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ENVIRONMENTAL
EPIDEMIOLOGY

What this study adds

Using high-resolution satellite-derived imagery, we modeled key 
postulated chronic kidney disease of unknown etiology (CKDu) 
risk factors heat index, altitude, and proximity to land cover 
class in a large population sample across India. Results show 
that CKDu is most likely linked to proximity to cropland which 
could be indicative of pesticide exposure. This is the first study 
of its kind in India and could be a key first step in identifying 
specific subcommunities which may be at a higher risk of this 
disease.
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Introduction
An epidemic of chronic kidney disease is occurring in rural 
communities in an increasing number of low-income and 

middle-income countries.1,2 Characterized by chronic impair-
ment of kidney function, this disease does not involve known 
risk factors such as diabetes, hypertension, or proteinuria, and 
occurs primarily in communities characterized by a hot cli-
mate with reliance on heavy agricultural work.2 This disease 
has been termed chronic kidney disease of unknown etiology 
(CKDu), and is estimated to have led to the premature deaths 
of hundreds of thousands of young men and women over the 
past 2 decades.1 CKDu is currently defined as having an esti-
mated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2 in 
the absence of diabetes, hypertension, old age (>65 years), or 
proteinuria.1–3

Currently, some of the highest prevalence rates of CKDu 
have been reported in Uddanam, Southern India and Nicaragua, 
Central America, where, respectively, 73% and 10%–20% of 
the adult population sampled in rural areas are affected.4–6 
Although the etiology of CKDu remains unidentified, there is 
evidence suggesting that exposure to certain environmental 
conditions may lead to the development of the disease. Key 
among these purported environmental risk factors are as fol-
lows: (1) high ambient temperatures,7–11 (2) physically stressful 
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working environments,12,13 (3) low altitude,14,15 (4) exposure to 
pesticides via agricultural farming practices,4,16–18 and (5) expo-
sure to heavy metals and other contaminants via potable water 
sources.19–22

Exposure to extreme ambient temperatures can cause dehy-
dration and kidney volume loss, resulting in mortality from 
exacerbations of an existing chronic disease.9,23 Studies investi-
gating the heat hypothesis in relation to CKDu have shown that 
recurrent heat exposure together with extreme physical exertion 
and inadequate rehydration can lead to CKD in the absence of 
common risk factors diabetes, hypertension, or glomerulone-
phritis.23,24 Furthermore, toxic agents25–27 in soil and water can 
spread to wider communities via displacement or absorption 
into the food chain and can adversely affect susceptible indi-
viduals, particularly those with unhealthy lifestyles (i.e., heavy 
drinkers and/or smokers) and harsh working conditions (long 
hours conducting high-intensity labor).18,28 Altitude is hypothe-
sized to have a protective effect against reduced eGFR10,14 with 
the hormone Erythropoietin thought to help slow renal disease 
progression, as it attenuates interstitial fibrosis and reduces 
apoptotic cell death, which is known to be a major contributing 
factor to the loss of renal function.29 It has been postulated that 
the altitude threshold range for protection against renal dam-
age can be observed between 250 and 1500 m. This estimate; 
however, this was from a single study, and this association will 
require further investigation.14

Although most cases of CKDu have been reported across 
Central American countries, there is growing evidence that this 
disease is also present in India, where the prevalence is estimated 
to be as high as 73% in selected southern rural communities.6 To 
date; however, no multifactorial environmental exposure stud-
ies have been conducted in India, and therefore it is currently 
unknown whether these risk factors are indeed relevant to the 
disease observed in the community, and whether environmental 
risk factors are observed across all CKDu-endemic regions are 
similar. Our study, therefore, aims to conduct exploratory envi-
ronmental analyses in urban and rural areas across Northern 
and Southern India, to investigate whether the risk factors of 
temperature, altitude, and vicinity to agricultural land are asso-
ciated with a low eGFR.

Methods

Study settings and participants

We used cross-sectional data from two population-based stud-
ies conducted in India: the “Centre for Cardiometabolic Risk 
Reduction in South Asia” cohort study (CARRS study)30 and the 
“Implementing a comprehensive diabetes prevention and man-
agement program” study (UDAY study).31 Both studies collected 
socioeconomic, anthropometric, and biosample data includ-
ing household income, body mass index, blood pressure, and 
serum creatinine measures. Details on study design, participant 

selection, and variables collected for these studies have been pre-
viously described.30–32

The CARRS study is a representative sample of adults ≥18 
years of age (n = 12,270) between 2010 and 2011 in two urban 
sites in North (n = 6906) and South (n = 5364) India. The north-
ern site was located in India’s capital city New Delhi which 
covers a 1483 km2 area and has a population of 16,787,941.33 
The southern site was in Chennai, the capital of Tamil Nadu 
state which covers an area of 426 km2 and has a population of 
8,653,52134 (Figure 1). We used data from both cross-sectional 
surveys which comprised 1798 participants from New Delhi 
and 3193 participants from Chennai.

