The AME quotient for
a 12- to 23-month-old child was calculated by
dividing their AME (adjusted for breastmilk) by
the sum of AMEs across all household members.
To estimate daily proportions of household foods
consumed by a 12- to 23-month-old child, the
household’s food quantities were multiplied by the
child’s AME quotient and divided by the recall
period of 7 or 14 days. The AMEs were estimated
using the FAO/WHO/UNU energy requirements.40
When data on the lactation status of nonpregnant
women were not available, we assumed the woman
was breastfeeding if she had a child under 2 years of
age.We also assumed that all children under 2 years
of age were breastfed and infants aged less than 6
months of age were exclusively breastfed (i.e., did
not consume household foods).
The lower and upper limits on the number of

servings per week for each food subgroup and food
group were defined as the 10th and 90th percentiles
of consumption, and the food group goals were the
50th percentile for all children per dataset. For the
24HR datasets, the lower and upper limits on the
number of servings per week for each food were
based on the percentage of children in each dataset
who had consumed it, as described elsewhere.1
In the HCES datasets, these limits were based on
percentage of consuming households, as a proxy
for percentage of children.

Data analyses
All LP analyses were done using modules 1–3 in
the Optifood software as described elsewhere.1,13,41
For each dataset pair, we used the same food
composition tables (FCTs) to estimate the energy
and nutrient content of modeled diets. These
were the Nutrition Institute of Latin America and
the Caribbean’s (INCAP) FCT42 for Guatemalan
datasets; the 2012 Harvest Plus FCT for Central and
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Eastern Uganda,43 for Ugandan datasets; the Indian
National FCT and the U.S. Department of Agricul-
ture (USDA) FCT44,45 for the Bangladeshi datasets;
and the USDA National Nutrient Database, Release
23,45 for Kenyan datasets. In all analyses, the
FAO/WHO energy and recommended nutrient
intakes (RNIs) were used to evaluate dietary ade-
quacy and to define the module 2 model nutrient
goals.40,46,47 The requirements for energy and
protein were estimated using the WHO/FAO
algorithms based on average body weight in each
geographical area.40,47 For all areas, because the
consumption of animal-source foods was low, we
assumed the bioavailability of both zinc and iron
was low.
“Problem nutrients” were defined as those that

did not achieve 100% of their RNIs in the module
3–maximized diet (run without testing FBRs). The
module 3–minimized diets simulate the lowest
values in each nutrient’s intake distribution. For
these analyses, we defined a “minimized” model
diet’s nutrient content that met or exceeded 65%
of the nutrient’s RNI1,48 as acceptable. Even though
65% of the RNI is less than the Estimated Average
Requirement, it is widely used inOptifood analyses1
because it is expected to simulate a low proportion
of the population at risk of inadequate intakes.1,15
To standardize the module 3 analyses and

enhance objectivity when making HCES and 24HR
result comparisons, we (1) defined FBRs as the
number of servings per week from individual food
subgroups; (2) selected up to eight food subgroups
to test as FBRs in module 3, which were those food
subgroups that provided at least 5% of total nutrient
content for the highest number of nutrients in the
module 2 diet; (3) tested all possible combinations
of these eight FBRs (i.e., up to 247 different sets of
FBRs); (4) modeled the maximum number of serv-
ings perweek allowed for each FBR (food subgroup)
tested; and (5) selected the final set of FBRs for each
data source and geographic area based on the com-
bination with the highest number of minimized
modeled diet nutrient contents that were ≥65%
RNI using the lowest number of individual FBRs.
The LP inputs for each paired dataset were com-

pared using the percentage interpair agreement or
the ratio of HCES value divided by its paired indi-
vidual 24HR value. Two methods were used to cal-
culate the percentage interpair agreement, which
were distinguished as the overall percentage agree-

ment and the eligible percentage agreement. The
overall percentage agreement was calculated as the
number of matched items (i.e., paired HCES and
24HR values were the same) divided by the total
number of these items across the paired HCES and
24HR datasets (i.e., in both or only one of the
paired HCES or 24HR sets of input parameters)
multiplied by 100. The overall percentage agree-
ment was used to estimate interpair agreement for
input model parameters (the food lists, food sub-
groups, and food groups modeled), assuming they
should be the same in paired contexts, and for the
classification of nutrients as “problem nutrients” or
“adequate nutrients” (model outputs), as the nutri-
entsmodeledwere identical. The eligible percentage
agreement was calculated as the number ofmatched
items divided by the number of items that occurred
in both the paired HCES and 24HR analyses multi-
plied by 100. The eligible percentage agreement was
used to estimate interpair agreement for model out-
puts (i.e., food subgroup sources of nutrients and
FBRs) because results were dependent on the food
listsmodeled (e.g., the food subgroup “organmeats”
could not be selected as a good source of nutrients or
an FBR if there were no organ meats in the food list
modeled, reflecting low availability/consumption
in the population, despite being a potentially rich
source of nutrients; infant cereals are another exam-
ple of a food type that may not have appeared on
both food lists, despite being consumed by infants,
and require the use of both overall and eligible per-
centage agreement to capture the discrepancy).

