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Digital and technological innovation in vector-borne disease 
surveillance to predict, detect, and control climate-driven 
outbreaks
Caitlin Pley*, Megan Evans*, Rachel Lowe, Hugh Montgomery, Sophie Yacoub

Vector-borne diseases are particularly sensitive to changes in weather and climate. Timely warnings from surveillance 
systems can help to detect and control outbreaks of infectious disease, facilitate effective management of finite 
resources, and contribute to knowledge generation, response planning, and resource prioritisation in the long term, 
which can mitigate future outbreaks. Technological and digital innovations have enabled the incorporation of climatic 
data into surveillance systems, enhancing their capacity to predict trends in outbreak prevalence and location. 
Advance notice of the risk of an outbreak empowers decision makers and communities to scale up prevention and 
preparedness interventions and redirect resources for outbreak responses. In this Viewpoint, we outline important 
considerations in the advent of new technologies in disease surveillance, including the sustainability of innovation in 
the long term and the fundamental obligation to ensure that the communities that are affected by the disease are 
involved in the design of the technology and directly benefit from its application.

Introduction
Vector-borne diseases, such as malaria, dengue, 
leishmaniasis, and Lyme disease, are pervasive diseases 
that cause more than one million deaths per year, according 
to WHO.1 Most vector-borne diseases are not preventable 
by vaccines and can be controlled only with an integrated 
package of interventions, including vector control, prompt 
case detection and drug treatment, and campaigns for 
community health awareness. Surveillance systems, and 
the interventions to control or prevent diseases that they 
enable, should go beyond case detection to also consider 
the myriad of social, economic, and environmental drivers 
of vector-borne diseases. Globalisation, international trade, 
climate change, migration, and population displace ment 
are important drivers of global disease dynamics.2,3 The 
overall effect of climate change on the epidemiology of 
vector-borne diseases includes the effects of changes in 
temperature, humidity, preci pitation, vegetation, and soil 
on the habitat, breeding, and blood-feeding behaviour of 
vectors. Furthermore, the consequences of climate change 
can include food and water insecurity and conflict and 
violence, which can lead to migration on a large scale and 
thus the spread of vector-borne diseases into new regions 
and immune-naive populations. The effect of climate 
change is already reflected in changing disease patterns 
and is expected to amplify throughout the 21st century. 
This Viewpoint covers the effect of climate change on 
vector-borne disease epidemiology, the importance of 
disease surveillance, and the latest technologies and 
innovations, giving specific examples from Tanzania, 
South Africa, Vietnam, and Canada, and suggests future 
use of these technologies to control outbreaks.

Role of climate change in the epidemiology of 
vector-borne diseases
Changes in climate (and especially in temperature) can 
affect the prevalence of vector-borne disease in many 
ways, such as through effects on areas in which vector 

breeding occurs, frequency of vector breeding or mating, 
replication rates and burden of intravector parasites, and 
frequency of vector feeding. Aquatic snails, ticks, and 
mosquitoes are all anticipated to be affected by climate 
change.

Predicting the exact effect of climate change on 
schistosomiasis is challenging, because response varies 
dependent on the specific ecology and geographical 
context. However, concern has been raised that urogenital 
schistosomiasis might expand into new regions of Africa, 
such as South Africa and the Ethiopian highlands, where 
surveillance systems are scarce or limited by few 
resources and an immune-naive population will be at risk 

Key messages

• Vector-borne diseases are responsible for substantial 
global morbidity and mortality and are sensitive to 
changes in the weather and climate, including 
temperature, precipitation, and extreme weather events.

• Digital and technological innovations enable the 
incorporation of climatic data into surveillance systems, 
enhancing their capacity to predict outbreaks of vector-
borne disease and enabling rapid mitigation and response 
measures.

• Widespread adoption of mobile health approaches to 
disease surveillance support timely detection and 
response to outbreaks.

• Surveillance systems for vector-borne diseases that use 
satellite data can learn from patterns of disease incidence 
in relation to climatic indices to predict the location and 
intensity of an outbreak.

