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Background: The GMZ2/alum candidate malaria vaccine had an efficacy of 14% (95% confidence interval
[CI]: 3.6%, 23%) against clinical malaria over 6 months of follow-up in a phase2b multicentre trial in chil-
dren 1–5 years of age. Here we report the extended follow up of safety and efficacy over 2 years.
Methods: A total of 1849 (GMZ2 = 926, rabies = 923) children aged 12–60 months were randomized to
receive intramuscularly, either 3 doses of 100 lg GMZ2/alum or 3 doses of rabies vaccine as control
28 days apart. The children were followed-up for 24 months for clinical malaria episodes and adverse
events. The primary endpoint was documented fever with parasitaemia of at least 5000/lL.
Results: There were 2,062 malaria episodes in the GMZ2/alum group and 2,115 in the rabies vaccine
group in the intention-to-treat analysis, vaccine efficacy (VE) of 6.5% (95%: CI �1.6%, 14.0%). In children
aged 1–2 years at enrolment, VE was 3.6% (95 %CI: �9.1%, 14.8%) in the first year and �4.1% (95 %CI:
�18.7%, 87%) in the second year. In children aged 3–5 years at enrolment VE was 19.9% (95 %CI: 7.7%,
30.4%) in the first year and 6.3% (95 %CI: �10.2%, 20.3%) in the second year (interaction by year,
P = 0.025, and by age group, P = 0.085). A total of 187 (GMZ2 = 91, rabies = 96) serious adverse events
were recorded in 167 individuals over the entire period of the study. There were no GMZ2 vaccine related
serious adverse events.
Conclusions: GMZ2/alum was well tolerated. Follow-up over 2 years confirmed a low level of vaccine
efficacy with slightly higher efficacy in older children, which suggests GMZ2 may act in concert with nat-
urally acquired immunity.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Malaria is endemic in sub-Saharan Africa and contributes
significantly to mortality and morbidity in children and pregnant
women [1,2]. Malaria blood-stage vaccines are mainly intended
to prevent clinical disease manifestation by inhibiting parasite
growth and multiplication [3–5]. Such vaccine constructs are
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designed to elicit immune responses against antigenic targets
including merozoite surface proteins and invasion associated orga-
nelles [3–5]. This strategy is based on results from several sero-
epidemiological studies in malaria endemic areas where higher
levels of antibodies against such antigenic targets are often associ-
ated with protection against febrile malaria in semi-immune
adults or children [6–10].

The GMZ2 vaccine candidate is based on two blood-stage anti-
gens, Glutamate-Rich protein (GLURP) and merozoite surface pro-
tein (MSP) 3. As GMZ2 was designed to control parasitaemia but
not prevent infection, it was thought that vaccine-induced
responses could be boosted by natural exposure [11]. GMZ2
absorbed on Alhydrogel� was tested in a series of Phase 1 clinical
trials [12–14] and in a phase IIb multi-centre trial in malaria-
exposed African children 1–5 years of age. GMZ2/Alhydrogel was
administered intramuscularly three times in 4-week intervals at
a dose of 100 lg [15]. Vaccine efficacy against clinical malaria, over
6 months of follow-up, was 14% (95 %CI: 3.6%, 23%) [15]. This
report presents results from the extended follow up of the children
in this trial for efficacy and safety, over 24 months.
2. Materials and methods

2.1. Ethics statement

The study was monitored by the GMZ2 Scientific Coordinating
Committee, local safety monitors, independent clinical monitors
and an independent data safety monitoring committee. Ethics
Committees and regulatory authorities in each country approved
the trial protocol. Written informed consent was obtained from a
parent or the legal guardian of each child after explaining the aims
and procedures involved. The protocol was registered with the Pan
African clinical trial registry with registration number
ATMR2010060002033537.