Results

Dataset pairs
Eligible data pairs for 12- to 23-month-old children
were identified for eight different areas across four
countries from Latin America, South Asia, and East
Africa (Table 1). Sample sizes ranged from 51 to
356 for 24HR data and from 31 to 227 for HCES
data. The HCES food questionnaires included 116,
172, 196, and 299 foods in Guatemala, Uganda,
Kenya, and Bangladesh, respectively.49–52 The 24-h
dietary recall data were collected between 2012 and
2015 in two regions of Uganda, four counties of
Kenya, one division in Bangladesh, and one region
of Guatemala. The paired HCES datasets were
collected between 2013 and 2016 in the same areas
but not necessarily the same households. The year
of data collection either aligned (Bangladesh) or
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Table 1. Description of paired data by region, type of dietary data, source, sample size, and timing

Region, country Type Data source n Month and year

Western Highlands,
Guatemala

24HRa WFP/INCAP Nutrient Gap Study 246 August 2015–January 2016

HCESb Living Conditions Survey (ENCOVI) 227 August 2015–February 2016
Eastern Uganda,
Uganda

24HR ANI Nutrition Project Baseline 297 October–December 2014

HCES Uganda National Panel Study (Wave IV), UBOS 136 September 2013–August 2014
Western Uganda,
Uganda

24HR ANI Nutrition Project Baseline 356 October–December 2014

HCES Uganda National Panel Study (Wave IV), UBOS 118 September 2013–August 2014
Sylhet, Bangladesh 24HR FAARM Baseline 51 January–April 2015

HCES Integrated Household Survey (BIHS) 119 January–July 2015
Isiolo, Kenya 24HR REGAL IR Project 105 March–May 2013

HCES Integrated Household Budget Survey 40 September 2015–August 2016
Kitui, Kenya 24HR Feed the Future Study 98 March–May 2012

HCES Integrated Household Budget Survey 42 September 2015–August 2016
Marsabit, Kenya 24HR REGAL IR Project 139 March–May 2013

HCES Integrated Household Budget Survey 31 September 2015–August 2016
Vihiga, Kenya 24HR Feed the Future Study 76 March–May 2012

HCES Integrated Household Budget Survey 36 September 2015–August 2016
a24-h recall dietary data.
bHousehold consumption and expenditure survey data.

differed by 1 to approximately 3 years. In most
regions, the HCES data were collected over 12-
month periods, whereas the 24HR data were
collected over 3- to 6-month periods. The only area
where data were collected over the same months of
the year was in the GuatemalanWestern Highlands,
covering the harvest period. In Bangladesh, both
HCES and 24HR data were collected during the
“Rabi” winter season for sowing and growing in
Sylhet even though the HCES data were collected
over a longer period of time than the 24HRdata.53,54
Conversely, in the East African sites, HCES data
were collected throughout the year, whereas 24HR
data were collected at the end of the second rainy
season and beginning of the second harvest in
Uganda;55 during the long rains in Western Kenya
(Vihiga); and at the end of the short rains har-
vest/beginning of long rains in the East and North
Eastern Kenya (Kitui, Isiolo, and Marsabit).56

LP inputs (model parameters)
The numbers of foods and their corresponding food
subgroups and food groups were generally higher
in food lists generated using HCES data than 24HR
data in all data pairs except for Marsabit, Kenya
(foods and food subgroups; Fig. S1, online only) and