• Integrating artificial intelligence algorithms into existing 
surveillance systems could allow for faster and more 
accurate processing of large amounts of data, resulting in 
more accurate detection and prediction of disease 
outbreaks than traditional surveillance systems.
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of infection.4 Vector-borne diseases that are transmitted 
by arthropod vectors are particularly sensitive to changes 
in weather and climate. Variations in temperature, 
humidity, precipitation, and the frequency and severity of 
extreme weather events all have the potential to influence 
the prevalence, distri bution, reproduction, and behaviour 
of such vectors.5 As arthropod vectors are ectothermic, 
their internal temperature is influenced by ambient 
temperature conditions.6 The speed of replication of 
pathogens that are transmitted by arthropod vectors tends 
to increase with rising temperatures, as does the biting 
rate of arthropods, until an upper limit is reached.5 
Increased rainfall can also influence vector survival and 
reproduction through the creation of breeding sites.7 
Urbanisation has created environmental conditions that 
are suitable for some mosquito species, with decreased 
numbers of predators and a high density of human 
hosts.8 Open surface drains and water collections 
near human habitations present opportunities for 
Aedes aegypti and Aedes albopictus reproduction and 
development.9 High population density and open storage 
of water is associated with increased risk of dengue 
epidemics in urban areas, however, rural villages with low 
population densities can also have high rates of dengue.10 
Many of the mosquitoes that transmit malaria thrive in 
rural environments that contain natural or manmade 
water sources.11

Although warm conditions are generally preferential for 
vectors, the interactions between climate change and 
vector survival, reproduction, and feeding behaviours are 
complex.12 For example, tsetse flies, which transmit 
Trypanosoma spp parasites, cannot tolerate extreme 
temperatures outside the range of 16–32°C for extended 
periods of time, and temperature has been identified as 
an important factor in tsetse population dynamics.13 
Substantial reductions in the prevalence of tsetse flies in 
parts of Zimbabwe have been attributed to rising 
temperatures over the past 40 years.13,14 Transmission of 
arboviruses is also affected by climatic conditions. Dengue 
virus transmission by A aegypti can occur between 18°C 
and 34°C and is understood to peak at approximately 
29°C.6 Given the expected temperature changes over the 
coming years, incidence of dengue is anticipated to 
increase across large parts of the world (figure).

Different techniques and approaches to mapping 
weather variables can be applied. Many studies use data 
that is provided by the National Aeronautics and Space 
Administration or national databases and apply an 
inverse weighting method to interpolate local weather 
conditions.17 Other studies use data that are collected 
from a network of weather stations, some of which can 
be located some way outside of urban areas.18 Data that 
are collected in this way might not detect the effects of 
urban heat islands that some cities have, a factor that 
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Figure: Climate suitability for transmission of dengue
Change in the vectorial capacity for the transmission of dengue virus from a 1950–59 baseline, by vector. Climate suitability for the transmission of dengue has 
increased since 1950 in all WHO regions (reproduced from the 2020 Lancet Countdown on Health and Climate15,16). Vectorial capacity for the transmission of dengue 
virus is derived from a temperature-driven, process-based mathematical model, with positive change in vectorial capacity associated with more suitable 
temperatures for the transmission of dengue virus.
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should be considered during analysis of the effects 
of climate change on infectious diseases in urban 
locations.

In addition to mean temperature, the amount of 
temperature fluctuation is also influential in larval 
development time, larval survival, and adult reproduction 
of A aegypti.19 Small fluctuations in temperature can lead 
to a doubling in population size compared with a constant 
26°C exposure for 1 month. Conversely, larger fluctuations 
can lead to a 40% reduction in the adult population size 
compared with constant temperature control.19

Importance of surveillance in outbreak 
prevention, detection, and control
Surveillance is a primary requisite in the timely detection 
and response to outbreaks or unusual seasonal patterns. 
Surveillance of infectious disease encompasses not only 
the constant monitoring of disease-specific cases and 
deaths but also includes the monitoring and evaluation 
of conditions that enable transmission, including 
behavioural, societal, climatic, and environmental 
factors.20 The basic components of disease surveillance are 
data collection, analysis, interpretation, and dis semination 
to decision makers and the public, all of which can be 
facilitated by the advent of new technologies. Technology 
can further enable the collection of new forms of data and 
provide innovative solutions to improve data analysis and 
interpretation and increase the speed and reliability of 
dissemination. Data governance is a crucial aspect of 
surveillance systems, including data protection to preserve 
patient confidentiality, data standardisation to permit 
spatial and temporal comparisons, and data sharing to 
enable collective learning.20 Surveillance systems provide 
the information that is needed to detect and control 
outbreaks, empowering decision makers with timely data 
to manage the response more effectively and also 
contributing to long-term knowledge generation, response 
planning, and resource prioritisation, which can help to 
prevent and mitigate future outbreaks.20

