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We appreciate the opportunity to discuss the thought-provoking paper by Quick, Dey 
and Lin (2021), which we shall refer to as QDL in the following for convenience. 
 
There is a lot of material to unpack in the paper, and I fear that I will not do justice to 
this impressive work by largely ignoring many of the modeling and computational 
techniques used in the authors’ analyses of COVID-19 infection counts and ascertained 
cases, calibrated by various seropositivity assessments, all data covering both space 
and time. According to the authors prescription, I will refer to the proposed model 
through their acronym, MERMAID. I hope that my overlooking key issues will be 
redressed by other discussants and by future research inspired by the paper.   
 
General Remarks 
From a broad perspective, it is useful to begin a discussion by setting expectations for 
a retrospective statistical model of community transmission. In considering this for 
MERMAID, the following quote from Chris Whitty (the current Chief Medical officer for 
England) in the pre-COVID-19 world of 2015 is on point: 
 
“The tendency of some modelers to present them as scientific predictions of the future 
rather than models does not help. Models are widely used in government, and some 
models have arguably too much influence. They are generally most useful when they 
identify impacts of policy decisions which are not predictable by commonsense; the 
key is usually not that they are ‘right’, but that they provide an unexpected insight.”  
 
While MERMAID is not designed for predictive purposes, I think readers can usefully 
approach the methodology and analyses as an exercise in reading the results from any 
modeling exercise: what were the unexpected insights learned? 
 
Characteristics of MERMAID 
There has been a plethora of quantitative models that try to both explain patterns of 
COVID-19 infections and provide insight into the scale of future transmissions and 
associated hospitalizations. Many of these approaches correctly identify inaccuracies in 
available counts of infections, compounded by lags in hospitalization or mortality 



counts that are often used as more reliable sources. A partial remedy for 
underreporting (particularly likely for infections with mild or no symptoms) is to pre-
process infection counts using external information about ascertainment rates. Here, 
QDL models infections, ascertainment, lags, and connections to seroprevalence 
surveys, simultaneously. It would be interesting to elucidate the statistical advantages 
of this more comprehensive approach as compared to more narrow analyses of 
adjusted infection counts to the extent that infection patterns are of primary interest. 
 
MERMAID involves four components: (i) a model of the (unobserved) number of 
infections per unit time, (ii) aallocation of infections to a potential day of confirmation, 
(iii) a delay model that focuses on observed confirmed cases based on the number of 
infections and an ascertainment probability that depends on testing metrics, and finally 
(iv) calibration of the number of infections over time as they are reflected in population 
estimates of cumulative seroprevalence. The models work at a regional level (here 
states in the US), largely because there is anticipated and clear variation in many of the 
model parameters from state to state. The exception is the inclusion of regression 
effects for Rt  based on crude measures of non-pharmaceutical interventions (NPIs) 
where state effects are inextricably linked as discussed further below. 
 
There are two general characteristics of MERMAID that are important to note: (i) the 
model is statistical, or purely empirical, as compared to methods that rely on dynamic 
transmission models whether these are deterministic or stochastic, and (ii) the model is 
fundamentally retrospective in nature. Let me discuss both of these issues in turn. 
 
MERMAID is purely empirical   
To a statistician, this is an attractive feature--so long as the statistical model is 
compatible with a reasonable understanding of how available data is generated—as it 
avoids detailed epidemiological understanding of transmission characteristics. At first 
glance, the initial stage of MERMAID modelling seems to involve an epidemiological 
model for infection growth, centred on Rt, the reproductive number associated with 
SARS-Cov-2 infections; however, this does not appear essential to the overall approach 
as noted below. Loosely speaking, Rt refers to the expected number of infector-
infectee pairs, arising from a single infector, at time t. One disadvantage of Rt for public 
consumption is that does not carry any information on time, that is, how long it takes 
for an infector to transmit the pathogen to subsequent infectees. 
 