The UDAY study was conducted on adults ≥30 years in 
urban and rural sites in Sonipat district, Haryana, North India, 
and Visakhapatnam district in Andhra Pradesh in South India. 
In both districts, the program was implemented in a sample of 
100,000 participants in each rural and urban subsite with a total 
population of 400,000 participants. We used data from the first 
cross-sectional survey conducted among the general population 
(n= 12,243; Sonipat: n = 6208; Vizag: n = 6035) between July and 
December 2014. Bio samples were collected from 10,452 partici-
pants (Sonipat: n = 5110; Vizag: n = 5342). In Sonipat, the urban 
site was in Sonipat city (n = 3104), which covers a 388-km2 area, 
and has a population of 1,450,000.33 The rural site was in the 
Kharkhoda subdistrict (n = 3104) which covers 278 km2 with a 
population of 135,84433 (Figure 1). The southern sites were located 
in Andhra Pradesh on the South East coast in the Visakhapatnam 
district (Vizag) which covers 11,161 km2, with a population of 
4,290,589.33 The urban site was in the city of Visakhapatnam  
(n = 2966), and the rural site was in mandals (which are simi-
lar to an administrative area) Makavarapalem and Nathavaram  
(n = 3069) (Figure 1).31 The dataset comprised 1540 participants 
from urban Sonipat, 1640 participants from rural Sonipat, 1228 
participants from urban Visakhapatnam, and 1816 participants 
from rural Visakhapatnam were included in the analysis.

We investigated the associations of the following environ-
mental risk factors: (1) ambient temperature,23,35 (2) altitude,10,36 
and (3) residential proximity to agricultural land37 with eGFR 
as a continuous variable and risk of eGFR <60 as a categorical 
marker of CKD stage 3 or worse.1,38 Proximity to agricultural 
land is increasingly being studied as a proxy to agrochemical 
exposure due to resource and financial constraints of effectively 
measuring pesticides in laboratories. Using satellite-derived 
environmental data, we assigned these environmental exposures 
to participant residential coordinates which were collected over 
the CARRS and UDAY study periods.30,31

Data sources

We used satellite-derived heat index (HI), altitude, and land 
cover data to estimate participants’ exposure.

To estimate the combined effects of temperature and humid-
ity on the human body, we used an HI.39–42 The HI is a com-
monly used exposure proxy for heat stress in environmental 
health studies43–45 as it provides a “feels like” heat measure and 
is considered preferable to measuring air temperature alone.41,42 
We used the retrospective ERA-5 Land re-analysis dataset from 
the European Centre for Medium-Range Weather Forecasts 
which has a spatial resolution of 9 km.46 We extracted monthly 
averaged 2-m height temperature and 2-m height dew point 
variables between October 2010–November 2011 and July 
2014–December 2014 to capture the timeframes across which 
the CARRS and UDAY studies were conducted, respectively.

First, using the R studio “Weathermetrics” package we calcu-
lated the relative humidity using the temperature and dew point 
data variables using the following equation:
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where R = relative humidity, Td = Dewpoint, T = Temperature.47

We then calculated the HI for each grid point in Celsius units 
using the following equation:

HI = − + + −
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where HI = heat index; T = ambient temperature; R = relative 
humidity.48

Using ArcGIS software, we modeled a continuous HI sur-
face across the study sites, using the probabilistic interpolation 
method Kriging. For geostatistical modeling, the structure of 
spatial variation is estimated through the semivariogram which 
is a visual depiction of the covariance exhibited between each 
pair of points in the sampled data and determines the weights to 
apply to data points when developing predictions.49

The variogram is expressed as:

γ µ µ( ) { ( ) ( )] [ ( ) ( ) }h Z s s Z s h s h= − − + − +( )1
2

Var

where h denotes the translation between any two sites si and sj 
in a study area.50