Surveillance of vector-borne diseases is tasked with 
monitoring human cases of the disease, the pathogen 
species that is involved, the distribution and behaviour 
of the vector, and the climatic and environmental factors 
that enable disease transmission.21 The intricate 
dynamics between humans, animal hosts, vectors, and 
the ecosystem require a One Health approach, with 
input from across sectors and disciplines.22 In some 
settings, vector-borne diseases are holoendemic, whereas 
in many low-incidence settings, there exists an ongoing 
risk of disease emergence or re-emergence. Given these 
geographical differences in transmission risk, 
surveillance of vector-borne diseases is not a one-size-
fits-all approach and should be tailored to local needs.23

Mobile health in disease surveillance
Mobile health (mHealth) does not have a standard 
definition.24 However, for the purposes of this Viewpoint, 

we define it as a “medical and public health practice 
supported by mobile devices, such as mobile phones, 
patient monitoring devices, personal digital assistants, 
and other wireless devices”.24 We consider all 
functionalities and applications of modern mobile phones, 
including basic functions, such as voice call and messages, 
and more sophisticated technologies, including Bluetooth, 
GPS, and 3G or 4G data services.

The use of smartphones, wireless connectivity, and 
cloud-based technologies in the surveillance and 
response to vector-borne diseases enables improved 
detail in data, rapid dissemination to central servers, and 
the collection of new forms of evidence, such as 
photographic and videographic data.24 Smartphones can 
improve the detail of data in both temporal and spatial 
dimensions by enabling increased frequency of data 
collection and improved geographical localisation by use 
of GPS technology; however, their usefulness is limited 
by the prevalence of smartphone use and biases 
potentially arising if particular subpopulations are more 
likely to own or have access to a smartphone than are 
other populations.24

The application of mHealth approaches to surveillance is 
most suited to diseases with characteristic case definitions, 
of a short and defined duration (eg, dengue and malaria), 
and those that are less likely to come to the attention of 
community health workers than are others, thus otherwise 
escaping detection by traditional surveillance systems 
(eg, chikungunya). Surveillance of factors that influence 
disease incidence, including climatic factors, would be 
especially amenable to mHealth adoption if the factors are 
present only temporarily or fleetingly or in an area that is 
difficult to access, or if local and indigenous knowledge is 
essential to assess the factor. Diseases and factors that are 
unlikely to be good candidates for mHealth include 
complex or undulating conditions and conditions that are 
difficult to detect or measure with mobile technologies (eg, 
antibiotic-resistant infections).

An example of the usefulness of mobile technology 
was shown in Tanzania for monitoring African trypano-
somiasis, also known as African sleeping sickness, a 
parasitic vector-borne disease that can cause fatal 
meningoencephalitis.25 The abundance of tsetse flies, the 
vector of African trypanosomiasis, has increased in 
Tanzania due to warming temperatures, increased 
precipitation, and the availability of animal and human 
hosts.26,27 Climate change has also directly affected Maasai 
communities in Tanzania, where rainfall events late in 
the wet season and resultant poor pasture growth have 
caused the Maasai population to migrate northwards to 
woodland areas, where both the humans and their cattle 
are more exposed to tsetse flies and the potentially deadly 
trypanosomes that they carry than in their previous 
homes.28 A research team from the WHO Special 
Programme for Research and Training in Tropical 
Diseases used smartphones to develop models of climate 
and land use to forecast infection hotspots and identify 
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the safest areas for Maasai people to take their cattle.29 
Researchers and community members can use the 
smartphone app to access and collect information on 
precipitation, temperature, vegetation, water bodies, fly 
abundance, and disease incidence.29 The information 
that is collected through the smartphones is geo-
referenced, allowing for high-resolution mapping of 
spatial risk at the human–animal interface of the 
disease.29 Widespread adoption of mHealth to disease 
surveillance will aid in timely detection of and response 
to outbreaks.