As an aside, estimation of Rt depends on the distribution of the generation interval, 
and not the serial interval; these two distributions the same mean, but have different 
variances in general which is important. Here, the usually unobserved generation 



interval refers to the time between infections for an infector-infectee pair (always 
positive), whereas the serial interval describes the time between symptom onset for the 
same pair, a time that is more likely observable but may be negative. It is known that 
use of an estimated serial interval distribution in place of that for the generation 
interval may result in biased estimates of Rt  (Gostic et al., 2020). It is unclear whether 
use of the serial interval is an issue here. A related concern is that is likely that the 
generation and serial interval distributions vary over time and space, particularly as a 
pathogen mutates and responds to local environments, whereas MERMAID assumes 
that the serial distribution is fixed.  
 
The growth rate, rt (the rate of change of the log-transformed case incidence), presents 
an alternative to Rt  with advantages that (i) it does carry information on the speed at 
which cases grow, (ii) does not depend on any epidemiological model of transmission, 
and (iii) is more understandable to lay people (Parag and Donnelly, 2020). There are 
challenges to estimate either measure from available data: Parag, Thompson, and 
Donnelly (2021) discuss the relative merits of the two estimates with a focus on guiding 
public health interventions in real time. The growth rate, therefore, appears to provide 
an equally effective basis for the first part of the MERMAID model, removing any 
reliance on a formal transmission model and thereby stressing the empirical nature of 
the model.  
 
Before going further, it is important to note that empirical models carry their own 
assumptions, and that not all such models of epidemic growth have been successful in 
the past (Ellenberg and Morris, 2021; Jewell and Jewell, 2021; Jewell, Lewnard and 
Jewell, 2020ab). To its great credit, MERMAID avoids the pitfalls of earlier statistical 
modelling attempts of COVID-19 infection counts, nor is there any attempt to 
extrapolate the model to the future as we discuss further below. As noted, MERMAID 
still requires a lot of assumptions to yield valid interpretations, many of them discussed 
carefully by the authors. Other discussants will further elaborate on other assumptions, 
and I return to interpretation of the Rt regression below. I also point to the challenges 
of modelling ascertainment rates, here allowed to potentially depend on the number of 
tests and/or the fraction of the population being tested, data that are often publicly 
available. However, in many locations, ascertainment also depended heavily on the 
strategy for testing, that is who was targeted for testing and at what level, particularly 
with regard to asymptomatic testing. Such strategic decisions are far less documented 
and hard to capture quantitatively.  
 
The authors note that identifiability of the ascertainment model depends on the 
availability of seroprevalence data. This suggests the possibility of purely statistical 



correlation between estimates of ascertainment rates and seroprevalence. However, 
this phenomenon is identified as a primary finding of the data analyses, raising the 
question of how much of the detected relationship reflects a true effect and how much 
is related to an identifiability artefact.    
 
MERMAID is necessarily retrospective  
The chronological time period covered in the illustrative data analyses is March to 
December 2020, largely covering the first wave of the SARS-Cov-2 outbreak. The intent 
is thus to provide insight into what happened in the past, and not what will happen in 
the future. Undoubtedly, this is of considerable interest but it is less useful for real-time 
policy decisions that hinge on influencing where communities might go in the future. 
To be fair, empirical models (and mechanistic models for that matter) have not, in 
general,  successfully predicted COVID-19 infection counts more than a month out, 
and model ensemble estimates only partially address key uncertainties. Epidemic 
models differ fundamentally from many apparently similar complex prediction efforts 
(such as national meteorological models) since human behavior and governmental 
policies are influenced by predictions, necessarily modifying subsequent outcomes. 
 
This issue is particularly important to emphasize for infectious disease outbreaks where 
interventions are needed before exponential growth is established—delay in action 
contributes a huge fraction of future disease burden (Roberts, 2020). A key public 
health dilemma when responding to a novel pathogen is that intervention may be 
required before a substantial amount of data is available. In such cases, evidence-
based decisions may not be feasible, and mitigation efforts must be launched on the 
bases of other scientific assessments including mathematical models. In the presence 
of potential exponential growth, public health experts recognize that early 
interventions must be implemented before there is a significant caseload and will be 
subject to significant criticism particularly if they are successful. At this point in the 
COVID-19 pandemic, the public health community must assess the success off various 
policy decisions, and ask both what have we learned and how we can improve in the 
future.  
 
