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S1. Site selection criteria 

Intervention sites were selected by the nongovernmental organization (NGO) Water and 

Sanitation for the Urban Poor (WSUP) according to feasibility and demand criteria (Table S1). 

The MapSan researchers were not involved in the design of the intervention or selection of the 

intervention sites, but did recruit similar compounds to serve as control sites according to a 

reduced set of the same selection criteria applied to intervention sites.  

Table S1. Baseline site selection criteria for intervention and control compounds 

 required for 

criterion 

intervention 

compounds 

control 

compounds 

located in the 11 pre-defined implementation neighborhoods yes noa 

residents share sanitation in poor condition yes yes 

at least 12 residents yes yes 

residents willing to contribute to latrine construction costs yes yes 

sufficient space available for construction of the new facility yes no 

accessible for transportation of construction materials and tank-emptying activities yes no 

legal access to piped water supply yes yes 

groundwater level deep enough to accommodate a septic tank yes no 

at least one child younger than 48 months old in residence no yes 
a also recruited from 6 similar, adjacent neighborhoods; see Knee et al. (2021)1 

 All children under 48 months old living in study compounds at baseline enrollment were 

invited to participate in the MapSan health impact trial following written, informed consent from 

a parent or guardian. At 12-month follow-up, any children living in study compounds who were 

not previously enrolled but would have been under 48 months of age at the time the compound 

was enrolled at baseline were also invited to participate, including children born after baseline. 

Knee et al. (2021) provide additional details on eligibility and enrollment into the MapSan child 

health study component.1 

We collected environmental samples from a subset of compounds already scheduled for 

baseline enrollment during May – August 2015. The specific intervention compounds at which 

we collected baseline environmental samples were selected opportunistically, largely prioritizing 
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compounds with visits scheduled earlier in the morning to ensure sufficient time for sample 

transport and laboratory processing. Control compounds were similarly selected for 

environmental sampling among those already scheduled for baseline enrollment, although we 

prioritized control compounds with similar numbers of residents as the intervention compounds 

that had been selected for environmental sampling in the preceding two weeks. 

The compounds selected for environmental sampling at baseline were revisited in June – 

September 2016, 12 months ( 2 weeks) following the opening of the new latrine for 

intervention compounds and 12 months ( 2 weeks) after baseline enrollment for control 

compounds. Four compounds at which environmental samples were collected at baseline were 

unavailable at follow up due to travel or relocation of eligible children for the health impact 

study. The provision of intervention latrines was substantially delayed for two additional 

compounds following baseline enrollment, rendering them outside the 12-month ( 2 weeks) 

follow-up window for the duration of the June – September 2016 environmental sampling 

campaign. However, environmental samples were collected from 13 additional compounds 

during the 12-month follow-up phase that had not been sampled at baseline but had been 

enrolled in the larger MapSan trial at baseline. These additional compounds were selected 

opportunistically in the same manner as the initial baseline sample set, but intervention 

compounds (n = 11) were prioritized over control compounds (n = 2), which had been 

overrepresented at baseline. 

S2. Samples collected 

We visited additional households and compounds in the follow-up study phase, collecting 

more samples than at baseline (Table S2).2 Fewer source water samples were collected at follow-

up because the municipal water supply was available less often. One control compound (with 
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two enrolled households) independently upgraded the latrine after baseline and was excluded 

from the follow-up sample. 