Facilitation of data collection in particular geographical 
areas by mobile technologies will not only add detail but 
also help to create standardisation across datasets and 
assist data sharing and comparison. However, mHealth 
cannot be a simple top-down approach (ie, when decision 
making and design lies with authorities that are far 
removed from the affected communities). Affected 
communities in which data are collected will need to be 
engaged in the leadership, design, and roll-out of novel 
mobile technologies for their application to succeed.

Furthermore, for mHealth methods for data collection 
and analysis to be useful for prediction and policy, all 
technologies should undergo appropriate validation 
procedures before mHealth projects are initiated. Such 
validation should go beyond controlled laboratory 
conidtions and should extend to the field of operation, in 
which data quality and reliability should be assessed. 
Data interpretation also needs careful consideration, 
especially where approaches for machine learning are 
used. Training and validation datasets of appropriate 
scale, completeness, breadth, and data quality should be 
used. Efforts should be taken to avoid implicit bias (often 
engendered by humans) and consider the confounding 
effect of unmeasured variables, which might affect 
model reliability. Assessing the extent of generalisability 
is crucial: a dataset and model from one area (or indeed, 
over one specific timeframe) might not be generalisable 
to other, even nearby, regions.

Satellite climatic data to predict outbreaks of 
vector-borne diseases
Although meteorological data are collected at the country 
level by national meteorological and hydrological service 
institutions, these data are of varying quality, thus 
reducing their usefulness in comparisons between 
countries and regions and over time.29 Satellite systems 
also monitor the climatic, meteorological, environmental, 
and anthropogenic conditions that influence trans-
mission dynamics, and these real-time, freely available, 
and high-resolution data can be used to construct routine 
surveillance and early warning systems.29 Satellite-based 
surveillance systems can also be more proactive than can 
conventional systems that detect disease introductions 
and outbreaks only after they have occurred. Through 
pattern recognition and disease trends that are related to 
climatic indices, prospective satellite-based systems 

could predict where and how the next outbreak is most 
likely to occur.23 Instead of injecting funding that is 
limited by time when an outbreak occurs, investment in 
the long term in such prospective surveillance systems 
that mitigate outbreaks might be cost-effective overall.23 
To actualise their usefulness, the predictive models 
should be validated against data for case detection.29

The following case studies show the potential of 
satellite data for use in disease surveillance. Schisto-
somiasis is endemic across much of sub-Saharan Africa, 
Latin America, the Middle East, and east Asia, transmitted 
by contact with water contaminated by larval forms of the 
parasite that are released by freshwater snails.30 The 
incidence of this neglected disease is strongly influenced 
by climatic and environmental factors.30 In the 
uMkhanyakude district in South Africa, researchers from 
the University of KwaZulu-Natal have used satellite data, 
including air temperature, precipitation, and the velocity 
of flowing water, to show that snails carrying schisto-
somiasis larvae prefer slow-moving water bodies with 
temperatures that are higher than average.31 The 
predictions of future outbreaks by use of satellite data 
were subsequently verified through field sampling.31 
Since the snails can enter hibernation during the dry 
season and can repopulate water bodies following 
sufficient rainfall, the prediction tool is particularly 
useful for facilitating early interventions before the wet 
season, such as mass drug administration, vector control, 
and community awareness campaigns, in areas that are 
at high risk for schistosomiasis outbreaks.31