2.2. Study design, site and participants

The study was a randomized, double-blind, controlled multi-
centre phase IIb clinical trial of the GMZ2 malaria candidate vac-
cine, using human diploid cell (HDC) rabies vaccine as a control
[15]. Children aged 12–60 months residing in the study areas; eli-
gible for the trial and whose parents consented were screened for
randomization into the study. A total of 1849 subjects from four
countries: Gabon (n = 512), Burkina Faso (Banfora; n = 580,
Sapone; n = 300), Ghana (n = 200) and Uganda (n = 257) were ran-
domized in a 1:1 ratio to receive either three [3] doses of 100 lg
GMZ2 (n = 926) or 3 doses of rabies vaccine (n = 923). Vaccine
was administered on Days 0, 28 and 56. Solicited adverse events
were recorded on the day of vaccination and each of the next
7 days [15]. Caregivers were asked to bring the child to the study
clinician whenever they were unwell. Participants were visited
14 days after each vaccine dose and then once a month to check
the health status of the child and to refer to the study clinician chil-
dren who were unwell. Children were followed up for 24 months
from the first vaccination.

Malaria parasitaemia was determined by microscopy as previ-
ously described [16]. Each slidewas read by two experiencedmicro-
scopists and discrepancies (i.e. by species or if the parasite count
differed by more than 50%) were resolved by a third microscopist.

2.3. Study vaccines, randomization, and vaccination

The investigational product, GMZ2 and the control vaccine Ver-
orab (Sanofi Pasteur, France) has been describes in detail [15]. Ran-
domization and vaccination has been described in detail [15]. After
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each vaccination, participants were observed for 30 min for imme-
diate adverse events. Participants were then followed by field
workers for a six-day surveillance period after each vaccination.
On Day 7 post-vaccination, participants were seen by study physi-
cian. All adverse events occurring during this period were followed
until resolution or stabilization. At each visit, clinical examination
was performed and information on any solicited or unsolicited
signs since the last visit were recorded.

2.4. Study outcomes

The primary end point of the trial was efficacy against P. falci-
parum clinical malaria episodes (defined as fever and/or history
of fever with parasitaemia of at least 5000/lL) over a six months
surveillance period starting from the day of the third dose of vac-
cination was previously reported [15].

Secondary endpoints included fever (defined as fever and/or his-
tory of fever) and parasitaemia (using 5 threshold densities, at any
density above zero, at least 2500, 5000, 10,000 and 20,000 tropho-
zoites/lL) over 22 months, severe malaria (defined as any malaria
case that results in hospital admission for more than 24 h), all cause
hospitalisation and mortality at the end of follow-up.

2.5. Statistical methods

Serious adverse events were listed individually, with investiga-
tor assessment of relationship to vaccination. For any event, the
relative risk (GMZ2: control) of an event during the follow up per-
iod were calculated with a 95% confidence interval and tabulated.
The primary definition of a malaria episode is having a fever (tym-
panic temperature � 38 �C) or history of fever with parasitaemia
greater than 5000/lL. The incidence rate of malaria was calculated
as the number of episodes meeting the case definition divided by
the time at risk. Time at risk is the total time from start to end of
the surveillance period with no deduction for periods of malaria
treatment. All episodes meeting the case definition were included
in the analysis of rates and vaccine efficacy, but to avoid counting
the same episode twice, cases occurring within 14 days of a previ-
ous case were ignored.

Time periods: For the ATP (according to protocol) analysis, the
surveillance period starts on the day of dose 3 to the end of follow-
up at 24 months from the first vaccination. For the ITT (intention to
treat) analysis, the surveillance period starts at the time of first
vaccine administration to the end of follow-up at 24 months from
the first vaccination. The incidence rate of malaria was compared
between groups using Cox regression stratified by site, using time
since randomization (ITT), or time since dose 3 days (ATP), as the
time scale, and including all malaria episodes.