Above, we briefly stated what components MERMAID combines into a comprehensive 
model of past infection patterns. But what does the model not address? Amongst 
other issues, MERMAID does not yet allow for (i) natural feedback loops, (ii) day of the 
week effects, (iii) variants of concern, (iv) vaccine, natural immunity and cross-immunity 
effects, (v) subgroup (i.e. age) variation. In addition, it does not address the impact of 
school closures and re-openings on community transmission, nor the impact of other 
major events in communities (e.g. Euro 2020—see Smith et al., 2021). 



 
An additional challenge to the application of both mathematical and statistical models 
to the COVID-19 pandemic, is that models generally fail to link different risk 
communities—for example, a connection between community transmission and risk 
within long-term care facilities. This linkage of transmission between distinct at-risk 
communities was ultimately recognized to be very important in understanding HIV 
transmission dynamics.   
 
The simulations provided by QDL provide useful insight into the robustness of 
MERMAID to some assumptions. It would be of great interest to consider additional 
comparisons with alternative empirical models. In such comparisons, statisticians can 
provide valuable insights into the right metric for comparison. In a related but different 
point, how to best calibrate an empirical model in the presence of poor-quality data is 
important. MERMAID uses community seroprevalence surveys that are largely based 
on convenience samples of one form or another, and are only available at idiosyncratic 
intervals. Is there any advantage to community testing of sewage samples for SARS-
CoV-2 (Larsen and Wigginton, 2020)? Are there better approaches? We return to this 
below. 
 
Regression Models for Rt   
This component is perhaps the aspect of MERMAID that is of most interest to policy 
makers, and simultaneously the most challenging. As QDL emphasize, their regression 
models for Rt  are associational and not causal. It is necessarily hard to quantify the 
effects of population interventions on Rt  that yield a causal interpretation, in part 
because Rt  is multifactorial and subject to inherent feedback mechanisms. Transmission 
rates depend on the (i) intensity and nature of contacts (i.e. mixing), (ii) infectivity 
associated with contacts, and the (iii) duration of infectiousness. Further, policy 
interventions are varied, directed at each of these factors with different impacts, and 
constantly change over time.  
 
As such, models as they currently stand, including MERMAID, often cannot answer a 
key question required for a data-driven policy decision: how much reduction in Rt  can 
be expected through implementation of a defined “amount” of mitigation? As we have 
argued elsewhere, there has been far less reliance on randomized experiments than 
might be desirable (Jewell and Jewell, 2021; Fretheim, 2020; McCartney, 2020), other 
than in trials of vaccine and therapeutic efficacy, perhaps reflecting a form of 
experiment aversion where social policies are concerned. For many intervention 
questions associated with reducing the risk of COVID-19 infection, there is clear 
evidence of equipoise, reducing ethical concerns associated with experimentation.  



 
For identifiability reasons, MERMAID constrains the regression effects on Rt  to be 
constant across states, i.e. the impact of interventions must be consistent in different 
regions. QDL invoke the assumption that the effects of mitigation policies are constant 
both over time and regions. But, as we illustrate below, regression effects are likely to 
vary depending on location (i.e. causal effects from one location have poor 
transportability to another). 
 
For example, Miller et al. (2020) estimate changes in estimated Rt  over time in various 
US states in the early stages of the COVID-19 pandemic. Their Figure 3 (reproduced 
here, in part, as Figure 1) compares Rt  estimates with a mobility measure of Relative 
Routing Volume (RRV) for four specific states.  Note that chronological time in Figure 1 
flows from right to left since mobility decreased throughout March 2020. As seen in 
Figure 1, this association between Rt and reduction in RRV is quite different across the 
states, with the estimated Rt falling below one at different levels of RRV depending on 
the state. For Louisiana, Rt was reduced to one when RRV fell to 65% (58-75%) of 
baseline levels. On the other hand, New York’s Rt fell below one only when RRV was 
reduced to 48% (43-56%) of baseline. Reductions in RRV below 80% of baseline 
delivered diminishing returns in reducing Rt in Louisiana, while the slope in New York 
was maximized at RRV around 50% of baseline. 
 