We conducted a sensitivity analysis comparing the Kriging 
method with other interpolation methods inverse distance 

weighting and Empirical Bayesian Kriging (EBK) to assess the 
best overall fit. We used a holdout cross-validation approach 
by which the dataset is randomly divided into a training and 
validation set (Table S1, Supplemental Digital Content 1; 
http://links.lww.com/EE/A153). The model is trained on the 
training dataset and evaluated on the validation dataset.51 
The overall fit was evaluated on the basis of the root mean 
squared error (RMSE) and the mean actual error. Sensitivity 
analyses showed that Kriging was the most accurate inter-
polation method in comparison to inverse distance weight-
ing and EBK (Tables S2–S5, Supplemental Digital Content 1;  
http://links.lww.com/EE/A153). The prediction errors were 
the lowest across Delhi (Table S3, Supplemental Digital 
Content 1; http://links.lww.com/EE/A153), Haryana (Table 
S5, Supplemental Digital Content 1; http://links.lww.com/
EE/A153), and Tamil Nadu (Table S4, Supplemental Digital 
Content 1; http://links.lww.com/EE/A153) (RMSE = 0.006, 
0.010, and 0.010, respectively). Higher prediction errors 
were observed in Andhra Pradesh (RMSE = 0.085) (Table 
S2, Supplemental Digital Content 1; http://links.lww.com/EE/
A153).

To create a continuous altitude surface across the study 
sites, we used a digital elevation model (DEM) from the Shuttle 
Radar Topography Mission, a global DEM giving coverage of 
void-filled data at a resolution of 30 m with a vertical accuracy 
of 20 m.52 Altitude values were then assigned to the participant 
residential coordinate.

Figure 1. “Centre for Cardiometabolic Risk Reduction in South Asia” (CARRS) and “Implementing a Comprehensive Diabetes Prevention Management 
Program” (UDAY) study sites located in urban Delhi (Delhi) and rural Chennai (Tamil Nadu) and rural and urban Sonipat (Haryana) and Vishakhapatnam (Andhra 
Pradesh), respectively.
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For land cover, we used The European Space Agency Climate 
Change Initiative programme raster products which have a 
300-m resolution53 and a typology comprising 22 classes53 
including cropland and urban cover. To capture and assign a 
land cover class in the immediate neighborhood of each partic-
ipant, we placed a 300-m buffer around each residential coor-
dinate to match the land cover data resolution. We assigned the 
mode land cover class inside each buffer to capture the most 
common class for each participant and then grouped classes 
into “cropland” and “urban” cover classes. All environmental 
exposure values were assigned to residential coordinates using 
ArcGIS software version 10.5.1 by ESRI.

Data cleaning and coding

The dataset was pre-restricted for those with missing serum 
creatinine, age, and sex variables, as were those diagnosed or 
self-reported with diabetes (fasting plasma glucose ≥126 mg/dl), 
hypertension (systolic blood pressure ≥140 mm Hg, or diastolic 
blood pressure ≥90 mm Hg) and proteinuria [albumin/creati-
nine ratio (ACR) in urine ≥300 mg/g]. Detail on how these vari-
ables were measured are described elsewhere.30,31 We assigned 
participant household coordinates to the restricted dataset 
using participant ID numbers. For more parsimonious models, 
we re-grouped income categories into three groups “unknown,” 
“<30,000RS,” and “≥ 30,000RS” which represented the mid-
point of the salary categories. Those with missing coordinate 
data were also excluded.

Kidney function is measured using the eGFR calculated 
using serum creatinine, age, and sex variables.38 Normal kidney 
function is defined by an eGFR >90 ml/min/1.73 m2 body mass 
area.54 For this dataset, eGFR was calculated using the Chronic 
Kidney Disease-Epidemiology Collaboration equation using 
serum creatinine, age, and sex data.38

Statistical analyses

We used linear regression models to estimate the associations 
between eGFR and socioeconomic, anthropometric, and envi-
ronmental exposure variables; and logistic regression models to 
estimate odds ratios (ORs) and corresponding 95% confidence 
intervals (CI) for risk of having a low eGFR (<60 ml/min/1.73 m2)  
in relation to the aforementioned variables.

We tested each linear and logistic regression model for multi-
collinearity using the variance inflation factor (VIF) >10 as the 
threshold for exclusion. Due to multicollinearity between HI 
and altitude, we modeled these variables separately in the linear 
and logistic regression models.

