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Abstract: Tick-borne encephalitis (TBE) is a growing public health problem with increasing incidence
and expanding risk areas. Improved prevention requires better understanding of the spatial distri-
bution and ecological determinants of TBE transmission. However, a TBE risk map at sub-district
level is still missing for Germany. We investigated the distribution and geo-spatial characteristics of
567 self-reported places of probable TBE infection (POI) from 359 cases notified in 2018–2020 in the
study area of Bavaria and Baden-Wuerttemberg, compared to 41 confirmed TBE foci and 1701 random
comparator places. We built an ecological niche model to interpolate TBE risk to the entire study area.
POI were distributed heterogeneously at sub-district level, as predicted probabilities varied markedly
across regions (range 0–93%). POI were spatially associated with abiotic, biotic, and anthropogenic
geo-spatial characteristics, including summer precipitation, population density, and annual frost
days. The model performed with 69% sensitivity and 63% specificity at an optimised probability
threshold (0.28) and an area under the curve of 0.73. We observed high predictive probabilities
in small-scale areas, consistent with the known circulation of the TBE virus in spatially restricted
microfoci. Supported by further field work, our findings may help identify new TBE foci. Our
fine-grained risk map could supplement targeted prevention in risk areas.

Keywords: tick-borne encephalitis; spatial epidemiology; risk mapping; ecological niche modelling;
Germany; Bavaria; Baden-Wuerttemberg

1. Introduction

Tick-borne encephalitis (TBE) is the most widespread vector-borne disease in Eu-
rope [1]. TBE incidence has been increasing during the past decades and represents a
growing public health threat in many endemic countries [2,3]. The TBE virus is a flavivirus
that can affect the central nervous system of infected individuals [1]. While an estimated
70% to 95% of infections progress without or only with mild symptoms, approximately
one-third of symptomatic cases experience symptoms of the central nervous system, such
as meningitis or meningoencephalitis; the overall mortality is 1% [4]. The Western TBE
subtype endemic in Europe is predominantly transmitted by Ixodes ricinus ticks [5].

Between 2012 and 2016, 12,500 cases were notified in the European Union and Euro-
pean Economic Area, with the annual case number fluctuating around 2500 [6]. In Germany,
about 300 TBE cases are notified each year [7], most (85%) from the southern federal states
of Bavaria and Baden-Wuerttemberg [7]. Between 2001 and 2018, TBE incidence showed
an annual increasing trend of 2% [3]. In 2020, the highest case number since the start of
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data collection in 2001 was reported, at 712 TBE cases, i.e., 60% higher than the previous
year [7,8]. While the underlying reasons for this development are manifold, it is suspected
that more people were exposed to tick bites because of increased time spent in nature and
forests during the COVID-19 lockdown and international travel restrictions [8–10].

The three prerequisites for TBE presence and persistence are the vector, virus, and
host animals [11]. All these components are sensitive to a variety of meteorological and
ecological factors [11–17], which is why infection risk often concentrates in highly localised
foci that are characterised by suitable conditions for tick and host survival, virus replication,
and tick questing behaviour [18,19]. Tick activity and consequently TBE transmission show
pronounced seasonality [7]. Tick larvae and nymphs generally start feeding in spring, reach
peak activity in summer, and stop questing in autumn [13,20]. Most TBE transmission in
Germany occurs between May and October [7]. TBE has been repeatedly reported in new
locations within Europe and Germany, implying that endemic areas have increased and
that the geographic distribution of the virus has expanded [21–23]. It is therefore crucial to
not only understand the ecological conditions that determine the ticks’ survival, activity,
and spatial distribution, but also the conditions which permit establishment of TBE foci.