In Vietnam, researchers who are funded by the UK 
Space Agency are developing an early warning system to 
forecast the probability of dengue outbreaks up to 
6 months in advance.32 This work builds on previous 
studies using seasonal climate forecasts to provide early 
warnings of dengue risk in Brazil and Ecuador.33,34 
Dengue, transmitted by A aegypti, is endemic in swathes 
of Asia, Latin America, and the Caribbean.35 Epidemics 
occur during rainy seasons, but transmission is favoured 
whenever precipitation increases and the air becomes 
warmer and more humid than usual.35 Incidence of 
dengue is increasing at a faster rate than that of any other 
communicable disease, with a 30-times increase in the 
past 50 years, yet there is still no system in place to predict 
where the next outbreak will occur.32 An early warning 
system that could provide probabilistic actionable 
information about the location and scale of the next 
dengue outbreak would enable decision makers in 
Vietnam and globally to better target resources, enable 
surge capacity in hospitals, and prioritise control 
interventions.32 The Dengue Fore casting Model Satellite-
based System (also known as D-MOSS) uses historical 
and real-time meteorological data from satellite 
observation of Earth to produce forecasts of the probability 
of exceeding predefined epidemic thresholds in each 
province.32 Importantly, the surveillance system operates 
on a routine basis, collecting, analysing, and interpreting 
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climate data to ensure that forecasts are as timely as 
possible.

Future innovations to improve data accuracy in 
decision support
Artificial intelligence is increasingly recognised as a 
promising tool in the fight against infectious diseases 
and climate change. Integrating artificial intelligence 
algorithms into existing surveillance systems enables 
rapid processing of vast amounts of data, resulting in 
increased accuracy of detection of disease outbreaks.34 
Through learning from big data, a surveillance system 
that is assisted with artificial intelligence can improve 
pattern recognition and provide probabilistic estimates 
of disease flare-ups, using human, pathogen, vector, and 
climatic factors to create risk models of outbreak spread 
and severity.36 Such algorithms could also effectively do 
temporal and spatial analyses of data to detect aberrations, 
which can then be further investigated.36 The application 
of artificial intelligence to predict outbreaks of vector-
borne diseases that are driven by climate is in its nascent 
stages. Machine learning models that are given climate 
and weather data measured locally and by satellite have 
been used to predict the risk of malaria outbreaks in 
Tha Song Yang, Thailand, and Dar es Salaam, Tanzania, 
with accuracy rates greater than 85%.37–39

Artificial intelligence can also be used to augment 
and optimise event-based surveillance, which analyses 
open-source data, such as news articles and social 
media posts, to raise an early alert of disease outbreaks 
or the conditions that are known to increase their 
likelihood; often before these outbreaks can be detected 
by conventional surveillance.40 Artificial intelligence 
increases both the quantitative and analytic capacity of 
event-based surveillance by use of natural language 
processing and machine learning algorithms to 
transform event narratives into a database that details 
the nature of the event, when and where it occurred, 
who it involved, and the reliability of the sources. For 
example, the Global Public Health Intelligence 
Network, co-developed by the Canadian Government 
and WHO, uses artificial intelligence to analyse 
between 2000–3000 news articles per day.41 The outputs 
are reviewed by a team of expert analysts, who issue 
alerts for disease threats where appropriate. In 2003, 
the Global Public Health Intelligence Network raised 
an alert of increased sales of antivirals in China before 
the outbreak of severe acute respiratory syndrome 
became known to the global public health community.41

In the future, digital and technological innovations 
might be used to enable widespread and continuous 
collection and collation of climate and health data, both 
from individuals, for instance, with mobile phones, and 
from health services, as even elementary data move to 
electronic documentation. Challenges still exist, however, 
in the standardisation and validation of such data, which 
should be addressed before novel technologies are rolled 

out. Soon, rapid diagnostics at the point of care are likely 
to become increasingly low cost and applicable in 
mapping disease prevalence and incidence. Wastewater 
analysis for pathogen signatures, including genome 
sequencing, will be able to assist in defining disease 
prevalence, and developments in vector-trapping 
technologies (including drones) are rapidly occurring. 
Finally, wearable health monitors (eg, those recording 
respiratory and heart rate, temperature, and arterial 
oxygen saturation) are becoming increasingly low cost 
and informative, although costs and accessibility are 
limitations in rural locations. Powering mHealth devices 
is becoming easier than before, as the costs of off-grid 
power generation and battery storage substantially 
decrease. Issues of data privacy are also readily addressed 
as end-to-end encryption improves.