Vaccine efficacy (VE) was defined as 100 � (1-HR), where HR is
the hazard ratio from Cox regression, this is an estimate of the per-
centage reduction in the number of malaria episodes associated
with GMZ2 vaccination [17]. A 95% confidence interval was calcu-
lated, using a robust standard error to allow for repeated episodes
in the same child. The analysis was pooled across sites, adjusted
for age group, with site as a stratification factor to allow for a sepa-
rate seasonal pattern of incidence in the control group in each site.
Analyseswere repeated for case definitions defined by parasite den-
sity cut-offs as follows: >0, �2500/lL, �10000/lL, and � 20000/lL.
3. Results

3.1. Study sites and population

The study sites and population characteristics was previously
described [15]. The study took place from December 2010 to June
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2013. At enrolment, the age and gender distributionswere similar in
the vaccine and control arms at each study site. Overall, the propor-
tion of childrenwho slept under bed netwas different between sites
but similar for both the vaccine and control arms within each site
except for Lambaréné where 18% of the children who received the
rabies vaccine used bed net compared to 8% in the GMZ2 group [15].

Malaria incidence was seasonal at all sites, most strongly in
Burkina Faso (Banfora and Saponé) (Fig. 1). For all sites, the highest
numbers of malaria episodes were recorded during or just after the
peak rainfall periods. Except for Navrongo, vaccinations at all sites
partially overlapped with the peak rainy season. Banfora and
Saponé had the highest number of malaria episodes compared to
the remaining sites.

3.2. Malaria parasite density in samples from clinical cases

Overall, 98.1% of the malaria episodes were monoinfection with
P. falciparum. The remaining were mixed infections of P. falciparum
and either P. malariae, P. ovale, or P. vivax (Table S1). Geometric
mean parasitaemia in clinical cases decreased with increasing
age but there was no evidence that parasite density in febrile cases
with parasitaemia differed between the GMZ2 and the rabies
groups (Table S2). When parasite densities were categorized based
on the threshold for hyperparasitaemia (density >=200,000), the
percentage of cases with hyperparasitaemia was similar in the
GMZ2 and rabies vaccine groups (3.6% and 4.4% respectively) (Sup-
plementary Table S3).

3.3. GMZ2 vaccine efficacy at different parasite thresholds

Vaccine efficacy was assessed in both according-to-protocol
(ATP) analysis (i.e. data covering an average of 22 months follow
up, starting from the last day of vaccination) and intention-to-
treat (ITT) analysis (i.e. data coveringanaverageof 24 months follow
up, starting from the day of randomisation). The ATP analysis
included a total of 1,758 malaria episodes in the GMZ2 group and
1,813 in the rabies vaccine. The overall GMZ2 vaccine efficacy (VE)
using parasite density >=5,000/lL and fever/history of fever was
6.5% (95 %CI:�2.0%, 14.3%) after adjusting for age and site as strata.

In the intention-to-treat (ITT) analysis thenumberofmalaria epi-
sodes defined by parasite density >=5,000/lL and fever/history of
fever was 2,115 and 2,062 in the rabies and GMZ2 cohorts respec-
Fig. 1. Timing of vaccination and clinical malaria episodes in each site. The period of va
number of malaria episodes (at any parasite density) is shown for each month.
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tively and VE was 6.5% (95 %CI: �1.6, 14.0%) (Table 1). Similar esti-
mates of VE were obtained when the ITT analysis was performed
using other parasite density thresholds (greater than0/lL, >=2,500
>=10,000 or >=20,000/lL, Supplementary Table S4).

3.4. GMZ2 vaccine efficacy at different periods and in different age
groups

Since both the induction and decay kinetics of GMZ2 induced
antibodies have not been described, we decided to stratify the fol-
low up time into two different intervals and assess VE within each
period in the ITT analysis (with the primary endpoint parasite den-
sity >=5,000/lL and fever/history of fever) for each age group.
Overall, the mean number of malaria episodes per child increased
sharply in the first six months, plateaus for nine months and
increases again till about the 18th month (Fig. 2A and B), mirroring
the seasonality in malaria transmission patterns observed at the
sites. The mean number of malaria episodes per child was slightly
lower in the GMZ2 group in the older children (Fig. 2B). In the chil-
dren aged 1–2 years at enrolment, there was low VE in both years
(3.6% (95 %CI �9.1%, 14.8%) in year 1 and �4.1% (�18.7%, 8.7%) in
year 2. On the other hand, VE was higher in children aged
3–5 years at enrolment in year 1 (19.9%, 95 %CI 7.7%, 30.4%), but
there was no evidence of protection in year 2 (VE 6.3% (�10.2%,
20.3%)) (interaction by age group, P = 0.085; interaction by year,
P = 0.025). Vaccine efficacy by time period is shown in Fig S1.