Sylhet, Bangladesh (food groups; Fig. 1). The mean
number of foods, food subgroups, and food groups
modeled across the eight sites were 28, 18, and 11,
respectively, for 24HR datasets, compared with 41,
23, and 12, respectively, for HCES datasets, which
equated to ratios (HCES/24HR) of 0.8 (Marsabit),
1.3 (Western Uganda), 1.5 (Eastern Uganda, Isiolo,
Vihiga, and Sylhet), 1.6 (Western Highlands), and
1.9 (Kitui). In contrast, the maximum food portion
sizes were not consistently higher in the HCES than
24HR datasets. For matched foods, the median
maximum portion size ratios (HCES/24HR) were
<1 for three regions, 1.0 for two regions, and> 1 for
three regions (Table 2), although it also depended
on the food group examined (Table S1, online only).
The HCES maximum food portion sizes were gen-
erally lower than 24HRportion sizes for foods in the
added sugar (food portion ratio= 0.88), dairy prod-
ucts (0.81), fruits (0.94), and grains & grain prod-
ucts (0.85) food groups, and higher for foods in the
added fats (1.09), bakery products (1.42), legumes,
nuts & seeds (1.11), meat, fish & eggs (MFE; 1.01),
starchy roots & other plant foods (1.28), and vegeta-
bles (1.18) food groups (Table S2, online only). The
highest interpair maximum food portion size ratio
agreement (i.e., percentage of ratios close to 1.0)
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Figure 1. Themean number of foods, food subgroups, and food groups for 24-h recall (24HR)–derived and household consump-
tion and expenditure (HCES)–derived model parameters for analysis in Optifood by geographical area.

was for foods in the added fat (25%), fruits (20%),
and legumes, nuts & seeds (37.5%), food groups,
whereas the lowest was for starchy roots & other
plant foods (5.9%), MFE (14.3%), and vegetables
(13.9%) (Table S2, online only).
The mean interpair overall percentage agree-

ment for matched foods, food subgroups, and food
groups was 42% (range: 34–50%), 63% (range:
48–73%), and 80.4% (range: 57–90%), respectively
(Table 2; Tables S1–S3, online only). The food
subgroups for which interpair agreement was poor
(<25%) were sugar-sweetened beverages, broths
or soups, and fortified margarine, whereas those
within the food groups of dairy products, grains &
grain products, starchy roots & other starchy plant
foods, and vegetables generally showed perfect or
good interpair agreement. Agreement for food sub-
groups within the MFE food group was mixed (i.e.,
poor to moderate; Table S3, online only). There
was 100% matched interpair overall agreement for
the food groups of added fats, added sugars, dairy
products, grains & grain products, human milk,
legumes, starchy roots & other starchy plant foods,
and vegetables, but low interpair overall agreement
(<15%) for sweetened snacks and desserts, mis-
cellaneous, and beverages (Table S3, online only).
When a food group was modeled in only one of
the two HCES–24HR dataset pairs, it was included
twice as often in the HCES as the 24HR set of food

group model parameters. The discordant sets of
food group model parameters occurred most often
in Kitui, Kenya (Table S4, online only).

LP outputs (model results)
The number of problem nutrients identified using
the HCES-generated model parameters was lower
(three dataset pairs), the same as (four dataset
pairs), or higher (one dataset pair) than those from
the 24HR-generated model parameters, although
the mean overall percent agreement for prob-
lem nutrients was high at 95% (range: 77–100%;
Table 3). Iron was a problem nutrient across all
regions, and calcium and zinc for all but one region.
The problem nutrients identified using 24HR- but
not HCES-derived model inputs were thiamine
(three regions) or niacin (two regions), and using
HCES-derived inputs but not 24HR-derived model
inputs, they were calcium, vitamin A, and vitamin
C (Marsabit; Table 3).
The number of food subgroups providing≥5%of

at least one nutrient in themodule 2–optimized diet
ranged from 7 to 14, with a mean eligible percent
agreement of 85% (range: 71–100%). The mean
overall percent agreement for identifying food
subgroup sources of nutrients was 81% (range: 71–
100%; Table 4; Table S5, online only). Breastmilk,
whole grains, and beans, lentils & peas were iden-
tified as good food subgroup sources of nutrients
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Table 2. Summary of input model parameter agreement by geographical area
Western