Ethical, legal, and societal implications
Novel technologies, including mHealth initiatives, data 
systems that are assisted by satellites, and artificial 
intelligence approaches, raise complex ethical, legal, and 
societal issues. These issues primarily centre around the 
collection, use, storage, and ownership of data. Data 
should be anonymised where possible, and as little 
individual data as is necessary should be collected to 
achieve the project’s aims. The global health community 
needs robust international frameworks for individual 
consent, data privacy and storage, and safe and 
appropriate data sharing. Where data are generated 
collaboratively, existing laws and regulations on property 
might not be sufficient (eg, when several different groups 
collaborate, it can be unclear who owns the data) and 
innovative approaches to data ownership might be 
needed. Approaches to risk communication and 
management should be sensitive to local contexts while 
adhering to agreed international standards. The 
regulation of novel technologies, especially those with a 
multinational or global reach, requires more concerted 
action on the part of national governments and mandated 
international organisations.

Emergent technologies, such as artificial intelligence, 
share these issues and raise their own challenges. Where 
models retain an element of autonomy and algorithms 
are constantly evolving (ie, adapting on the basis of 
previous experience, independently of the person who 
created the model), perhaps to a point where they are no 
longer understandable or traceable, our existing standard 
of informed consent is inadequate. If the datasets on 
which artificial intelligence models are trained are flawed 
by bias, then there is a substantial risk that these biases 
are enhanced and engrained, resulting in outputs that 
might widen existing gender, racial, socioeconomic, and 
other inequalities. Therefore, in artificial intelligence, as 
for other novel technologies, diversity in leadership, 
design, and development is crucial.

Ultimately, the global health community has an ethical 
obligation to expand the quality and scope of technologies 
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that have the potential to improve the health of humans 
and the planet, balanced with an obligation to protect the 
users of these technologies and to roll out such innovations 
equitably, ensuring that nobody is left behind or further 
disadvantaged. Since access to technology is already 
inequitably distributed, ensuring that new innovations do 
not widen existing health inequalities is pre-eminent.

Conclusion
Technological and digital innovations have enabled the 
incorporation of climatic data into surveillance systems 
to predict outbreaks of vector-borne diseases more 
accurately than did traditional surveillance models. 
Advance notice of the risk of an outbreak empowers 
decision makers and communities to scale up prevention 
and preparedness interventions and redirect outbreak 
response resources to the areas at the highest risk. 
Important considerations in the advent of these new 
technologies are the sustainability of the innovation in 
the long term, the need to ensure that the technology 
furthers the integration of surveillance systems rather 
than creating more division, and the fundamental 
obligation to ensure that the communities that are 
affected by the disease are involved in the design of the 
technology and directly benefit from its application. 
Beyond climate and weather data, other effects of climate 
change, including global population movement and 
local biodiversity, should also be included in innovative 
surveillance models to detect and predict the risk of 
vector-borne disease outbreaks more accurately than did 
traditional surveillance models.
Contributors
SY, CP, and ME conceived the idea for this Viewpoint. CP and ME 
searched the literature and wrote the draft manuscript. SY, RL, and HM 
provided comments and guidance during revisions of the manuscript. 
All authors approved the final version for submission.

Declaration of interests
We declare no competing interests.

Acknowledgments
SY is supported by the Wellcome Trust (106680). RL is supported by a 
Royal Society Dorothy Hodgkin Fellowship.

References
1 WHO. A global brief on vector-borne diseases. Geneva: World 

Health Organisation, 2014.
2 Yacoub S, Kotit S, Yacoub MH. Disease appearance and evolution 

against a background of climate change and reduced resources. 
Philos Trans A Math Phys Eng Sci 2011; 369: 1719–29.

3 Watts N, Amann M, Ayeb-Karlsson S, et al. The Lancet Countdown 
on health and climate change: from 25 years of inaction to a global 
transformation for public health. Lancet 2018; 391: 581–630.

4 De Leo GA, Stensgaard AS, Sokolow SH, et al. Schistosomiasis and 
climate change. BMJ 2020; 371: m4324.

5 Caminade C, McIntyre KM, Jones AE. Impact of recent and future 
climate change on vector-borne diseases. Ann N Y Acad Sci 2019; 
1436: 157–73.

6 Mordecai EA, Cohen JM, Evans MV, et al. Detecting the impact of 
temperature on transmission of Zika, dengue, and chikungunya 
using mechanistic models. PLoS Negl Trop Dis 2017; 11: e0005568.