3.5. Safety

The immediate, local and systemic reactogenicity has been
reported [15]. A total of 187 unsolicited serious adverse events
(SAEs) were recorded in 167 individuals over the entire period of
the study. Two SAEs, convulsions and bronchitis, which occurred
in different children both in the rabies group a day and two days
respectively after vaccination in Gabon were judged to have been
related to the control rabies vaccine. Both children recovered fully
without any sequelae. Apart from these, none of the SAEs recorded
throughout the study were related to either the rabies or GMZ2
vaccine. In all, 91 SAEs were recorded in those who received
GMZ2 vaccine and 96 in those who received the rabies vaccine.
Majority (112/187) of the SAEs at all sites were malaria related.
The rate of severe malaria was not different between the GMZ2
ccine dose administration in each site is indicated by the horizontal bar. The total



Table 1
Vaccine efficacy against clinical malaria (fever with parasite density >=5000/lL), in each year of the trial, ITT analysis.

Rabies vaccine GMZ2 vaccine

Events Rate/1000 Events Rate/1000 Efficacy

Year 1 1132 108.3 1033 96.4 11.7% (3.1%,19.6%)
Year 2 983 98.7 1029 100.1 0.6% (�10.2%,10.2%)
TOTAL 2115 103.6 2062 98.2 6.5% (�1.6%,14.0%)
Age 1–2 years at enrolment
Year 1 562 122.7 583 117.7 3.6% (�9.1%,14.8%)
Year 2 519 119.5 607 127.8 �4.1% (�18.7%,8.7%)
TOTAL 1081 121.2 1190 122.6 �0.1% (�11.7%,10.2%)
Age 3–4 years at enrolment
Year 1 570 97.1 450 78.0 19.9% (7.7%,30.4%)
Year 2 464 82.6 422 76.3 6.3% (�10.2%,20.3%)
TOTAL 1034 90.0 872 77.2 13.8% (2.2%,24.0%)

Interaction by age group: P = 0.085, interaction by year: P = 0.025; interaction by site: P = 0.8262.

Fig. 2. Mean number of malaria episodes (fever with parasite density at least 5000/lL) per child, during 24 months of follow-up, in children aged 1–2 yrs when enrolled, and
children aged 3-4yrs, by vaccine group. Nelson-Aalen cumulative hazards of malaria. The number at risk in each group is shown below the x-axis.
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and rabies groups at all sites (Supplementary Table S5). When data
from all sites were pooled, the Cox regression analysis adjusted for
age showed that the rate of severe malaria was similar [hazard
ratio (HR) = 0.93 (95% CI: 0.63, 1.38)] among the two treatment
groups (Supplementary Table S5).

All cause hospitalization rate was similar in the two study
groups at each site and in a pooled analysis adjusted for age
[HR = 0.97 (95% CI: 0.71–1.33)] (Supplementary Table S5). A total
of sixteen deaths were recorded, 9 in the rabies group and 7 in
the GMZ2 group over the entire study period. The rate of death
was not significantly different between the GMZ2 and rabies group
either at each site or in the pooled analysis [HR = 0.76 (95% CI:
0.28–2.03)] (Supplementary Table S5). Malaria was the most com-
mon cause of death (overall = 7/16). Two meningitis related deaths
were recorded, both occurring in Banfora, Burkina Faso in the
GMZ2 group (Table S5). None of the deaths was judged to have
been related to either the rabies or GMZ2 vaccine.
4. Discussion

This study reports the extended follow-up of the GMZ2/Alum
phase IIb efficacy clinical trial. The study involved intramuscular
administration of the GMZ2/Alum vaccine three times in 4-week
intervals at a dose of 100 lg [15] and subsequent passive follow-
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up for clinical malaria episodes over 24 months. In brief: 1)
GMZ2/Alum vaccine was well tolerated in these malaria-exposed
children 2) Vaccine efficacy varied by age group, there was no evi-
dence of protection in the children aged 1–2 years at enrolment, a
modest efficacy in children aged 3–5 years at enrolment was
observed.