Highlands,
Guatemala

Eastern
Uganda

Western
Uganda

Sylhet,
Bangladesh

Kitui,
Kenya

Isiolo,
Kenya

Marsabit,
Kenya

Vihiga,
Kenya

Mean of
all values

Total numbera of foods
modeled

68 46 46 76 41 34 24 55 48.8

Total number of food
subgroups modeled

31 26 28 27 21 23 15 30 25.1

Total number of food
groups modeled

15 13 13 14 12 14 10 14 13.1

Median ratio maximum
food portionsb

1.00 1.19 1.39 1.14 0.62 0.78 0.54 1.00 1.02d

% interpair overall
agreementc foods
modeled

39.7 45.7 47.8 38.2 34.1 44.1 50.0 38.2 42.2

% interpair overall
agreement for food
subgroups

71.0 57.7 57.1 66.7 61.9 47.8 73.3 66.7 62.8

% interpair overall
agreement for food
groups

86.7 84.6 84.6 78.6 83.3 57.1 90.0 78.6 80.4

aTotal number=number included in either the household consumption and expenditure survey (HCES) or 24-h recall (24HR) paired
models (i.e., included in either one or both paired HCES and 24HR models).
bRatio = HCES maximum weekly portion size (g/week)/24HR maximum weekly portion size (g/week).
c% overall agreement= number included in both the paired HCES and 24HRmodels/the total number included across paired HCES
and 24HR models (i.e., included in either one or both paired HCES and 24HR models).
dOverall median value.

in all eight dataset pairs, and milk and green leafy
vegetables were identified as good food subgroup
sources of nutrients in seven of the eight data pairs
(Table 4). The poorest overall agreement (≤50%)
across geographical regions for individual food sub-
groups sources of nutrients was for soups/broths,
organmeat, nuts & seeds, vitamin A–source vegeta-
bles, and vitamin C–rich vegetables, which partially
reflects differences in the amounts and types of
foods that were included in paired HCES and 24HR
food lists (Table S5, online only). Agreement was
moderate (51–75%) for refined grain bread, vitamin
A–source fruit, vitaminC–rich fruit, eggs, fishwith-
out bones, red meat, other starchy plant foods, and
other vegetables, and was good (>75%) for all other
food subgroups modeled (Table S5, online only).
Between six and eight food subgroupswere tested

as FBRs for each dataset (Table S6, online only). The
final sets of FBRs selected included between three
and six individual recommendations at the food
subgroup level (Table S7, online only). Whole grain
cereals, milk, and cooked beans, peas & lentils were
included in most paired sets of recommendations
(i.e., seven out of eight geographical areas), and
vitamin A–source dark green leafy vegetables were
included in paired sets of recommendations from
six geographical areas. Themean overall percentage
agreement for food subgroups included in paired

HCES and 24HR sets of FBRs was 87% (range:
67–100%; Fig. 2). The mean eligible percentage
agreement for food subgroups included in paired
sets of FBRs was 97.5% (range: 80–100%). Eligible
food subgroups were those tested in both the HCES
and 24HR analyses.
The mean number of nutrients remaining below

65% of their RNIs when the final selected set of
FBRs was tested (module 3, minimized nutrient
content) was 3.5 (range: 1–8; Table S8, online only).
Iron and zinc were low, for both HCES- and 24HR-
based models, in seven (zinc) or eight (iron) areas.
Themean eligible percent agreement for identifying
“inadequate nutrients” was high at 83% (range: 67–
100%; Fig. 2). The mean overall percent agreement
was also high at 94% (range: 92–100%). Across all
geographical areas, the maximum interdataset dif-
ference in the number of “inadequate nutrients” was
only one nutrient, and the overall percentage agree-
ment was lowest for calcium (Table S8, online only).

Discussion

Results from this study show that the overall percent
agreements forHCES- and 24HR-derived food sub-
group and food groupmodel input parameters were
moderate to high, despite the relatively low overall
percent agreement at the individual food level
across all geographical areas. The higher number of
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Table 3. The type and number of problem nutrientsa and overall percentage agreements for nutrient classification
by paired analyses and geographical area

Western Highlands,
Guatemala Eastern Uganda Western Uganda Sylhet, Bangladesh Kitui, Kenya Isiolo, Kenya Marsabit, Kenya Vihiga, Kenya

Nutrients 24HRc HCESd 24HR HCES 24HR HCES 24HR HCES 24HR HCES 24HR HCES 24HR HCES 24HR HCES

Fat
Calcium 1 1 1 1 1 1 1 1 1 1 1 1 1
Folate 1 1 1 1 1 1
Iron 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Niacin 1 1 1 1 1 1 1 1
Protein
Riboflavin
Thiamin 1 1 1 1 1
Vitamin A 1
Vitamin B12 1 1
Vitamin B6 1 1
Vitamin C 1
Zinc 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Number of
problem
nutrients