Having ascertained the key risk factors for low eGFR and 
eGFR <60, we assessed the effects of environmental exposures 
on eGFR alone, accounting for different geographical loca-
tions. To do this, we used Linear mixed models (LMMs) to 
model associations between eGFR and environmental expo-
sures between different geographical locations, adjusting for 
age and sex. LMMs are an extension of simple linear models 
which allow both fixed and random effects and are used when 
there is nonindependence in the data. The model assumes that 
observations in the same cluster (or study site) are more cor-
related than those in another study site,55 that the average 
eGFR will differ between sites, and that the effect of environ-
mental exposures on eGFR is stable across the study site. We 
modeled associations between environmental exposures HI, 
altitude, and land cover with eGFR. In each model, the fixed 
effects were eGFR and the satellite-derived environmental 
exposures listed above, and the random structures were stated 
with the subcategory “urban/rural area” which represented 
each study site. We then calculated a fixed-effects model which 
illustrates how each environmental exposure affects eGFR 
across the study sites.

All statistical analyses were conducted in R Studio version 
3.5.1.

Results

Study population characteristics

The study population comprised 11,119 adult participants ≥18 
years (males = 4696; females = 6423) who did not have diabetes 
(fasting glucose <126 mg/dl), hypertension (systolic <140 mm 
Hg, and diastolic <90 mm Hg), or proteinuria (ACR < 30 mg/
mmol) as per diagnostic cutoffs defined in the existing CKDu 
measurement protocol which is described elsewhere.1 Participant 
with missing coordinates was excluded from the dataset (n = 96) 
(Figure 2). The mean (±SD) participant age was 41.5 (±11.7) 
years. Mean BMI was 23.6 ± 5.3 kg/m2, and mean fat-free mass 
was 41.0 ± 13.0 kg. Mean systolic and diastolic blood pressure 
was 114.2 ± 11.7 mm Hg, and 73.2 ± 8.7 mm Hg, respectively. 
Mean fasting plasma glucose was 90.2 ± 12.4 mg/dl, and the 
median (interquartile range ACR was 2.6 (1.0–5.0) mg/mmol. 
Approximately 50% of the participants were employed, and 
41% of the population had completed >10 years of formal 
education.

The HI values assigned to participants ranged from 23.95 to 
30.31°C (Figure 3C), and approximately 45% of participants 
lived within 300 m of “cropland” (n = 4951), 70% of which 
lived in rural areas (n = 3449) (Figure 3B). The altitude ranged 
from 1 to 391 m above sea level (Figure 3A). See Table 1 for a 
summary of environmental characteristics per study site.

Mean eGFR and prevalence of low eGFR

The mean eGFR was 105.9 (±17.5) ml/min/1.73 m,2 and there 
was an inverse relationship between increasing age, FFM, alti-
tude, and income. Males, rural dwellers, those in the vicinity 
to “cropland” and alcohol drinkers (ever) and/or smokers had 
a lower eGFR. The prevalence of eGFR <60 was 1.4% [95% 
confidence interval (95% CI) = 1.2, 1.7]. A significant differ-
ence in sex-specific prevalence of eGFR <60 was observed, 
with 2.0% (95% CI = 1.7, 2.5) of males versus 1.0% (95% 
CI = 0.8, 1.3) of females affected. Site-specifically, the high-
est prevalence of eGFR <60 was observed in Andhra Pradesh 
[3.2% (95% CI = 2.5, 3.8)].

Figure 2. Study flowchart with exclusion criteria for the India population sam-
ple. From the original, prerestricted CARRS and UDAY datasets, one trans-
gender participant was removed. Missing data: Serum creatinine n = 3960;  
diabetes = 209; hypertension = 517; missing albumin:creatinine ratio  
(ACR) = 735. Participants with CKD risk factors removed: Diabetic = 4203; 
hypertensive = 2468; ACR >300 = 203.
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Risk factors for reduced eGFR and eGFR <60

Using linear regression models, we tested for multicollinearity 
between altitude and HI, as these are generally inversely cor-
related. In fully adjusted models we observed multicollinearity 
between altitude (VIF 25.06) and HI, and north/south latitude 
with HI (VIF = 12.06). HI can be used as a proxy for latitude, as 
broadly temperatures in the north of India are generally cooler 
than in the South.56 Tables  2 and 3 show linear and logistic 
regression models including crude estimates, models mutually 
adjusted for age and sex (model 1), and models fully adjusted 
for all socioeconomic and environmental risk factor variables 
(model 2). We observed large decreases in effect estimates 
between crude and minimally adjusted linear regression mod-
els specifically for sex, proximity to cropland, and education. 
After further stratified analyses, age was the key driver of these 
changes. In general, male participants were older than females 
and had a lower eGFR, and a higher proportion of older par-
ticipants (with a lower eGFR) live in proximity to cropland 

than those in urban areas. In the case of education, an increas-
ing number of school years were inversely associated with age. 
These factors likely explain these stepped differences in effect 
estimates when adjusted for age.