Fructification can predict rodent numbers, which are often related to TBE occur-
rence [24]. Previous research has used the beech fructification index as a main predictor for
the TBE virus transmission cycle to generate TBE incidence forecasts for Germany, but did
not produce a risk map [24]. A map generated by Brugger et al. of the density of I. ricinus in
Germany only represents the vector as one determinant of TBE risk but does not account for
anthropogenic aspects of human TBE infection such as population density or vaccination
coverage [25]. The spatial pattern of TBE risk in Germany has only been mapped at the
district level due to routine surveillance data being collected by district [7,26]. The results
from this spatial analysis will enable a more detailed perspective on a smaller scale because
TBE risk is probably not evenly distributed across districts [3].

This study aims to (i) assess the spatial distribution and clustering of self-reported
places of infection in Bavaria and Baden-Wuerttemberg between 2018–2020; (ii) describe
selected characteristics of places of infection and compare them with those of randomly
generated comparator places and known natural TBE foci, i.e., precisely characterised areas
with confirmed TBE virus prevalence in ticks; and (iii) build a multivariable ecological
niche model and generate a predictive map to understand the importance of environmental
factors in determining the likelihood for TBE transmission and to identify new at-risk areas
or potential areas of underreporting.

2. Materials and Methods
2.1. Places of Infection

All TBE cases from the study area of Bavaria and Baden-Wuerttemberg notified from
1 January 2018 to 31 December 2020 were invited to participate in a study. Cases were
recruited on an ongoing basis throughout the study period and were interviewed as
soon as possible to minimise recall bias. Full details on the study design are published
separately [10]. Cases reported probable places of TBE infection (POI), i.e., places where a
tick bite could have occurred within the exposure period of four weeks prior to symptom
onset. Cases marked one or more probable POI as points or areas on printed A4 maps
scaled to cover the respective administrative districts. Cases also reported the number
of noticed tick bites within the exposure period (categories as “no tick bite” or “one or
more tick bites”). Three POI without information on the occurrence of tick bites were
excluded. The overall study included 581 participants out of 1220 eligible TBE cases in
Germany (48%). Sixty-two percent of these provided information on the probable place of
TBE infection located within the defined study area [10]. POI were georeferenced as points
or polygons in QGIS 3.18 [27]. To account for inaccuracies in the case markings on the map,
buffer zones were generated around each point, ranging between 300–400 m depending on
the printed map’s scale. Large polygons were not considered sufficiently specific for the
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purposes of this analysis; hence, we excluded polygons larger than the median size of all
polygons at 5.4 km2 (247 of 494 polygons excluded).

2.2. Confirmed Natural TBE Foci

TBE foci are small geographic areas with virus-carrying ticks and suitable condi-
tions for TBE transmission [28–30]. We used a set of 41 natural TBE foci which were
initially reported by TBE cases and subsequently identified by experts as places where
TBE virus-positive ticks were collected during field work based on previously described
methods [28–30]. Together, natural foci and POI make up the TBE presence data for
this analysis.

2.3. Comparator Places

Comparator places were randomly generated within the study area in QGIS with a
3:1 ratio of the POI to ensure sufficient statistical power. Comparator points were generated
with the same buffer zone as the POI points. Comparator polygons were generated with
the mean size of the POI polygons included in the analysis. An altitudinal limit of up to
1000 m ensured that the centroids of the comparator places were not generated above a
height where ticks are very rarely or never present [31]. Only one place from our TBE
dataset was located above 1000 m.

Relevant abiotic, biotic, and anthropogenic parameters for TBE endemicity and tick
ecology were identified from the literature. PubMed was searched for the terms “TBE”
OR “tick-borne encephalitis” OR “Ixodes Ricinus” AND “risk” OR “ecolog*” OR “envi-
ronment*” OR “geograph*” OR “habitat” OR “climat*”. Additional articles were selected
through snowball sampling [2,6,12,16,32,33] and expert recommendations [10,30,34].

2.4. Covariates

Based on existing research, summer and spring temperature, summer precipitation,
land cover, snow cover days, frost days, and hot days were included as abiotic determinants
into this analysis [1,12,13,18–20,35–38]. We moreover included important anthropogenic and
biotic factors such as vaccination coverage, population density, and tick density [25,39,40].