For COVID-19, regression models for Rt have been almost universally cross-sectional in 
nature. However, observed relationships when mobility decreases may not be a 
reasonable description of what may happen to Rt “in reverse,” that is, when mobility 
increases. The same is likely true for other mitigation strategies such as mask mandates 
and transportation restrictions. Specifically, Nouvellet et al. (2021) demonstrate quite 
different regression effects on Rt between an increasing and decreasing mobility 
covariate. An interesting extension to the MERMAID regression model for Rt  might 
exploit longitudinal data to capture effects that permit interactive effects with the 
covariate “direction”. 
 
Clearly, an important goal is to understand the “left to right” relationship—i.e. as 
mitigations decrease—sufficiently well to develop strategies for easing restrictions that 
increase mobility, and loosen mask mandates etc., while at the same time minimizing 
increases in Rt. 
 



 
 
 
 
 
 
 
As QDL stress, it is important not to ignore cautionary lessons learned regarding the 
challenges of causal inference from observational, indeed here ecological, associations. 
The regression effects reported by MERMAID cannot be interpreted causally due to 
the role of other factors. And, any such regression estimate, and related uncertainty in 
inference, are sensitive to model selection in a variety of ways.  
 
Better Data not Better Models?  
We teach that the science of epidemiology focuses on three questions: Who? When? 
Where? The cornerstone of any epidemiological description of an emerging outbreak 
begins with an understanding of how many individuals have been infected by a 
pathogen, and who they are with regard to basic demographics and risk factors. 
Crucial to these goals are valid and direct epidemiological measures of community 
infection and prevalence rates. Routine surveillance allows for targeting of intervention 
responses and effective mobilization of health care resources. This information is best 
obtained through adaptable and integrated disease surveillance systems that can 
capture both new and past infections. There is a lack of national and state 
hospitalization data due, in part, to the fragmented nature of the US health care 
system. In the UK, the Office of National Statistics (ONS) has been more proactive with 
regard to reporting infection and death counts based on probability samples (UK 
Office for National Statistics, 2021). In addition, the UK REACT studies—also based on 
probability samples—have provided regular updates on infection rates and community 
prevalence (Imperial College, London, 2021). 
 
MERMAID is forced to rely on convenience samples which should only be used as a last 
resort. Unfortunately, the use of population samples has been the exception rather 
than the norm in the US. Early opportunities to launch seroprevalence surveys in the US 

Figure 1. Miller et al. (2020). Left: Inferred relationship between the reproduction number 
and mobility volume change, for four US states. Right: the multiplier effect on initial 
reproductive number estimates as a function of relative change in mobility from baseline for 
the same four US states. 



were missed, in part due to a lack of supply of test kits early in the epidemic. A natural 
option for capturing blood samples from a nationally representative sample would 
have been the annual National Health and Nutrition Examination Survey (NHANES), 
but this was suspended on March 6, 2020 due to COVID-19.  
 
In addition, the US has been slow to institute regular and comprehensive sequencing 
of SARS-Cov-2 positive samples to detect variants. In the UK, the new and fast-
spreading SARS-CoV-2 variant (B.1.1.7) was only identified quickly because of the 
implementation of regular, systematic sequencing of a large sample of positive SARS-
CoV-2 tests. There was no such timely systematic attempt in the US, although more 
sequence data is being obtained now due to the appearance of several additional 
variants of concern across the world. Further, coordinated contact tracing data — 
which is extremely useful in assessing transmissibility and factors that affect 
transmission — has been generally lacking.  
 
It is notable that this was not the case in earlier pandemics when resources, technology 
and understanding of survey methodology were much less advanced. In the winter of 
1918/1919, the US Public Health Service carried out a large door-to-door survey (with a 
sample size that exceeded 145,000) to measure the morbidity and mortality of the 
1918/1919 influenza pandemic (Morabia, 2020).  
 
So, with all due respect to the authors’ extraordinary efforts in developing and applying 
MERMAID, I end my remarks by suggesting that, in the future, it will be better data 
that we need rather than better models. A national strategy for addressing surveillance 
data requirements for the next novel pathogen is urgently required. 
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