Overall, the coefficients do not vary widely between mini-
mally and fully adjusted models and we report the results from 
the fully adjusted linear and logistic regression models only 
(Tables 2 and 3, model 2, respectively).

In linear regression models (Table  2, model 2), age was a 
key risk factor for reduced eGFR, with a decrease of 9.11 ml/
min/1.73 m2 (95% CI = −9.34, −8.66) per 10-year age increase. 
Males also had a lower average eGFR than females [−2.46, 
(95% CI) = (−3.19, −1.73)]. Positive associations were observed 
with vegetarianism, education (>5 ≤10 years), and lower income 
(<30,000 RS). For the environmental exposures, living near 
cropland [−2.83 (95% CI) = (−3.36, −2.31)] had a negative 
effect on eGFR. Interestingly, increasing HI had a weak positive 
association with eGFR [(0.20 (95% CI = 0.05, 0.10)].

Figure 3. Environmental variable surfaces across study sites showing (A) altitude, (B) land cover, and (C) heat index.

Table 1.

Overview of environmental characterisitcs of the Indian study sites.

Site n Mean age (±SD) 

Sex

Latitude eGFR (mL/min/1.73 m2) CKDu prevalence (%) Heat index (°C) Altitude (m) 

Land cover (%)

Male Female Urban Cropland

Haryana 3180 38.93 (12.01) 1340 1840 North 101.81 1.4 25.27–25.58 206–247 38.5 61.5
Delhi 1798 38.93 (11.14) 819 979 North 110.23 0.8 23.95–24.34 1–292 65.6 34.4
Tamil Nadu 3097 36.87 (10.85) 1202 1895 South 114.13 0.3 30.20–30.31 1–17 87.1 12.9
Andhra Pradesh 3044 43.15 (10.69) 1335 1709 South 99.49 3.2 25.80–28.31 0–391 35.0 65.0
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Like the linear regression model, the odds of eGFR <60 
increased with age, particularly in the older categories 56–65, 
and over 65 years [OR (95% CI) = 2.24 (1.43, 3.56) and 4.71 
(2.90, 7.72), respectively], being male [OR (95% CI) = 2.32 
(1.39, 3.88)] and living in proximity to cropland [OR (95% 
CI) = 1.47 (1.16, 2.36)]. A marginal protective effect was 
observed with years of education and vegetarianism (Table 3, 
model 2).

Linear mixed models

Figure 4 shows the results of the LMM for India which has been 
modeled with a hierarchy of state and urban/rural area as the 
random structures, and environmental exposures HI, altitude, 
and cropland as the fixed effects. The results indicate that the 
Southern study sites in Tamil Nadu and Andhra Pradesh had 
the lowest ranking mean eGFR values, and the northern urban 
sites in Delhi and Haryana had the highest. The mean eGFR 
values in rural Haryana (northern India) did not deviate from 
the overall population sample mean. The fixed-effects model 
(Table 4) shows the effects of the environmental exposures, HI, 
altitude, and cropland on eGFR in each study site, adjusted for 
age and sex.

Residential proximity to cropland had a small negative asso-
ciation with mean eGFR [−0.89 (−0.44, −0.14)]. A weak pro-
tective association was observed with increasing temperatures 
[0.53 (0.89, 1.14)].

Discussion
Our environmental epidemiological analysis was conducted in 
states across Northern and Southern India; CKDu is known to 
be endemic in the latter region. We used data from 11,119 adult 
participants to assess whether key hypothesized environmental 
exposures such as HI, altitude, and proximity to land cover type 
were associated with having an eGFR <60 ml/min/1.73 m2 in 
the absence of diabetes, hypertension, or proteinuria. Across all 
study sites, increasing age and sex (males) were associated with 
both low eGFR and increased risk of eGFR <60.

The environmental conditions observed across this popu-
lation (higher temperatures, lower altitude, and much of the 
population living in and around agricultural land) concur with 
the environmental characteristics associated with CKDu across 
the literature.13,37,57,58 The highest prevalence of CKDu was 
observed in Andhra Pradesh. This observation also corroborates 
with findings from other Indian studies6,59 which found that the 

Table 2.