2.4.1. Abiotic Factors

The Digital Terrain Model (DGM200) containing altitude data from the Bundesamt
fuer Kartografie und Geodaesie (BKG) describes the terrain forms of Germany’s surface
by a set of points arranged in a regular raster at a 200 m resolution with a ~3–10 m height
accuracy depending on the terrain type [41]. Land cover data also came from the BKG [42].
The latest version (2018) of the German digital land cover model (LBM-DE2018) describes
the topographic characteristics of the landscape in a polygon format. There were 31 land
cover types ranging between artificial surfaces, agricultural areas, natural areas, and water
bodies [42].

Meteorological data were accessed through the German Weather Service (DWD) [43].
Raster files with a 1 × 1 km resolution were obtained for each study year for temperature
indicators, precipitation, and snow cover. A seasonal raster of the monthly averaged daily
summer temperature measured two meters above the ground (hereafter “mean summer
temperature”) was obtained [43]. In addition, temperature extremes were included through
the number of hot days (>30 ◦C) and the number of frost days (<0 ◦C) per year [43]. Raster
files for the seasonal sum of summer precipitation height (mm) and the annual number of
snow cover days (≥1 cm) were downloaded from the DWD [43].

2.4.2. Biotic and Anthropogenic Factors

A raster file for the modelled density of I. ricinus in Germany was provided by Brugger
et al., indicating the number of ticks per 100 m2 [25]. A polygon file for population density
at the community level was obtained from the BKG for 2018 [40]. Lastly, coverage of
complete and timely vaccination per district population (%) for 2018 was obtained through
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the national vaccination monitoring system “KV-Impfsurveillance” of the Robert Koch
Institute (RKI) [39].

2.5. Spatial Analysis

Each POI was weighted according to the inverse of the number of places each par-
ticipant reported (median = 1; range 1–18). For instance, if a participant marked 5 places,
each place was weighted with 1/5. The rationale for these weights was a probable lack of
certainty and specificity for each individual place, if participants marked multiple places.
A choropleth map for the aggregated count of weighted POI per district helped visually
investigate spatial heterogeneity. Furthermore, a Kernel Density Estimation (KDE) heatmap
was created with a 10 km bandwidth to examine whether there was spatial heterogeneity
in the distribution of weighted POI at sub-district level.

QGIS was utilised to visualise and process covariates. Through sampling zonal
statistics in QGIS, the mean covariate raster values of the three types of places were
determined. Boxplots were created in R 4.0.5 [44] to compare the three types of places in
their covariate characteristics. Furthermore, the proportion of each land cover type per the
sum area of POI, comparator places, and TBE foci was calculated.

A multivariable ecological niche model was built in R using a generalised linear
model (GLM) approach, with the POI and confirmed foci as presence data and the random
comparator places as pseudo absences. The model was used to assess the importance of the
covariates and interpolate the probability of POI presence to the entire study area. Raster
files of all covariates were resampled to the same resolution of 1 × 1 km and stacked. Data
from 2019 were selected as a reference for the weather covariates, after inspecting the time
series data of the weather covariates throughout the study period. Prior to building the
model, covariates were examined for multicollinearity through the Variable Inflation Factor
(VIF). In a stepwise selection, the covariates with the highest VIF scores were removed
iteratively until all covariates had a VIF < 10, which is a commonly used threshold [45].
Based on the most prominent land cover types of TBE foci, land cover data were rasterised
and dichotomised into presence or absence of forest. The model was initially run with
all nine covariates. Automated stepwise backward selection of covariates by Akaike’s
Information Criterion (AIC) was then performed. The model with the lowest AIC value
was selected as the final model [46]. Predictive model performance was evaluated by
inspecting the receiver operating characteristic (ROC) curve and calculating the area under
the ROC curve (AUC) [47,48]. The magnitude and direction of effect of each covariate was
assessed by comparing the model predicted risks with each covariate fixed to the 25th and
75th percentiles of their distribution, with all other covariates held constant at the median
(50%) value [49]. This was then used to calculate an odds ratio (OR) between comparatively
“low” and “high” values of each covariate that were approximately comparable between
different covariates.