The safety profile of GMZ2/Alum after 24 months of follow-up
was good, consistent with previous clinical trials in which immedi-
ate common reactions were mild to moderate [13,14,18]. All
adverse events were unrelated to the study vaccine. The most fre-
quently reported adverse event at the end of the follow up period
was uncomplicated malaria which was slightly lower especially for
older children in the GMZ2 vaccine group although the difference
was not significant. The pattern of malaria episodes observed
seemed to mirror the seasonality of transmission in the study sites.

GMZ2 vaccine efficacy varied for the different age groups and
was lower in younger children than those who are older. This sug-
gests that pre-existing natural immunity in the older children
worked in concert with the vaccine to protect against malaria.
However, the decline in vaccine efficacy over the second year of
follow up may be indicative of antibody waning as has been
observed for other malaria vaccines [19,20]. Strong adaptive
immune responses and long-term memory may require activation
of innate immunity possibly. Such activation may occur through
‘‘danger signals” and is explained by reactions that are controlled
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by specific pattern-recognition receptors [21]. Whether the inclu-
sion of specific Toll-like receptor agonists [22] might enhance long-
evity, levels and functional activity of vaccine-specific antibodies
in humans remains to be investigated. In malaria endemic regions,
children gradually develop anti-malaria immunity as a function of
exposure leading to less malaria episodes and severe disease [23].
Gradual decrease in mean parasite density with age and low
malaria attack rate in older children is characteristic of develop-
ment of naturally acquired immunity. The reason for the sharp
increase in the mean malaria episodes per child during the first
3 months post vaccination is not known but we note that the last
vaccinations were generally given during the transmission season
due to late study start. The period of plateau in mean malaria epi-
sodes per child partially overlapping with the end of the transmis-
sion season suggesting that acquisition of broadly reacting
malaria-specific antibodies are indeed required for protection
against clinical malaria in the GMZ2/Alum group. Thus, supporting
the notion that GMZ2 IgG acts in concert with antibodies against
other merozoite surface antigens [24–27]. The sharp rise and pla-
teau of malaria episodes although it cannot be explained with
the present data may therefore be due to i) affinity maturation of
antibodies over time to reach antigen-specific thresholds [24,26–
29] ii) immune boosting by exposure to natural infection [30]
and iii) antibody isotype imbalance [31–34]. Subsequent subgroup
analysis of the trial cohort investigating these hypotheses may
inform improved design of future GMZ2 and other blood stage
malaria vaccines.

The efficacy of the GMZ2 vaccine at both the primary and sec-
ondary end points in this final report fell below the strategic target
goal of the Malaria Vaccine Technology Roadmap of attain-
ing � 75% efficacy against clinical malaria [35]. The inability of
GMZ2 and other similar blood stage candidate malaria vaccines
[36–39] to demonstrate substantial efficacy against clinical malaria
raise critical questions about the various models and assays used to
select blood-stage antigens for vaccine development [36–38,40].
Some of the key questions that remain to be answered include
whether the models and assays used in these vaccine development
processes are suitable for field trials in malaria endemic popula-
tions and whether the assays are robust and useful enough to pre-
dict efficacy in field trials. A classic example is the AMA1-C1 trial
where parasite inhibition in GIA was observed in malaria naïve
US adults [41] but not Malian adults [42], although there was ele-
vation in antibody titres in both populations as measured by ELISA.
Despites these unanswered question, the level of protection
offered by the GMZ2 candidate malaria vaccine supports the proof
of concept that a blood-stage malaria vaccine is attainable [43,44].
The formulation of these vaccines, however, needs to be improved
including the choice of antigens and immunostimulants. AS01 is a
complex adjuvant system used with the RTS,S vaccine that appears
to induce both cell and antibody-mediated immunity resulting in
the current mile stone attained [45,46]. This suggests there is a
potential for improving the current GMZ2 vaccine possibly with
a better adjuvant system.
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