7 Lowe R, Gasparrini A, Van Meerbeeck CJ, et al. Nonlinear and 
delayed impacts of climate on dengue risk in Barbados: a modelling 
study. PLoS Med 2018; 15: e1002613.

8 Wilke ABB, Chase C, Vasquez C, et al. Urbanization creates diverse 
aquatic habitats for immature mosquitoes in urban areas. Sci Rep 
2019; 9: 15335.

9 Surendran SN, Jayadas TTP, Sivabalakrishnan K, et al. 
Development of the major arboviral vector Aedes aegypti in urban 
drain-water and associated pyrethroid insecticide resistance is a 
potential global health challenge. Parasit Vectors 2019; 12: 337.

10 Schmidt WP, Suzuki M, Thiem V, et al. Population density, water 
supply, and the risk of dengue fever in vietnam: cohort study and 
spatial analysis. PLoS Med 2011; 8: e1001082.

11 Takken W, Lindsay S. Increased threat of urban malaria from 
Anopheles stephensi mosquitoes, Africa. Emerg Infect Dis 2019; 
25: 1431–33.

12 Rocklöv J, Dubrow R. Climate change: an enduring challenge for 
vector-borne disease prevention and control. Nat Immunol 2020; 
21: 479–83.

13 Are EB, Hargrove JW. Extinction probabilities as a function of 
temperature for populations of tsetse (Glossina spp.). 
PLoS Negl Trop Dis 2020; 14: e0007769.

14 Longbottom J, Caminade C, Gibson HS, Weiss DJ, Torr S, Lord JS. 
Modelling the impact of climate change on the distribution and 
abundance of tsetse in Northern Zimbabwe. Parasit Vectors 2020; 
13: 526.

15 Lancet Countdown. Climate suitability for infectious disease 
transmission. Dec 2, 2020. https://www.lancetcountdown.org/data-
platform/climate-change-impacts-exposures-and-vulnerability/ 
1-3-climate-sensitive-infectious-diseases/1-3-1-climate-suitability-for-
infectious-disease-transmission (accessed April 16, 2021).

16 Watts N, Amman M, Arnell N, et al. The 2020 report of The Lancet 
Countdown on health and climate change: responding to 
converging crises. Lancet 2021; 397: 129–70.

17 Yang B, Borgert BA, Alto BW, et al. Modelling distributions of 
Aedes aegypti and Aedes albopictus using climate, host density and 
interspecies competition. PLoS Negl Trop Dis 2021; 15: e0009063.

18 Metelmann S, Liu X, Lu L, et al. Assessing the suitability for 
Aedes albopictus and dengue transmission risk in China with a delay 
differential equation model. PLoS Negl Trop Dis 2021; 15: e0009153.

19 Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW. 
Effects of fluctuating daily temperatures at critical thermal extremes 
on Aedes aegypti life-history traits. PLoS One 2013; 8: e58824.

20 Nsubuga P, White ME, Thacker SB, et al. Public health surveillance: 
a tool for targeting and monitoring interventions. In: Jamison D, 
Breman J, Measham A, et al, eds. Disease control priorities in 
developing countries, 2nd edn. New York, NY: Oxford University 
Press, 2006: 997–1015.

21 Braks M, Giglio G, Tomassone L, Sprong H, Leslie T. Making 
vector-borne disease surveillance work: new opportunities from the 
SDG perspectives. Front Vet Sci 2019; 6: 232.

22 Fournet F, Jourdain F, Bonnet E, Degroote S, Ridde V. Effective 
surveillance systems for vector-borne diseases in urban settings and 
translation of the data into action: a scoping review. 
Infect Dis Poverty 2018; 7: 99.

23 Kading RC, Golnar AJ, Hamer SA, Hamer GL. Advanced 
surveillance and preparedness to meet a new era of invasive vectors 
and emerging vector-borne diseases. PLoS Negl Trop Dis 2018; 
12: e0006761.

24 WHO. mHealth: new horizons for health through mobile 
technologies. Geneva: World Health Organization, 2011. https://
apps.who.int/iris/bitstream/handle/10665/44607/9789241564250_
eng.pdf?sequence=1&isAllowed=y (accessed Nov 28, 2020).