Finally, sensitivity analyses using presence data were restricted to the confirmed foci
and only (a) POI indicated by participants who reported one or more tick bites (59% of
all POI), (b) POI smaller than 1 km2 (66% of all POI), and (c) POI that were reported as a
standalone place by cases (33% of all POI), to enhance the precision of the presence data.
This also allowed for one to investigate potential mischaracterisation of the attributes of
the true focus within the reported POI when these were reported as larger or alongside
several other places. The sensitivity analyses models were compared with the ecological
niche model to examine its performance and quality.

Based on the final ecological niche model, a continuous and a binary predictive
risk map was created in QGIS and superimposed with POI and TBE foci to compare the
presence data with the model predictions. The continuous map was further compared to
maps created from sensitivity analyses, a Kernel Density Estimation heatmap for reported
POI, and an excerpt of the official RKI TBE risk map [7,27].
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3. Results
3.1. Epidemiological Overview and Descriptive Statistics

The analysis included 567 POI reported by 359 study participants (Table 1). The
median delay between symptom onset and reception of POI maps marked by the cases was
83 days (interquartile range = 57–132 days). The size of all types of places in km2 is shown
in Table 2 and their geographical location in Figure S1.

Table 1. Descriptive statistics of participant reports on probable places of TBE infection (POI).

Type of Place Indicated Study Participants (n = 359)

Indicated points only 163 (45%)
Indicated polygons only 128 (36%)

Indicated both 68 (19%)

Number of Places Indicated Study Participants (n = 359)

Indicated 1 place 235 (66%)
Indicated 2–5 places 119 (33%)

Indicated 6 or more places 5 (1%)

Tick Bite yes or no Study Participants (n = 359)

None 120 (33%)
One or more 239 (67%)

Table 2. Size of self-reported TBE infection points and polygons, confirmed natural TBE foci, and
comparator points and polygons (km2).

Buffered Points
(n = 320)

Polygons
(n = 247)

TBE Foci
(n = 41)

Comparator Points
(n = 960)

Comparator Polygons
(n = 741)

Min. 0.28 0.09 <0.01 0.28 2.30
Max. 0.50 5.34 0.09 0.50 2.30

Median 0.50 1.93 0.01 0.50 2.30
Mean 0.44 2.29 0.03 0.43 2.30

Standard Deviation 0.07 1.45 0.02 0.07

Although Baden-Wuerttemberg is only half the size of Bavaria, it accounted for 53%
of the weighted POI. Of all 157 districts, Ravensburg had the highest sum of weighted POI
with a count of 23, followed by Zollernalbkreis (weighted count = 17) (Figure 1A).
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Temporal and spatial selection biases were investigated to examine the representative-
ness of the study data as compared to the overall TBE infection pattern. Examination of the
spatial distribution data did not raise concerns about bias, as the distribution of the study
data was comparable to all notified TBE cases in the study area (Figure S2).

3.2. Spatial Clustering of Places of TBE Infection

On visual inspection, the distribution of the POI appears spatially heterogeneous
(Figure 1). Most places were reported in Baden-Wuerttemberg in the districts Ravensburg,
Zollernalbkreis, Bodenseekreis, and Freudenstadt. In Bavaria, the districts with the highest
weighted count of places were Rosenheim, Schwandorf, and Unterallgaeu. Only few places
were concentrated in the northern and central areas of the study region. Figure 1B displays
the same data but unaggregated as a heatmap, revealing clear contrasts in the density
of POI within the district. For instance, the heatmap for Ravensburg (darkest district in
Figure 1A) showed POI only concentrated in the southern region of the district.

3.3. Individual Environmental Characteristics of Places of TBE Infection

It is reasonable to assume that the specific suitability of TBE foci as tick habitats, as
demonstrated by the observed presence of TBE virus-carrying ticks, may be reflected in
distinctive environmental characteristics of these foci [29]. Therefore, characteristics of
comparator points are expected to differ from those of foci, since comparator points were
generated randomly. Knowledge of distinctive individual environmental characteristics
may be informative for identifying new POI. Moreover, if environmental characteristics of
POI were similar to those of the natural foci and different from comparator places, this may
imply that the reliability of the POI is high. Selected abiotic covariates were thus compared
between POI, TBE foci, and comparator places.