Associations of sociodemographic, anthropometric, and environmental characteristics with eGFR in participants without diabetes, 
hypertension, and heavy proteinuria in India, n = 11,119

Variable Crude effect estimate Model 1, Minimal adjustment Model 2, Fully adjusted

 eGFR eGFR eGFR
Coefficient (95% CI) Coefficient (95% CI)a Coefficient (95% CI)b

Agec (10-year increase) −9.58 (−9.79, −9.37) −9.38 (−9.59, −9.16) −9.11 (−9.34, −8.66)
Sexd    
 Male −6.67 (−7.32, −6.02) −3.70 (−4.20, −3.19) −2.46 (−3.19, −1.73)
 Female  REF REF
Education (years)    
 ≤5 REF REF REF
 >5≤10 7.29 (6.45, 8.13) 2.20 (1.56, 2.88) 1.27 (0.60, 1.95)
 >10 6.10 (5.24, 6.78) 0.71 (0.98, 1.33) 0.18 (−0.48, 0.84)
Occupation    
 Employed REF REF REF
 Unemployed 2.54 (1.89, 3.19) 2.24 (1.59, 2.89) 1.68 (1.03, 2.34)
Household monthly income (RS)e    
 ≤30,000 4.56 (4.43, 6.90) 2.96 (2.01, 3.91) 2.21 (1.23, 3.19)
 >30,000 REF REF REF
 Unknown −1.28 (−3.65, 1.09) −1.04 (−3.01, 0.92) −1.03 (−2.8, 0.77)
BMI (kg/m2) 5 kg/m2 increase −0.49 (−0.72, −0.27) −0.58 (−0.79, −0.37) −0.60 (−0.82, −0.38)
Fat-Free Mass (kg) 5 kg/m2 increase −0.63 (−0.73, −0.52) −0.24 (−0.34, −0.15) −0.16 (−0.26, −0.05)
Smoker    
 Yes −1.44 (−2,19, −0.69) −0.30 (−0.87, 0.27) −0.35 (−1.00, 0.28)
 No REF REF REF
Alcohol drinker    
 Yes −1.13 (−1.93, −0.33) 0.28 (−0.32, 0.89) 0.09 (−0.59, 0.78)
 No REF  REF
Vegetarian    
 Yes 2.61 (−5.30, 3.92) 0.25 (−0.29, 0.79) 1.73 (1.11, 2.35)
 No REF REF REF
Heat index (°C)    
 0.2 increments 0.28 (0.25, 0.31) 0.23 (0.18, 0.28) 0.20 (0.05, 0.10)
Land cover    
 Cropland −7.82 (−8.46, −7.18) −3.40 (−3.90, −2.89) −2.83 (−3.36, −2.31)
 Urban REF REF REF
Altitude*    
 100 m increments −2.25 (−2.58, −1.92) −0.03 (−0.14, 0.11) −0.04 (−0.09, 0.22)

aMinimal adjustment for age, sex.
bAll variables mutually adjusted.
cAdjusted for sex.
dAdjusted for age.
eExchange rate (RS to USD) 0.001 at time of questionnaire; Hypertension = systolic bp ≥140 mm Hg, or diastolic bp ≥90 mm Hg; Diabetes = fasting glucose ≥7 mg/l; Proteinuria = ACR [Albumin Creatinine 
Ratio] ≥30 mg/mmol.
*Effect estimate for altitude modeled separately from heat index due to multicollinearity.
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prevalence of CKDu was markedly higher in this region in com-
parison with other urban and rural sites.

Of the environmental risk factors, vicinity to cropland was 
associated with both low eGFR and risk of eGFR <60. This find-
ing corroborates with a previous study in El Salvador whereby 
proximity to specific crop types was significantly associated 
with suspected CKDu mortality and hospital admissions rates.37 
There are few studies that investigated the spatial distribution 
of CKDu in relation to proximity to land cover; however, there 
are some studies and reviews in India which investigated the 
association between CKDu and agricultural occupation, which 
suggest that those cultivating rice and cashew crops, as well as 

those using pesticides are the most affected subgroup of agricul-
tural laborers.16,59,60 Although the current dataset does not con-
tain detailed employment information or high-resolution crop 
detail, collecting this data will be key in future studies across 
India to geographically highlight specific subcommunities which 
may be at a higher risk and help direct future observational and 
treatment plans in affected regions.