1 1 6 4 3 3 4 4 6 5 5 5 5 8 5 3

Overall
agreementb ,
%

100 84.6 100 100 92.3 100 76.9 84.6

aNutrients for which the modeled diet quantity was <100% of its recommended nutrient intake value in the module 3–maximized
nutrient analyses.
bNumber of nutrients for which there was agreement (micronutrients identified or not identified as a problem nutrient across both
data pairs), divided by total number of nutrients.
cThe number 1 indicates the nutrient was a problem nutrient when model parameters generated from individual 24-h recall dietary
data were used.
dThe number 1 indicates the nutrient was a problem nutrient when model parameters generated from household consumption and
expenditure survey data were used.

foods in the HCESs compared with 24HR food lists
(except for Marsabit) contributes to this low overall
percent agreement at the food level, which may
have been the result of differences in survey designs
and the methods of assessment used in the paired
data sources. HCESs were conducted over a 1-year
period compared with 2- to 6-month periods for
the 24HR surveys, which would capture to a greater
extent than the 24HRs the seasonal variation in
food availability and consumption. The higher
percentage of seasonal fruits and vegetables in the
HCES compared with 24HR food lists suggests that
it was a contributing factor. The longer recall period
of the HCES (i.e., 7–14 days) compared with the
24HR recall (i.e., 1 day) might also contribute to
paired data-source differences in food lists because
it would capture less frequently consumed foods
that may have been missed by a 24HR. Even though
the closed, predefined food questionnaire used in an
HCES might have missed some foods captured by
the open, questioning approach of the 24HR, it also
may have increased the number of foods recalled
by reducing memory errors or introducing a social

desirability bias, where participants report eating
foods that were not consumed. The higher number
of foods from the MFE food group recorded in the
HCES than 24HR food lists suggests this might
have occurred. Unfortunately, we cannot distin-
guish between modifiable factors (i.e., length of
food questionnaire) and unmodifiable factors (i.e.,
assessment methods) that might have contributed
to the low overall percent agreement at the model
food list level. The length and specificity of food
questionnaires in HCESs vary between countries
and survey years,28 and given the requirements of
the LP analysis,13 it is likely that surveys collecting
data on less than 100 foods are not detailed enough
for this type of analysis.
Other factors might have contributed to the low

overall percent agreement at the food level, such as
the age of the population modeled. Previous studies
have shown that redistributed household-level con-
sumption data do not accurately estimate the food
consumption of children under 2 years of age.30,34,35
The AME method used to estimate an individual’s
food intake fromHCES data assumes that all family
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Table 4. Number of modeled nutrients for which each food subgroup was identified as a good nutrient sourcea and
the percentage eligible and overall agreement between 24HRb and HCESc food list pairs by geographical area

Western Highlands,
Guatemala Eastern Uganda Western Uganda Sylhet, Bangladesh Kitui, Kenya Isiolo, Kenya Marsabit, Kenya Vihiga, Kenya

Food subgroups 24HR HCES 24HR HCES 24HR HCES 24HR HCES 24HR HCES 24HR HCES 24HR HCES 24HR HCES

Butter, ghee,
margarine
(unfortified)

. 0 . . 0 0 . . . 0 0 0 0 0 0 0

Margarine (fortified) . . . 0 0 0 . . 2 . 0 . 0 . 0 0
Vegetable oil

(fortified)
. . 0 0 0 0 . . 0 0 0 0 0 1 0 0

Vegetable oil
(unfortified)

0 0 . . 0 0 . . . . . . . .

Sugar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Refined grain bread 0 5 6 8 6 6 . . . 0 . 0 . . 0 1
Sweet bakery products . . 0 . . . 0 . . . . 0 . . 0 0
Sugar-sweetened

drinks
0 0 . 0 0 0 . . . 0 . . . . . 0

Broths or soups 0 2 0 . . . . . 4 . . . . . 0 .
Fluid or powdered

milk
0 0 6 4 5 5 4 6 5 3 10 2 10 2 4 2

Other fruit 0 0 0 0 1 1 0 0 . 0 0 0 . . 0 0
Vitamin A–source

fruit
. 0 . 0 0 0 . 0 . 10 . 0 . . . 2

Vitamin C–rich fruit 0 0 0 1 0 0 1 1 . 0 . . . . 0 1
Enriched/fortified

grains and products
11 6 . . . . . . . . . . 4 . . .