The value ranges of multiple covariates differed considerably between the three types
of places (Figure 2). Partly driven by the small sample size, the value range of TBE foci was
the smallest for most covariates (interquartile range and general spread).

The average number of “annual frost days”, “annual snow cover days”, and “mean
summer temperature” barely differed between POI and comparator places. TBE foci had
slightly more “frost days” and less “snow cover days” per year. Foci were on average
0.4 ◦C warmer during summer. None of the abiotic covariates showed strikingly similar
characteristics between POI and TBE foci or striking differences from comparator places.
Further descriptive statistics are summarised in Table S1.

Land cover for all three types of places was predominantly characterised by natural
surface such as forest and grassland, yet the proportional shares of the categories differed
substantially (Figure 3). Natural foci were mainly made up by coniferous trees (59%),
and POI by homogeneous grassland (23%). Strikingly, the largest proportion (29%) of
comparator places was made up by arable land, contrasting the other two types of places.
There was more diversity in land cover types at the large POI and comparator places than
in the small TBE foci. For instance, arable land, houses, and grassland with trees were
observed within POI and comparator places but not within TBE foci. Houses accounted for
a small but considerable proportion (9%) of the POI. Although such artificial land cover
types are usually not considered among the main risk areas for TBE, studies have found
residential gardening to be a significant risk factor for tick bites [32,34].
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3.4. Ecological Niche Model

Eight covariates remained in the final model after VIF exclusion and stepwise back-
wards selection (Figure 4). “Hot days per year” was the only covariate removed based on
AIC changes. Figure 4 illustrates the direction and magnitude of effect of each covariate
comparing model-predicted risk between the 75th and 25th percentile value of the covariate.
Values greater than one suggest that higher values of that covariate increase the risk of
POI presence. The greatest ORs for POI presence were found for “summer precipitation”,
“annual frost days”, and “population density” (OR 2.8, 2.3, and 1.8, respectively). Increases
in “tick density” and annual “snow cover days” were negatively associated with the proba-
bility of POI presence (OR 0.8 and 0.5, respectively). The predictive performance of the final
ecological niche model was acceptable with an AUC of 0.73. Predictions were made with
69% sensitivity and 63% specificity at an optimised POI-presence probability threshold of
0.28, maximising the sum of sensitivity and specificity of the model.
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presence of a POI; comparing the 25% to the 75% percentile of each model covariate while keeping all
other variables at the median value; raw odds ratios (ORs) and 95% confidence intervals (95% CI) are
displayed in Table S2.

3.4.1. Predicted Probabilities for Places of TBE Infection

The predictive map based on the ecological niche model suggested high probabilities
up to 93% for the presence of a POI in central, south-eastern, and south-western Baden-
Wuerttemberg (Figure 5A). In Bavaria, high probabilities were predicted in the southern
districts Lindau, Oberallgaeu, Wolfratshausen, and Berchtesgardener Land, in the centre of
Munich and Neu-Ulm, and in the northern regions of Regensburg, Nuernberg, and Amberg
(Figure 5A). Areas with high and low probabilities were spread heterogeneously across
the study area. Except for some mismatches (many presence points vs. low predicted
model probability) in the west of Baden-Wuerttemberg and (few presence points vs. high
predicted model probability) in Oberallgaeu, the map accurately reflects the geographic
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distribution of the actual POI and TBE foci (Figure 5B). The binary risk map superimposed
with POI and TBE foci further confirms this observation (Figure S4).
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3.4.2. Sensitivity Analysis and Kernel Density Estimation

Increased precision of the presence data was achieved by using different criteria for
the inclusion of POI as model input: (a) only POI indicated by participants with a tick
bite, (b) only POI smaller than 1 km2, and (c) only POI indicated as a standalone place
by a case (Figures S5–S7). Sensitivity analyses produced maps with smaller areas of high
probability when compared to the final ecological niche model. This effect was anticipated
since the sample sizes of presence data were reduced substantially (by 41%, 34%, and 67%,
respectively) after applying the precision criteria for POI. Nonetheless, the overall spatial
pattern and location of areas with high and low probabilities remained the same.