Table S2. Number of observations of compounds, households, and each sample type 

 before  after 

observation unit control intervention  control intervention 

compounds 33 25  30 34 

households 86 66  86 90 

latrine entrance soil 33 23  30 30 

household entrance soil 49 36  47 45 

compound source water 23 21  19 22 

household stored water 50 41  52 55 

food preparation surfaces 50 40  53 51 

 

 We requested that respondents provide both household stored water and household food 

preparation surfaces in the manner or condition in which they would typically be used. For stored 

water, we requested that the respondent provide it to us as if they were giving a child water to 

drink. Similarly, we requested that the household respondent identify or provide a surface they 

would typically use to prepare food, in the condition in which they would use it. If multiple 

surfaces were available, the respondent decided which to present as representative of their 

ordinary food preparation practices. Additional descriptions of specific sampling procedures and 

the observed baseline characteristics of each sample type are provided in Holcomb et al. (2020).2 

 

S3. qPCR assay details 

All qPCR assays were performed using TaqMan Environmental Master Mix 2.0 and were 

subjected to an initial 10 minute incubation at 95°C, after which the cycling conditions specified 

by the assay developers were followed for each assay (Table S3).  
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Table S3. qPCR assay details 

assayreference cycles parameters 

oligonucleotide 

(nM) sequence (5'-3') 

EC23S8573 40 
15 s: 95 °C 

60 s: 60 °C 

F (1000) GGTAGAGCACTGTTTtGGCA 

R (1000) TGTCTCCCGTGATAACtTTCTC 

P (80) 6-FAM-TCATCCCGACTTACCAACCCG-BHQ1 

HF183/ 

BacR2874 
40 

15 s: 95 °C 

60 s: 60 °C 

HF183 (1000) ATCATGAGTTCACATGTCCG  

BacR287 (1000) CTTCCTCTCAGAACCCCTATCC 

BacP234MGB (80) 6-FAM-CTAATGGAACGCATCCC-BHQplus 

Mnif 5 50 
10 s: 95 °C 

30 s: 57 °C 

Mnif-202F (800) GAAAGCGGAGGTCCTGAA 

Mnif-353R (800) ACTGAAAAACCTCCGCAAAC 

Mnif-236P (240) 
6-FAM-CCGGACGTGGTGTAAC 

AGTAGCTA-BHQ1 

Sketa226,7 40 
15 s: 95 °C 

60 s: 60 °C 

SketaF2 (1000) GGTTTCCGCAGCTGGG 

SketaR22 (1000) CCGAGCCGTCCTGGTC 

SketaP2 (80) 6-FAM-AGTCGCAGGCGGCCACCGT-BHQ1 

 

S4. Calibration curves 

Calibration curves for quantifying molecular fecal indicator gene copies were fit to ten-

fold dilution series of positive controls (PC) that had been spiked with reference material for all 

three assays and extracted alongside each batch of samples.2 Three gBlock linear DNA 

fragments (Integrated DNA Technologies, Skokie, Il, USA) containing composite reference 

sequences for the three fecal source tracking assays considered in this paper as well as additional 

assays considered in the associated validation study were used as standard reference material for 

the positive controls (Table S4).2,8,9 Extracting the reference material accounted for loss of target 

DNA during extraction but induced additional variability between dilution series constructed 

from each PC. We therefore allowed both the slopes and intercepts of the calibration curves to 

vary by qPCR instrument run and extraction batch to account for the additional variation. The 

resulting curves were relatively linear (R2 > 95%) when averaged across all instrument runs and 

extraction batches but were somewhat inefficient, particularly for HF183 (Table S5). 
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Table S4. Synthetic DNA reference material spiked into positive controls 

assays covered sequence [5'-3'] 

GenBank 

(base positions) 

length 

[bases] 