Refined grains and
products
(unfortified)

8 8 0 0 0 0 . . 5 0 0 0 0 0 0 0

Whole grains and
products
(unfortified)

3 8 5 7 5 5 8 7 7 7 5 7 2 7 7 7

Breastmilk 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Beans, lentils, peas 2 4 3 3 7 7 3 2 6 7 8 8 8 6 4 7
Nuts, seeds, not sweet . . 5 0 0 0 . 0 . . . . . . . 1
Eggs 2 2 . 8 0 0 1 0 . 0 0 . . . . 0
Fish without bones . . . 0 0 0 0 2 . . . . . . . 0
Organ meat . 4 . . . . . . . . 7 . . . 5
Pork . 0 . 0 0 0 . . . . . . . . . .
Poultry, rabbit 0 0 . 0 . . . . . . . . . . . 0
Red meat . 0 . 2 7 7 . . . 1 . 3 5 8 2 2
Small, whole fish . . 6 7 0 0 3 2 . . . . . . 7 2
Other composites . . . . . . 0 0 . . . . . . . .
Other starchy plant

foods
0 0 8 0 5 5 6 0 3 2 5 2 5 2 3 5

Condiment vegetables 0 0 0 0 0 0 0 1 . . . . . . . 0
Other vegetables 0 3 0 0 1 4 7 6 1 3 3 1 0 2 4 2
Vitamin A–source

dark green leafy
vegetables

5 5 8 3 7 6 7 9 10 8 7 5 . . 9 10

Vitamin A–source
other vegetables

0 0 0 2 0 0 . . . . . . . . 1 0

Vitamin C–rich
vegetables

0 0 1 2 7 7 0 7 6 0 . 1 2 . 0 0

No. of FSGs identified
as good nutrient
sources

7 11 10 12 11 11 10 11 11 9 7 10 8 8 10 14

No. of eligible FSG
pairs

21 18 26 17 11 12 11 21

No. of overall FSG
pairs

26 28 26 20 22 20 14 30

Eligible agreementd , % 85.7 77.8 100 70.6 81.8 100 81.8 85.7
Overall agreemente , % 84.6 78.6 100 75.0 72.7 85.0 71.4 80.0
aFood subgroups were defined as a good source of a modeled nutrient if they provided ≥5% of that nutrient in the module 2, nutri-
tionally best diet.
bThe analyses were done using model parameters generated from individual 24-h recall dietary dataset.
cThe analyses were done using model parameters generated from household consumption and expenditure dietary dataset.
dData pairs agreed if food subgroups were a good source of at least one modeled nutrient across both dataset pairs or it was not a
good source of any modeled nutrients for either dataset pair. Percentage agreement was calculated as the number of food subgroups
for which there was agreement across both dataset pairs, divided by the number of eligible food subgroup pairs (i.e., food subgroups
that were present in both paired datasets).
eData pairs agreed if food subgroups were a good source of at least one modeled nutrient across both dataset pairs or it was not a
good source of any modeled nutrients for either dataset pair. Percentage agreement was calculated as the number of food subgroups
for which there was agreement across both dataset pairs, divided by the number of food subgroups (i.e., food subgroups that were
present in at least one of the paired datasets).
FSG, food subgroup.
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Figure 2. Eligible and overall percent agreement for the selection of food-based recommendations (FBRs) and predictions of
nutrients for which the population would likely be at risk of inadequate intake even if FBRs were adopted (module 3–minimized
nutrient values<65% of their recommended nutrient intake values), when Optifood analyses were done using paired HCES- and
24HR-derived input model parameters by geographical area.

members consume the household’s food supply in
proportion to their energy requirements and that
all food served to an individual was consumed,
assumptions that might be incorrect for young chil-
dren. Young children often consume fewer foods
than adult family members; as they are learning to
eat family foods,39 they may not finish all the food
that they are served,25 and in some populations,
they are fed special infant foods that would not be
captured in an HCES.30,34,35 The higher percentage
of foods from the nondairy beverages and MFE
food groups and the lower percentage of foods from
composite dishes in the modeled HCES than 24HR
food list (Fig. S1, online only) suggest that age
group might have influenced the overall percent
agreement. A higher overall percent agreement
might have been found comparing HCES and
24HR food lists if we had modeled an adult instead
of a 12- to 23-month-old population.
Foods consumed outside the home are often

underrepresented or overlooked when asking about
household-level consumption, compared with
individual 24HRs.25,26,28 The proportion of foods
consumed from restaurants, fast food outlets, street
vendors, child care centers, schools, and workplaces
is predicted to increase in LMICs as food systems
evolve and purchasing power increases.28 Thus, for
populations regularly consuming meals away from