The ecological niche model (Figure 5A) was moreover compared to the Kernel Density
heatmap based on the actual presence data (Figure 1B). Although two different outcomes
are being portrayed in those maps, the similarity or dissimilarity of the spatial patterns
may reflect the predictive performance of the model. The areas where the ecological niche
model predicts the highest probabilities for the presence of a POI were only in some cases
congruent with high densities in the heatmap. While the heatmap showed the highest
density of weighted POI in two localised hotspots in Ravensburg, the ecological niche
model only predicted high probabilities in the western hotspot. Another discrepancy
between the two maps was observed in the south-western Bavarian district Oberallgaeu,
where a low Kernel density compares to a high predicted probability of a POI being present.
Based on visual inspection of the individual covariate rasters in this area (see selected raster
maps in Figure S8), this discrepancy cannot markedly be attributed to one specific covariate
but more likely to an interplay of multiple factors.

3.4.3. RKI Risk Map and Ecological Niche Predictions

Most areas with high probabilities predicted by the ecological niche model (orange/red
areas) seem to be in congruence with the areas of medium or high TBE incidence (≥2.65 to
<52.42 cases/100,000 inhabitants/5 years), except for Munich, which is not marked as at
risk in the RKI map (Figure 5C) [26]. The RKI map shows an elevated risk in the far east
of Bavaria and some additional districts in the centre of the study area, which is however
not reflected by the ecological niche model. For eastern Bavaria, the actual presence of
data points seems to be in better agreement with the RKI map than the ecological niche
model prediction.

4. Discussion

This analysis described environmental characteristics of self-reported POI between
2018–2020 and explored ecological niche modelling for interpolating the spatial distribution
of reported places to all of Bavaria and Baden-Wuerttemberg, taking several potential
explanatory factors into account. The choropleth map (Figure 1A) implies spatial het-
erogeneity in the places’ geographical distribution. Reported POI were predominantly
clustered in central and southern Baden-Wuerttemberg and central-eastern and south-
eastern Bavaria. The Kernel Density heatmap revealed clustering at the sub-district level
(Figure 1B). This finding is in line with the previously described phenomenon of highly
localised hotspots of TBE infection instead of more uniform distribution across larger
areas [28].

There were only small absolute differences in environmental characteristics between
TBE foci, self-reported POI, and comparator places. This implies that none of the tested
abiotic covariates were distinctly specific for TBE risk when covariates were considered
in isolation. This likely reflects that tick ecology is a multi-faceted interplay of multiple
determinants [3,17]. It remains questionable to what extent the observed, limited level of
variation can impact tick ecology.

The land cover proportions of TBE foci, and to a lesser extent POI, reflected previously
published characteristics of a tick-friendly environment [35–37]. Forest and grassland were
the predominant land cover types (Figure 3). Arable land has not been described as a typical
tick habitat [50] but accounted for a considerable proportion of the POI. Similarly, observed
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artificial land cover types such as houses are not usually considered as an important tick
habitat; however, gardening activities have been linked to an increased risk of tick bites [32].
Due to the relatively large sizes specified for some POI and thus comparator places, they
were likely to include additional and sometimes artificial types of land cover by chance;
thus, the true land cover attributes of the presumed TBE microfoci within the specified
POI may not have been captured appropriately. By contrast, the confirmed TBE foci were
smaller and thus likely to have a more precise and plausible land cover composition.