BacHum-UCD10 

BacUni-UCD10 

HF183/BacR28711 

CCAGGATGGGATCATGAGTTCACATGTCCGCATGAT

TAAAGGTATTTTCCGGTAGACGATGGGGATGCGTTC

CATTAGATAGTAGGCGGGGTAACGGCCCACCTAGTC

AACGATGGATAGGGGTTCTGAGAGGAAGGTCCCCCA

CATTGGAACTGAGACACGGTCCAAACTCCTACGGGA

GGCAGCAGTGAGGAATATTGGTCAATGGGCGATGGC

CTGAACCAGCCAAGTAGCGTGAAGGATGACTGCCCT

ATGGGTTGTAAACTTCTTTTATAAAGGAATAAAGTC

GGGTATGCATACCCGTTTGCATGTACTTTATGAATAA

GGATCGGCTAACTCCGTGCCAGCAGCCGCGGTAATA

CGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTT

AAAGGGAGCGTAGATGGATGTTTAAGTCAGTTGTGA

AAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATAC

TGGATGTCTTGAGTGCAGTTGAGGCAGGCGGAATTC

GTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGA

ACTCCGATTGCGAAGGCAGC 

AB242142 

(170-730) 
560 

GFD12 

LA3513 

TGGGTCTAATACCGGATACGACCATCTGCCGCATGG

CGGGTGGTGGAAAGTTTTTCGATTGGGGATGGGCTC

GCGGCCTATCAGTTTGTTGGTGGGGTAATGGCCTAC

CAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGA

CCGGCCACACTGGGACTGAGACACGGCCCAGACTCC

TACGGGAGGCAGCAGTGGGGAATATTGCACAATGG

GGGAAACCCTGATGCAGCGACGCAGCGTGCGGGAT

GACGGCCTTCGGGTTGTAAACCGCTTTCAGCAGGGA

AGAAGCCTTCGGGTGACGGTACCTGCAGAAGAAGTA

CCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT

AGGGTACGAGCGTTGTCCGGAATTATTGGGCGTAAA

GAGCTCGTAGGTGGTTGGTCACGTCTGCTGTGGAAA

CGCAACGCTTAACGTTGCGCGGGCAGTGGGTACGGG

CTGACTAGAGTGCAGTAGGGGAGTCTGGAATTCCTG

GTGTAGCGGTGAAATGCGCAGATATCAGGAGGAAC

ACCGGTGGCGAAGGCGGGACTCTGGGCTGTGACTGA

CACTGGGGAGCGAAAGCATTGCTAACAGTTcGGCTG

AGCACTCTAGGGAGACTGCCTTCGCAAGGAGGAGGA

AGGTGAGGACGACGTCAAGTCATCATGGCCCTTACG

CCTAGGGCTACACACGTGCTACAATGGGATGTACAA

AGAGACGCAATACCGCGA 

FJ462358 

(156-746) 

JN084061 

(29-171) 

732 

EC23S8573 

HAdV14 

Mnif5 

TAACTATGGTCATCGTTCGTCAGCAGTAACAGTAATT

GCTACACCTGCTGAAACCACTGTCCCTTTTTCTTGGG

CAACTCTTGTTTATGTGTTGAAAGCGGAGGTCCTGA

ACCGGGTGTTGGCTGTGCCGGACGTGGTGTAACAGT

AGCTATGAAAAGACTTGAAAACTTAGGTGTTTTTGA

TAAGGATTTGGATGTAGTCATTTATGGTGTACTTGGA

GATGTTGTTTGCGGAGGTTTTTCAGTGCCTTTACGTT

CTCGGGCCAGGACGCCTCGGAGTACCTGAGCCCCGG

GCTGGTGCAGTTTGCCCGCGCCACCGAGACGTACTT

CAGCCTGAATAACAAGTTTAGAAACCCCACGGTGGC

GCCTACGCATCTCCGGGGGTAGAGCACTGTTTCGGC

AAGGGGGTCATCCCGACTTACCAACCCGATGCAAAC

TGCGAATACCGGAGAATGTTATCACGGGAGACACAC

GGCGGGT 

AE015928 

(4515891-

4515973) 

AB019138 

(192-363) 

AC_000008 

(18885-19000) 

DQ682619 

(847-954) 

475 
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Table S5. Mean (95% CI) estimates of calibration curve parameters 

assay intercept slope efficiency (%) R2 

EC23S 47.9 (47.3, 48.6) -3.50 (-3.64, -3.37) 93.1 (88.1, 98.1) 0.98 (0.97, 0.98) 