home (e.g., at childcare centers), depending on the
types of foods consumed away fromhome, the over-
all % agreement might be lower than we found in
these analyses. The addition of a “meals away from
home module” that has been recommended by the
nutrition community and adopted in some HCESs
could overcome this issue by providing information
on the types of foods consumed outside of home,
the source, and who in the household is likely
to have access to these foods.28,57–59 The paired
data-source food list pattern observed in Marsabit
was unique. Unlike the other seven geographical
areas, the number of foods in the HCES food list
was lower than in the 24HR list. Marsabit is an
area of Kenya that experiences significant seasonal
food insecurity and high poverty rates and has
a large pastoralist population.1 The paired 24HR
data used in this study were collected during the
rainy season when the variety of nutritious foods is
higher than in other seasons. This variety of food
availability might have been captured to a greater
extent in the 24HR data than HCES data, which
were collected across the year. Alternatively, foods
may have been reported in the 24HR but not in the
HCES if, in food insecure households, young chil-
dren are preferentially fed available food or families
receive food aid for their children when levels of
food insecurity are high. The fortified flour, animal
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milks, spaghetti, water gourd, and cabbage in the
24HR but not in the HCES food lists suggest that all
three factors might have contributed to the pattern
observed. Our results showing that context can
influence the direction of difference in the num-
ber of foods derived from HCES- compared with
24HR-generated food lists, at least for young chil-
dren, is noteworthy; however, the overall percent
agreement at the food level, even in this food inse-
cure area, was similar to other regions (i.e., 50% in
Marsabit versus 34–48% in the other regions). One
advantage of using HCESs to develop FBRs with
Optifood is that they usually collect data on food
consumption acrossmultiple seasons. This provides
a good general understanding of the types of foods
available across the year within each food subgroup,
which is useful for developing FBRs at the food sub-
group level, which may be more feasible to put into
practice than FBRs focused on individual foods.
Despite this low overall percent agreement for

HCES- and 24HR-generated food lists, the overall
percent agreement for food groups and food sub-
groups was moderate to high. More importantly,
when examined by individual food groups and
food subgroups, the overall percent agreement
was only low for food groups of little nutritional
importance (i.e., nondairy beverages, composites,
bakery products, and miscellaneous), and it was
high for nutritionally important food subgroups,
such as small fish with bones, vitamin A–source
dark green leafy vegetables, vitamin C–rich vegeta-
bles, milk, whole grain cereal, cooked beans, peas
and lentils, and other fruit. This general pattern
of agreement (i.e., paired-method agreement for
nutritious food groups/subgroup patterns) might
account for the relatively high percent agreement
of model outputs, including the identification of
problem nutrients and good food subgroup sources
of nutrients, the selection of FBRs, and predicting
the nutritional benefits of adopting a set of FBRs.
The sets of FBRs selected for young children across
diverse geographical areas were similar, and most
paired sets included the food subgroups of milk,
whole grain cereals, cooked beans and lentils, and
vitamin A–source dark green leafy vegetables.
These results suggest that an important criterion
when deciding on whether to use HCES data for an
Optifood analyses is the extent to which food items
from nutritious food subgroups are captured in its

predefined food list. The critical nutritious food
subgroupsmight also vary by age, sex, or physiolog-
ical group because of differences in their nutrient
requirements per unit energy intake. Thus, further
analysis is recommended before extrapolating these
promising results to other age or sex groups.
The approach we used to select and test FBRs

in this study was more rigid than what would
typically be followed in an Optifood analysis in
order to reduce subjectivity when making paired
data-source (HCES versus 24HR) comparisons of
generated results. This means that the final sets of
FBRs presented here differ from those previously
published using the same 24HR data.1,5,60 In prac-
tice, themodeling is carried out by or in partnership
with stakeholders who either have knowledge of
the local food system, dietary patterns, and FBR
acceptability or who have specific policy or pro-
gram applications in mind that would shape the
analysis. Furthermore, prior to being promoted, we
recommend that FBRs generated using Optifood
are tested for feasibility and acceptability using
tools, such as ProPAN and Trials of Improved
Practices, where caregivers are asked to trial and
provide feedback on the recommendations.13,61–63
This process of using local knowledge to select
the final set of FBRs (i.e., a key model output) and
field testing them would further minimize any
differences in model outputs related to the sources
of data used to define model parameters.
Nutrients we identified across all or almost all