The LMM results presented slightly different observations 
from the linear and logistic regression models. The southern 
Indian study sites in Tamil Nadu and Andhra Pradesh had the 
lowest ranking mean eGFR values, and the northern urban 
sites in Delhi and Haryana had the highest. Like the linear and 

Table 3.

Associations of sociodemographic, anthropometric, and environmental characteristics with eGFR <60 in participants without diabetes, 
hypertension, and heavy proteinuria in India, n = 11,119.

Variable Crude effect estimate Model 1, Minimal adjustment Model 2, Fully adjusted

 eGFR < 60 eGFR < 60 eGFR < 60
 OR (95% CI) OR (95% CI)a OR (95% CI)b

Age (years)c    
18–24 0.17 (0.01, 0.83) 0.17 (0.01, 0.83) 0.32 (0.02, 1.60)
25–35 0.16 (0.07, 0.34) 0.18 (0.08, 0.36) 0.24 (0.10, 0.51)
36–45 0.32 (0.18, 0.55) 0.32 (0.19, 0.56) 0.38 (0.22, 0.66)
46–55 REF REF REF
56–65 2.52 (1.63, 3.96) 2.51 (1.61, 3.94) 2.24 (1.43, 3.56)
65 inf 6.77 (4.42, 10.51) 4.88 (4.15, 9.92) 4.71 (2.90, 7.72)
Sexd    
 Male 2.02 (1.48, 2.78) 1.44 (1.05, 1.99) 2.32 (1.39, 3.88)
 Female REF REF REF
Education (years)    
 ≤5 REF REF REF
 >5≤10 0.32 (0.22, 0.48) 0.47 (0.32, 0.77) 0.54 (0.36, 0.83)
 >10 0.16 (0.09, 0.23) 0.22 (0.14, 0.35) 0.25 (0.14, 0.43)
Occupation    
 Employed REF REF REF
 Unemployed 1.15 (0.85, 1.57) 0.93 (0.63, 1.39) 1.34 (0.89, 2.03)
Household monthly income (RS)e    
 ≤30,000 1.24 (0.69, 2.52) 1.35 (0.74, 2.77) 0.48 (0.24, 1.05)
 >30,000 REF REF REF
 Unknown 1.81 (0.61, 4.94) 1.53 (0.51, 4.26) 0.40 (0.13, 1.21)
Body Mass Index (kg/m2) Underweight (≤18.5) 1.13 (0.74, 1.68) 0.79 (0.30, 0.78) 0.59 (0.38, 0.93)
 Normal (>18.5–≤25) REF REF REF
 Overweight (>25–≤30) 0.39 (0.24, 0.61) 0.49 (0.30, 0.78) 0.66 (0.40, 1.06)
 Obese (>30) 0.39 (0.06, 0.49) 0.28 (0.10, 0.70) 0.44 (0.13, 1.11)
Fat-Free Mass (kg) First tertile (≤37) 1.42 (0.94, 2.14) 2.13 (1.32, 3.48) 1.38 (0.76, 2.54)
 Second tertile (>37–<45) 1.22 (0.80, 1.88) 1.52 (0.97, 2.40) 1.32 (0.70, 1.83)
 Third tertile (≥45) REF REF REF
Smoker    
 Yes 1.35 (0.96, 1.87) 1.15 (0.82, 1.61) 1.11 (0.75, 1.65)
 No REF REF REF
Alcohol drinker    
 Yes 1.24 (0.86, 1.76) 1.10 (0.76, 1.57) 1.07 (0.70, 1.63)
 No   REF
Vegetarian    
 Yes 0.84 (0.60, 1.18) 0.54 (0.38, 0.76) 0.81 (0.51 1.31)
 No REF REF REF
Heat index (°C)    
 <26 REF REF REF
 >26 1.26 (0.92, 1.73) 1.02 (1.02, 2.44) 0.37 (0.95, 2.26)
Land cover    
 Cropland 2.82 (2.04, 3.97) 1.88 (1.35, 2.67) 1.47 (1.16 2.36)
 Urban REF REF REF
Altitude (m)*    
 <100 1.05 (0.77, 1.44) 1.51 (0.81, 2.08) 1.28 (0.87, 1.91)
 >100 REF REF REF

aMinimal adjustment for age, sex.
bAll variables mutually adjusted.
cAdjusted for sex.
dAdjusted for age.
eExchange rate (RS to USD) 0.001 at time of questionnaire; Hypertension = systolic bp ≥140 mm Hg, or diastolic bp ≥90 mm Hg; Diabetes = fasting glucose ≥7 mg/l; Proteinuria = ACR [Albumin Creatinine 
Ratio] ≥30 mg/mmol.
*Effect estimate for altitude modeled separately from heat index due to multicollinearity.
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logistic regression models, vicinity to cropland had a negative 
association with eGFR.