HF183 47.5 (46.4, 48.6) -3.85 (-4.07, -3.67) 81.8 (76.1, 87.4) 0.98 (0.97, 0.98) 

Mnif 48.8 (47.7, 50.3) -3.47 (-3.79, -3.23) 94.5 (83.6, 104.0) 0.95 (0.93, 0.95) 

 

S5. Detection limits 

The limit of detection (LOD) for each assay was obtained in terms of the quantification 

cycle (Cq), the number of amplification cycles above which the target would be considered 

absent from the reaction, using receiver operating characteristic (ROC) analysis.2,15 We 

performed ROC analysis on the local validation study data presented in Holcomb et al. (2020), 

considering Cq cutoff values from 10 to the maximum number of cycles indicated by the assay 

developers, in full-cycle increments. We calculated diagnostic sensitivity and specificity for each 

cutoff value, considering any reactions with a Cq value below the cutoff as positive. The highest 

Cq value that maximized the Youden index, 𝐽 =  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1, for each assay 

was considered the assay LOD (Table S6).15,16 

Process limits of detection (PLOD) were estimated for each sample from the assay LOD 

Cq values, the extraction batch- and instrument run-specific calibration curve estimates, and the 

amount of sample processed, i.e. volume of water filtered or the dry mass or surface area 

represented by the eluate filtered for soil samples and surface swabs, respectively. For E. coli 

enumerated by culture (cEC), we assumed an assay LOD of 1 cfu per plate and calculated the 

PLOD for each sample on the basis of the amount of sample represented by the least-diluted 

plate read for that sample.2 The PLOD averages indicate that relatively high gene copy 

concentrations were required for reliable detection by any of the three qPCR-based assays, on the 

order of >10,000 gc/dry gram of soil, nearly 1000 gc/100 mL water, and >3000 gc/100 cm2 of 

food preparation surface (Table S6). 
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Table S6. qPCR assay limits of detection and mean sample-specific process limits of 

detection by sample matrix 

  process limit of detection 

assay 

assay 

LODa Cqb 

soil 

log10 gcc/dry g 

water 

log10 gc/100 mL 

surface 

log10 gc/100 cm2 

n mean (SDd) n mean (SD) n mean (SD) 

EC23S 39 298 4.51 (0.11) 292 3.27 (0.12) 199 3.96 (0.30) 

HF183 39 299 4.24 (0.33) 292 2.85 (0.29) 199 3.45 (0.36) 

Mnif 41 298 4.18 (0.17) 291 3.03 (0.11) 196 3.53 (0.35) 
a limit of detection 
b quantification cycle 
c gene copies  
d standard deviation 

 

S6. Laboratory quality control 

Sterile PBS was filtered as a laboratory blank for approximately every 10 samples 

filtered, all of which were culture-negative for cEC (n = 151). At least three no template control 

(NTC) reactions were included on every qPCR run using 5 µL nuclease-free water in place of 

sample template. Each qPCR run typically included samples from three extraction batches, and a 

negative extraction control (NEC) was included from each extraction batch represented on the 

plate. HF183 was absent in all NTC (n = 46) and NEC (n = 46) reactions. Mnif was likewise not 

detected in any NTC (n = 42) or NEC (n = 46) reaction. However, EC23S was detected in 2% of 

NTC (1/45) and 11% of NEC (5/46) reactions. EC23S concentrations were low in the 

contaminated negative controls, with a mean Cq of 38.1 and a minimum Cq of 37.1—only 

slightly above the detection limit of 39 cycles. Such low levels of contamination have been 

reported previously and are thought to be due to residual E. coli DNA in the Environmental 

Master Mix from the production process.2,17 One latrine soil sample was considered inhibited 

based on a greater than 3 Cq deviation from the mean Sketa22 Cq of all NECs and positive 

controls on the same plate. This sample was diluted 1:5 in all further analyses. For each sample 

type, 10% of samples were randomly selected to be analyzed by each qPCR assay in technical 

duplicate reactions. The detection status of EC23S agreed in 96% (74/77) of replicate pairs. 
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HF183 results matched for 86% (66/77) of paired reactions and Mnif agreed in 95% (71/75). 