regions as problem nutrients (iron, zinc, calcium,
and niacin) were consistent with published Opti-
food analyses that have been done for the same
age group. Zinc, iron, and calcium were identi-
fied as problem nutrients in almost all (six out of
seven) studies and niacin in half of the eligible
studies.1–3,5,8,15 This suggests that food systems in
many LMICs may struggle to provide these nutri-
ents in adequate amounts for 12- to 23-month-old
children within acceptable dietary patterns. Tools,
such as Optifood, can assist in identifying options
for strengthening the dietary supply of these essen-
tial nutrients within the limitations of existing food
systems.
The strengths of this study were the analyses of

paired dataset from diverse geographical regions,
including South Asia, Latin America, and Eastern
Africa, and the inclusion of paired datasets from
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regions of Kenya experiencing marked differences
in levels of food security. Also, we developed a
method for processing HCES data that adjusts for
breastmilk consumption, which addresses concerns
raised about using HCES data to estimate the food
consumption of children under 2 years of age.30
Our focus on young children was important given
global interest in developing population-specific
FBRs for children 6- to 23-months-old to ameliorate
the long-term negative developmental and health
impacts of undernutrition in this nutritionally
vulnerable age group.13
A limitation of this study is that there is no

gold standard against which HCES-derived LP
inputs can be compared. The 24HR is an imperfect
method of dietary intake assessment that is prone
to recall bias, inaccurate or imprecise quantity
estimates, and short recall periods.34,64,65 In some
respects, the use of HCES datasets has advantages
over 24HR datasets for modeling in Optifood.
They are routinely collected, nationally/regionally
representative, based on large sample sizes, and
capture data over a 12-month period. At the house-
hold level, they also record information on the
availability and consumption of a high number of
foods over a 7- to 14-day recall period to define
model constraints on weekly food patterns (foods,
food subgroups, and food groups) more accurately
than a 1-day 24HR. On the other hand, individual
24HRs have the advantage of being collected from
the target groups of interest, which avoids poten-
tially incorrect assumptions about intrahousehold
distribution of food when estimating individual
intakes from HCES household food consumption
data. Another limitation is the paired 24HR and
HCES datasets were not collected over the same
period of time. This limitation would decrease
overall percent agreements. The level of agreement
might be higher than those reported in this study
if data were collected at the same time, especially at
the food level. After excluding households without
a 12- to 23-month-old child, HCES sample sizes
for the four geographic regions in Kenya were less
than the recommended minimum of 50 individuals
for Optifood analysis using 24HR data to provide
adequate data points for determining food portion
sizes.1 As such, HCES Optifood inputs for these
areas could be less reliable than data collected from
a larger sample. However, this may be less relevant
as HCES data collection focuses on foods that are

already established to be commonly consumed and
as food consumption is reported at the household
level. As these inputs were based on redistributed
household-level data, reflecting foods that are
commonly available and consumed by households
in general rather than the specific target group,
further analysis could test the utility of consump-
tion data from a wider selection of households in
HCES datasets (e.g., expanding the definition to
households with children <5 years old) in cases
where sample sizes were insufficient.
The LP-based Optifood tool can objectively

and rapidly inform both nutrition-specific and
-sensitive programming. It has been successfully
applied to identify problem nutrients in local food
systems, develop population-specific FBRs, test the
nutrition potential of existing or proposed dietary
recommendations, and inform the design of other
intervention strategies, such as the use of special
fortified foods, multiple micronutrient powders,
or lipid-based nutrient supplements.1,3–6,16,60,66,67
While the requirement for individual dietary recall
data has limited opportunities for governmen-
tal and nongovernmental organizations to use
Optifood to generate context-specific evidence
to inform programmatic or policy decisions, this
study suggests that household-level HCES data
can replace individual-level dietary data, when
the latter is not available, to generate evidence
for program guidance. Furthermore, the risks of
using HCES instead of individual dietary data to
formulate FBRs are minimized by active stake-
holder engagement in the modeling process and
qualitative field testing of proposed sets of FBRs
before adopting them for programmatic use. This
opportunity is noteworthy because HCESs are rou-
tinely collected, generally publicly accessible, and
representative at the national and regional level for
over 116 countries.36 The utility of HCES house-
hold consumption data, for nutrition analyses, has
also improved markedly over the last 5–10 years.
It should continue to improve given the current
work program that is focused on strengthening the
overall quality of HCES data and the measurement
of food consumption.25,28,68 Based on our results,
government bodies will be able in the future to use
HCES-generated model parameters in Optifood to
rapidly generate evidence that informs policy ques-
tions related to strengthening local food systems
and providing guidance on food-based strategies
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for improving the dietary adequacy of vulnerable
populations.
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