Interestingly, a weak positive association was observed with 
increasing HI and eGFR. This observation does not support 
the hypothesis of heat stress nephropathy that persistent heat 
exposure and inadequate rehydration leading to CKD and 
may therefore count against the current heat hypothesis.9,12,23 
Although exposure to high temperatures is a key hypothesis in 
the literature, there are some important counter arguments that 
are important to consider. Herath et al.61 argued that there is 
sparse evidence of CKDu in workers exposed to heat in most 
tropical regions, which was supported by the finding that it is 
also seen in people who are not exposed to heat stress in these 
affected regions, and therefore there is inadequate evidence for 
heat being the initiating or main cause of CKDu. In addition 
to this, a systematic review of risk factors for CKDu in Central 
America did not identify heat as a risk factor.3

Our study has some potential limitations. First, our dataset 
had only single eGFR measures meaning we may not distinguish 
acute kidney injury from CKD, potentially resulting in case mis-
classification and inflated prevalence estimates. Furthermore, 
the use of cross-sectional data cannot prove causality in relation 
to environmental exposures; however, it can help to generate 
causal hypotheses which can be further investigated in future 
cohort studies in affected regions. Second, there were no occu-
pational variables in our dataset, therefore it was not possible 
to link the proximity to landcover associations to a specific 

occupational category in this population. In addition, the use of 
indirect measures of exposure to pesticides could have resulted 
in exposure misclassification potentially attenuating estimates.

Finally, unmeasured biological confounders across this Indian 
sample – such as endemic hepatitis which is linked with nephropa-
thy62–64 – could be linked to excess CKD prevalence was not mea-
sured in these populations which could also affect our estimates. 
Further sensitivity analyses into the effects of these residual con-
founders such as probabilistic bias analysis65 could be investigated 
in future work; however, this is outside the scope if this study.

Strengths of our study include the use of a large, randomly 
selected sample population in urban and rural areas across the 
north and south of India. Second, this is the first study in India 
that has used satellite-derived imagery to investigate associa-
tions between environmental risk factors and CKDu.

The use of satellite measurements has advantages over con-
ventional ground measurements as data can be collected repeat-
edly and automatically and can provide better coverage than 
ground monitors. The growth in the use of remote sensing and 
geographic information systems in public health has facilitated 
the analyses of multiple environment-disease associations at 
varying geographical resolutions and continues to be a valuable 
exposure analysis tool, particularly in developing nations that 
may be too resource-constrained to conduct individual-level 
environmental exposure analyses.

Conclusions
The findings from this environmental epidemiological analysis 
show that the environmental risk factor of residential proximity 
to cropland (particularly in Southern India) appears to have a 
negative impact on eGFR. Although we must be cautious in our 
interpretation of these initial observations, these findings are 
inconsistent with the current hypothesis that CKDu is a heat-in-
duced disease but are reasonably consistent with some of the 
other hypotheses such as exposure to pesticides using proxim-
ity to cropland as a proxy. The use of satellite-derived data to 
model environmental exposures of CKDu at the individual level 
is a useful step in identifying subpopulations at risk of CKDu 
and could help to direct further environmental investigations 
in affected regions. In future studies, the collection of detailed 
employment information and occupational practices will be key 
in helping to identify further potential associations with envi-
ronmental risk factors.

Figure 4. Linear mixed model caterpillar plot of eGFR in study sites in India accounting for land cover, heat index, and altitude. Intercept denotes the overall 
mean eGFR across the study sites; blue circles represent the deviation from the mean eGFR for each zone; black bars represent 95% confidence intervals.

Table 4.

Linear mixed model for altitude, heat index, and land cover in India.

Variable
Regression  
coefficient

Confidence 
interval (95%)

Age (10-year increments) −8.68 −9.89, −1.84
Sex   
 Male −3.70 −4.19, −3.21
 Female REF REF
Heat index (°C) (0.2°C increments) 0.53 0.89, 1.14
Land cover   
 Cropland −0.80 −0.44, −0.14
 Urban REF REF
 Altitude (m) (100 m increments)* −1.13 −2.56, 0.09

*Effect estimate for altitude modeled separately from heat index due to multicollinearity.
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