The multivariable ecological niche model provided additional insights into magnitude
and direction of effect of the environmental parameters when considered in combination.
The most important predictors for POI presence were “summer precipitation”, “population
density”, and “annual frost days”, with the first two having understandable links with
creating favourable tick habitats and increasing exposure of humans to tick bites. The
surprising positive OR for “vaccination coverage” is likely explained by an association
between a local awareness for an already existing TBE risk and a higher vaccination
uptake in response to that. While frost and persistently low temperatures are known to
inhibit tick questing and limit the chances for I. ricinus overwintering [12,38], our data
suggested a positive association between “annual frost days” and POI presence (OR 2.3).
The observed negative association between tick density and POI presence (OR 0.8) is not
in line with ecological reasoning and should therefore be investigated more closely in the
future. Another ambivalent direction of effect was observed for “annual snow cover days”
(OR 0.5), which is generally considered as a protective factor for tick survival, as it prevents
the ground temperature from dropping to unsuitably low temperatures [51]. On the
contrary, suggesting non-linearity of this ecological covariate, extended snow cover periods
may delay the beginning of spring in the environment, making habitats less favourable for
I. ricinus and their hosts [51].

The model was further able to characterise the potential range of habitats that may
be related to higher risk of TBE infection. It also confirmed the phenomenon of localised
TBE hot spots and spatial dependency between POI presence and selected covariates.
The predicted probabilities of the model were in good agreement with the presence data.
Small mismatches between the prediction and the actual POI may be explained by either
(a) under-reporting of TBE POI in some areas, (b) few people visiting certain areas prone to
TBE transmission, (c) or low abundance of host animal populations.

Nonetheless, the sensitivity analysis map suggested a high quality of the self-reported
data even when no tick bites were reported, since the overall pattern of the location of high-
or low-probability areas was comparable (Figure S5). Sensitivity analysis with presence
data restricted to more localised (<1 km2) (Figure S6) or standalone POI (Figure S7) resulted
in a similar distribution of high and low probabilities, further confirming good quality of
the POI dataset. High TBE incidence as defined by the RKI and a high predicted probability
of the presence of a POI were moderately congruent (Figure 5B,C). In eastern Bavaria, the
ecological niche model underpredicted the presence of POI compared to the RKI incidence
map and the actual presence data. This suggests that the ecological niche model may
require additional information to correctly classify these areas as potential POI.

4.1. Strengths

To the best of our knowledge, this is the first such comprehensive dataset on probable
POI in Germany. The detailed, case-derived information allowed for spatial analysis on
a smaller scale than before. The study data did not appear to express spatial or temporal
bias when compared with the complete, routinely collected TBE surveillance dataset of
notified TBE cases in Bavaria and Baden-Wuerttemberg, also including non-participating
cases. Since all the information stems from the same study and was collected in the same
way, findings were robust to varying definitions of self-reported POI. Furthermore, expert-
derived high-precision data on previously characterized and confirmed natural foci helped
assess the quality and informative value of self-reported POI.
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4.2. Limitations and Recommendations for Future Research

Limitations include that (a) host animal abundance was not analysed as a potential
predictor in the ecological niche model due to lack of data. In case that this data is not
available for future analyses, incorporating spatially correlated random effects into the
model may be a way to account for residual spatial unmeasured confounding. Furthermore,
including the anthropogenicity of the factor “human outdoor activity” would enable a
more comprehensive approach in determining potential POI. (b) The here-analysed macro-
climatic covariates may not be precise enough to adequately explain and characterise
the POI. Especially for highly localised vector-borne diseases such as TBE, it may be
more important to incorporate microclimatic conditions with higher spatial resolution
and with more detailed information on flora, fauna, and vegetation at the ground level.
According to the literature, relative humidity was another relevant factor, but raster data
were not available. Future research should further fine-tune the explanatory parameters to
enhance the model’s predictive power. (c) Using generalised linear models in this context
may not be ideal, as most abiotic covariates do not have a linear relationship with tick
survival and TBE transmission [21]. Therefore, more advanced statistical methods such
as changepoint models, additive models, or machine learning techniques accounting for
non-linear interactions between variables are advised for future analyses.