Samples analyzed in duplicate were considered positive for a given target if at least one of the 

replicate reactions was above the limit of detection. 

S7. Conditional probability 

The conditional probability of human contamination, 𝐶, given the detection of two 

human-associated markers, 𝑀1and 𝑀2 is given by 

 
𝑃(𝐶+|𝑀1

+ ∩ 𝑀2
+) =

𝑃(𝑀1
+|𝐶+) × 𝑃(𝑀2

+|𝐶+) × 𝑃(𝐶+)

𝑃(𝑀1
+|𝐶+) × 𝑃(𝑀2

+|𝐶+) × 𝑃(𝐶) + 𝑃(𝑀1
+|𝐶−) × 𝑃(𝑀2

+|𝐶−) × 𝑃(𝐶−)
 

=
𝑆𝑒1 × 𝑆𝑒2 × 𝑃(𝐶+)

𝑆𝑒1 × 𝑆𝑒2 × 𝑃(𝐶+) + (1 − 𝑆𝑝1) × (1 − 𝑆𝑝2) × (1 − 𝑃(𝐶+))
 

(1) 

where 𝑆𝑒1 =  𝑃(𝑀1
+|𝐶+),  𝑆𝑒2 =  𝑃(𝑀2

+|𝐶+), 𝑆𝑝1 =  𝑃(𝑀1
−|𝐶−), 𝑆𝑝2 =  𝑃(𝑀2

−|𝐶−), and 𝐴+ 

indicates the presence, and 𝐴− the absence, of variable 𝐴.18 We calculated the conditional 

probability of contamination for HF183 and Mnif separately and for each combination of the two 

indicators (𝑀1
+, 𝑀2

+; 𝑀1
+, 𝑀2

−;  𝑀1
−, 𝑀2

+; 𝑀1
−, 𝑀2

−) by sample type. 

S8. Difference-in-differences estimates 

The effect of the intervention was estimated using difference-in-differences approaches. 

Crude DID estimates of E. coli log10-concentration and human FST marker prevalence were 

calculated using 2000 bootstrap samples (Table S7). The DID estimate was calculated as 

 𝐷𝐼𝐷 = (E[𝑌𝑇=1,𝑃=1] − E[𝑌𝑇=1,𝑃=0]) − (E[𝑌𝑇=0,𝑃=1] − E[𝑌𝑇=0,𝑃=0]) (2) 

where 𝑌𝑇,𝑃 are the observed indicator values for treatment group 𝑇 in study phase 𝑃. The value 

of 𝑇 is 0 for control compound observations and 1 for intervention compounds; likewise, 𝑃 takes 

the value 0 for pre-treatment (baseline) observations and 1 post-treatment (follow-up). 

Observations below the PLOD or too numerous to count were imputed by sample type from a 

truncated normal distribution with mean and standard deviation obtained through maximum 
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likelihood estimation, assuming the log10 concentration was normally distributed and subject to 

left- and right-censoring.2,19 Model-based DID estimates were obtained using the product-term 

representation of the DID estimator in regression models, which permits the inclusion of 

additional covariates. We produced both crude model-based estimates, which only included 

terms for the DID estimator, as well as adjusted estimates that included additional terms for 

meteorological, compound, household, sample characteristics (Table S8).
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Table S7. Bootstrap difference-in-differences estimates 

  before  after   

  control  intervention  control  intervention  DIDa 

indicator sample type N estimate  N estimate  N estimate  N estimate  estimate 

  E. coli log10 concentration, mean (95% CI)   

cEC latrine soil 33 4.0 (3.6, 4.3)  23 4.0 (3.5, 4.4)  30 3.3 (2.9, 3.7)  30 3.0 (2.6, 3.5)  -0.3 (-1.1, 0.5) 