25 Brun R, Blum J, Chappuis F, Burri C. Human African 
trypanosomiasis. Lancet 2010; 375: 148–59.

26 Ngonyoka A, Gwakisa PS, Estes AB, Nnko HJ, Hudson PJ, 
Cattadori IM. Variation of tsetse fly abundance in relation to habitat 
and host presence in the Maasai Steppe, Tanzania. J Vector Ecol 
2017; 42: 34–43.

27 Ramirez B. Support for research towards understanding the 
population health vulnerabilities to vector-borne diseases: 
increasing resilience under climate change conditions in Africa. 
Infect Dis Poverty 2017; 6: 164.

28 Simwango M, Ngonyoka A, Nnko HJ, et al. Molecular prevalence of 
trypanosome infections in cattle and tsetse flies in the Maasai 
Steppe, northern Tanzania. Parasit Vectors 2017; 10: 507.



www.thelancet.com/planetary-health   Vol 5   October 2021 e745

Viewpoint

29 Ceccato P, Ramirez B, Manyangadze T, Gwakisa P, Thomson MC. 
Data and tools to integrate climate and environmental information 
into public health. Infect Dis Poverty 2018; 7: 126.

30 Colley DG, Bustinduy AL, Secor WE, King CH. Human 
schistosomiasis. Lancet 2014; 383: 2253–64.

31 Manyangadze T, Chimbari MJ, Gebreslasie M, Ceccato P, 
Mukaratirwa S. Modelling the spatial and seasonal distribution of 
suitable habitats of schistosomiasis intermediate host snails using 
Maxent in Ndumo area, KwaZulu-Natal Province, South Africa. 
Parasit Vectors 2016; 9: 572.

32 Colón-González FJ, Bastos LS, Hofmann B, et al. Probabilistic 
seasonal dengue forecasting in Vietnam: a modelling study using 
superensembles. PLoS Med 2021; 18: e1003542.

33 Lowe R, Barcellos C, Coelho CA, et al. Dengue outlook for the 
World Cup in Brazil: an early warning model framework driven by 
real-time seasonal climate forecasts. Lancet Infect Dis 2014; 
14: 619–26.

34 Lowe R, Stewart-Ibarra AM, Petrova D, et al. Climate services for 
health: predicting the evolution of the 2016 dengue season in 
Machala, Ecuador. Lancet Planet Health 2017; 1: e142–51.

35 Castro MC, Wilson ME, Bloom DE. Disease and economic burdens 
of dengue. Lancet Infect Dis 2017; 17: e70–78.

36 Rees E, Ng V, Gachon P, et al. Risk assessment strategies for early 
detection and prediction of infectious disease outbreaks associated 
with climate change. Canada Commun Dis Rep 2019; 45: 119–26.

37 Schwalbe N, Wahl B. Artificial intelligence and the future of global 
health. Lancet 2020; 395: 1579–86.

38 Haddawy P, Hasan AHMI, Kasantikul R, et al. Spatiotemporal 
Bayesian networks for malaria prediction. Artif Intell Med 2018; 
84: 127–38.

39 Kabaria CW, Molteni F, Mandike R, et al. Mapping intra-urban 
malaria risk using high resolution satellite imagery: a case study of 
Dar es Salaam. Int J Health Geogr 2016; 15: 26.

40 Keller M, Blench M, Tolentino H, et al. Use of unstructured event-
based reports for global infectious disease surveillance. 
Emerg Infect Dis 2009; 15: 689–95.

41 Dion M, AbdelMalik P, Mawudeku A. Big data and the Global 
Public Health Intelligence Network (GPHIN). Canada Commun Dis 
Rep 2015; 41: 209–14.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open 
Access article under the CC BY-NC-ND 4.0 license.


	Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks
	Introduction
	Role of climate change in the epidemiology of vector-borne diseases
	Importance of surveillance in outbreak prevention, detection, and control
	Mobile health in disease surveillance
	Satellite climatic data to predict outbreaks of vector-borne diseases
	Future innovations to improve data accuracy in decision support
	Ethical, legal, and societal implications
	Conclusion
	Acknowledgments
	References