Future work may also be directed at the entirety of Germany to examine why TBE
incidence is low in the north and higher in the south. A larger contrast in environmen-
tal characteristics may be seen along the north–south gradient, allowing better insight
about why 85% of Germany’s TBE disease burden is localized in Bavaria and Baden-
Wuerttemberg. More attention should also be paid to the sub-district distribution of POI to
identify additional TBE foci.

Lastly, different algorithms used for ecological niche models and species distribution
models can return different estimates [33]. Comparing multiple predicted models for the
same study region may help discover areas of agreement regarding the suitability for TBE
foci and the probability of disease transmission [33].

4.3. Public Health Implications

These results serve as an overview of the potential POI between 2018 and 2020 and may
help guide surveillance, data collection, and public health planning in the future. Ideally,
recommendations on public health measures should be formulated in comprehensive
synergy alongside other existing information about TBE risk to discuss preventive strategies.
More localised insights into high-infection densities at the sub-district level as seen for
south Ravensburg (Figure 1B) may have relevant implications for improving targeted
prevention measures such as providing the population with detailed information on local
infection risk. This could encourage persons living in or visiting particularly high-risk
areas to apply tick-protection measures and obtain TBE vaccination.

5. Conclusions

Our results deliver new insights about potential POI in southern Germany. The find-
ings improve the geo-spatial understanding of tick ecology and disease transmission and
aid public health professionals, general practitioners, and the public in recognising poten-
tial risk areas and reinforcing prevention efforts. A high degree of spatial heterogeneity
was observed both at the district and sub-district level. To the best of our knowledge,
sub-district spatial distribution of POI has not been previously investigated for the whole
of Bavaria and Baden-Wuerttemberg with this level of geographic precision. Based on
our heatmap and predictive map, some areas have the potential to be classified as ad-
ditional TBE foci in the future, if confirmed by field work. Examination of the selected
environmental covariates in isolation returned inconclusive results, emphasising that the
various potential environmental determinants for TBE infection risk are best considered in
combination. Therefore, multivariable ecological niche modelling appears to be a valuable
tool for predicting TBE risk. The present model serves as a basis for what can be performed
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to interpolate the probability of TBE infection risk to other unsampled sites. It may be
further calibrated, and variable inclusion and instrumentalisation can be re-evaluated to
enhance its predictive performance.
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13. Daniel, M.; Danielová, V.; Fialová, A.; Malý, M.; Kříž, B.; Nuttall, P.A. Increased Relative Risk of Tick-Borne Encephalitis in
Warmer Weather. Front. Cell. Infect. Microbiol. 2018, 8, 90. [CrossRef]

14. Daniel, M.; Materna, J.; Honig, V.; Metelka, L.; Danielová, V.; Harcarik, J.; Kliegrová, S.; Grubhoffer, L. Vertical Distribution of the
Tick Ixodes ricinus and Tick-borne Pathogens in the Northern Moravian Mountains Correlated with Climate Warming (Jeseníky
Mts., Czech Republic). Central Eur. J. Public Health 2009, 17, 139–145. [CrossRef]

15. Hauser, G.; Rais, O.; Cadenas, F.M.; Gonseth, Y.; Bouzelboudjen, M.; Gern, L. Influence of climatic factors on Ixodes ricinus nymph
abundance and phenology over a long-term monthly observation in Switzerland (2000–2014). Parasites Vectors 2018, 11, 289.
[CrossRef]

16. Gray, J.S. Ixodes ricinus seasonal activity: Implications of global warming indicated by revisiting tick and weather data. Int. J. Med.
Microbiol. 2008, 298 (Suppl. S1), 19–24. [CrossRef]

17. Knap, N.; Županc, T.A. Factors affecting the ecology of tick-borne encephalitis in Slovenia. Epidemiol. Infect. 2015, 143, 2059–2067.
[CrossRef] [PubMed]

18. Stefanoff, P.; Rubikowska, B.; Bratkowski, J.; Ustrnul, Z.; Vanwambeke, S.O.; Rosińska, M. A Predictive Model Has Identified
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