 household soil 49 4.1 (3.8, 4.3)  36 4.2 (3.9, 4.5)  47 3.7 (3.5, 4.0)  45 3.4 (3.1, 3.8)  -0.4 (-1.0, 0.1) 

 stored water 50 1.8 (1.4, 2.2)  41 1.6 (1.1, 2.0)  52 1.1 (0.7, 1.4)  55 1.0 (0.7, 1.3)  0.2 (-0.6, 0.9) 

 food surface 50 3.3 (2.8, 3.8)  40 2.9 (2.3, 3.6)  53 2.0 (1.5, 2.5)  51 1.9 (1.4, 2.4)  0.3 (-0.8, 1.3) 

EC23S latrine soil 33 6.2 (5.8, 6.6)  23 6.9 (6.4, 7.4)  30 6.7 (6.4, 7.1)  30 6.5 (6.0, 7.0)  -0.9 (-1.8, 0.0) 

 household soil 49 6.8 (6.5, 7.0)  36 6.7 (6.4, 7.0)  47 6.7 (6.4, 7.0)  45 6.6 (6.4, 6.9)  0.0 (-0.5, 0.5) 

 stored water 50 4.1 (3.9, 4.3)  41 4.4 (4.2, 4.7)  52 4.2 (3.9, 4.4)  55 4.0 (3.8, 4.2)  -0.4 (-0.9, 0.0) 

 food surface 50 4.4 (4.2, 4.7)  40 5.0 (4.8, 5.3)  53 4.7 (4.4, 5.0)  51 4.5 (4.2, 4.8)  -0.8 (-1.4, -0.3) 

  human marker prevalence, % (95% CI)   

HF183 latrine soil 33 33 (17, 50)  23 43 (23, 64)  30 57 (39, 75)  30 43 (26, 61)  -23 (-60, 14) 

 household soil 49 17 (7, 28)  36 36 (20, 52)  47 49 (35, 64)  45 38 (24, 52)  -30 (-57, -1) 

 stored water 50 12 (4, 22)  41 22 (10, 35)  52 10 (2, 20)  55 19 (9, 30)  -1 (-21, 19) 

 food surface 50 2 (0, 7)  40 0 (0, 0)  53 9 (2, 18)  51 2 (0, 7)  -5 (-16, 4) 

Mnif latrine soil 33 51 (35, 69)  23 65 (45, 84)  30 50 (32, 68)  30 36 (19, 54)  -27 (-63, 8) 

 household soil 49 43 (30, 57)  36 23 (9, 37)  47 25 (13, 39)  45 24 (12, 38)  20 (-7, 46) 

 stored water 50 0 (0, 0)  41 2 (0, 8)  52 0 (0, 0)  55 0 (0, 0)  -2 (-8, 0) 

 food surface 50 0 (0, 0)  40 3 (0, 8)  53 2 (0, 7)  51 0 (0, 0)  -4 (-12, 0) 
a difference-in-differences: (intervention, after – intervention, before) – (control, after – control, before) 
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Table S8. Model-based difference-in-differences estimates 

 
 latrine entrance soil  household entrance soil  household stored water  food preparation surfaces 

 
 crudea  adjustedb  crude  adjusted  crude  adjusted  crude  adjusted 

target  N DIDc  N DID  N DID  N DID  N DID  N DID  N DID  N DID 

  E. coli log10 concentration change (95% CI) 

cEC  111 -0.37 

(-1.17, 0.44) 

 95 -0.42 

(-1.28, 0.40) 

 175 -0.34 

(-0.92, 0.22) 

 146 0.05 

(-0.62, 0.72) 

 194 0.15 

(-0.61, 0.92) 

 170 -0.42 

(-1.28, 0.44) 

 192 0.18 

(-0.9, 1.26) 

 169 -0.11 

(-1.4, 1.17) 

EC23S  116 -0.84 

(-1.64, -0.02) 

 98 -1.22 

(-2.11, -0.30) 

 176 0.06 

(-0.46, 0.57) 

 147 0.36 

(-0.26, 1.01) 

 193 -0.46 

(-0.89, -0.04) 

 170 -0.41 

(-0.92, 0.12) 

 193 -0.82 

(-1.46, -0.19) 

 171 -0.56 

(-1.32, 0.19) 

  human target prevalence odds ratio (95% CI) 

HF183  116 0.94 

(0.40, 1.87) 

 98 0.92 

(0.38, 1.87) 

 176 0.83 

(0.39, 1.54) 

 147 0.90 

(0.38, 1.80) 

 193 1.12 

(0.48, 2.27) 

 170 1.05 

(0.44, 2.15) 

 
  

 
  

Mnif  116 0.73 

(0.31, 1.44) 

 98 0.71 

(0.29, 1.47) 

 175 1.24 

(0.53, 2.46) 

 146 1.00 

(0.39, 2.06) 

 
  

 
  

 
  

 
  

a not adjusted for covariates; include terms for study phase, treatment arm, and their product, and compound-varying intercepts 
b adjusted for animal presence, population density, household wealth, temperature, precipitation, and sample-specific variables: sun exposure 

and surface wetness for soils, presence of lid and width of container mouth for stored water, and food surface material. 
c difference-in-differences estimated as the regression coefficient on the product of study phase and treatment arm indicators 

 

 



S9. Validation studies 

Local differences in diet, geography, and population history affecting the gut microbiome 

composition of a given population are expected to play the key role in determining local fecal 

source tracking performance.20,21 However, multi-laboratory comparisons have also 

demonstrated that assay performance can vary meaningfully between labs analyzing the same set 

of challenge samples.22 Furthermore, assay design and other intrinsic characteristics may also 

impact potential performance—that is, some assays may have more robust designs that increase 

the likelihood of performing well in a variety of settings and populations. Source tracking 

validation studies typically report crude sensitivity and specificity values without quantifying the 

uncertainty in these estimates, which could be substantial considering the limited number of 

samples analyzed in many studies, particularly in resource-limited settings (Table S9).  

We incorporate a meta-analysis of FST validation studies for our selected human 

markers, which provides an opportunity to partially pool information across a variety of locations 

to potentially refine the sensitivity and specificity estimates for our specific study setting.23 The 

hierarchical structure of the meta-analytic model means that the estimates for any given location 

are driven by the data from that location. Sensitivity and specificity estimates at a location with a 

large amount of data would be almost entirely determined by the local data and largely 

unaffected by the other studies, while estimates from locations with sparse data, which would be 

uncertain on their own, incorporate more information pooled from other studies.24 The extent of 

information pooling is also determined by the consistency of marker performance across studies. 

Highly variable marker performance between study locations suggests that performance is 

mostly driven by differences in local characteristics, limiting the amount of information that can 

be gained by considering performance in other locations. Accordingly, meta-analytic 
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performance estimates in a particular location will be determined largely by the local samples 

and minimally influenced by data from other locations. On the other hand, similar marker 

performance across locations suggests that intrinsic assay characteristics play a larger role in its 

performance, enabling information from other locations to refine the estimates at specific 

locations with limited local data.25 We adjust for diagnostic accuracy using the meta-analytic 

sensitivity and specificity estimates for our study location, such that the estimates are driven by 

our local data but are influenced by the broader trends in assay performance across all the studies 

considered. The degree of influence by outside data depends on the degree of uncertainty in the 

local data (a function of sample size) and the similarity of performance estimates across all the 

studies considered, which is reflected in the between-study standard deviations, 𝜎𝑆𝑒 and 𝜎𝑆𝑝. 

Validation studies included in the performance meta-analysis were identified from 

Google Scholar records of articles citing the original assay publications and from the references 

of each published validation study identified.5,7,11 We only included HF183 studies that assessed 

the HF183/BFDRev assay or its modification used in this study, HF183/BacR287.11 We 

identified HF183 validation studies conducted on five continents, including two in Africa, seven 

in Asia, two in Australia, four in North America, and one in South America (Table S9). All 

identified Mnif studies used samples from the USA except for our study in Mozambique. The 

rural/urban status of the settings from which samples were collected could not be determined for 

all studies and were more often specified for studies conducted in low- and middle-income 

countries. We used estimates that considered samples detected below the limit of quantification 

(DNQ) as negatives when separate estimates were reported by DNQ definition.26  
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Table S9. Published validation studies of human fecal indicators HF183 and Mnif 

   human samples  

non-human 

samples    

study location setting N positive  N positive sensitivity specificity ref 

HF183           

1 Mozambique urban 14 9  27 9 64% 67% 2 

2 Bangladesh urban 5 3  20 12 60% 40% 21 

3 Bangladesh rural 5 4  20 10 80% 50% 27 

4 India rural 35 10a  60 12a 29% 80% 28 

5 Kenya rural 17 11  25 0 65% 100% 29 

6 Thailand 
 

28 25  100 19 89% 81% 30 

7 Costa Rica 
 

8 8  47 3 100% 94% 31 

8 Singapore urban 56 42  85 9 75% 89% 32 

9 Nepal 
 

10 10  44 30 100% 32% 33 

10 USA rural 4 4  109 0 100% 100% 34 

11 Japan 
 

20 20  15 0 100% 100% 35 

12 Australia 
 

32 24  359 12 72% 96% 36 

13 USA, 

Australia 

   
 184 6 

 
97% 37 

14 USA 
 

60 57a  130 10 a 95% 92% 26 

15 Peru peri-urban 30 23  71 24 77% 66% 38 

Mnif  
   

 
    

 

1 Mozambique urban 14 10  27 8 71% 70% 2 

2 USA 
 

60 36a  130 31a 60% 76% 26 

3 Indiana 
 

59 40  120 9 68% 93% 18 

4 Mississippi 
 

62 51  243 101 82% 58% 18 

a samples below the limit of quantification considered negative 

 

S10. Diagnostic accuracy 

We considered HF183 validation data from 14 studies of diagnostic sensitivity and 15 

studies of specificity (Table S7). For Mnif, we incorporated data from four validation studies. 

The number of samples ranged from 5–62 for human feces and 15–359 for non-human. Reported 

crude sensitivity ranged from 29-100% for HF183 and 60-82% for Mnif. Crude specificities 

were reported from 32–100% for HF183 and 58-93% for Mnif. 

By incorporating indicator validation data into models of human fecal contamination, we 

obtained estimates of indicator sensitivity and specificity that were partially informed by 

observations in environmental samples with unknown fecal contamination status. For this reason, 

accuracy estimates from the same model differed by sample type (main text, Table 2). We first 



 S17 

considered only validation data from our study area (Model 2), which produced slightly lower 

point estimates for HF183 sensitivity (60%) than obtained from crude calculations (64%). The 

sensitivity estimates were similar for all three sample types, with the greatest uncertainty in 

stored water (95% CI: 38-81%). The HF183 specificity estimate was similar to the crude value 

(67%) for latrine soil [66% (53-80%)] but the estimates were higher for household soil [72% 

(61-83%)] and stored water [85% (77-91%)], in which HF183 was detected less frequently. 

Sensitivity and specificity patterns for Mnif followed similar patterns. 

Meta-analytic sensitivity and specificity estimates were slightly higher than the single-

study estimates when using a single indicator (Model 3) and when combining both indicators 

(Model 4). However, the 95% CIs remained similar for all three models, suggesting the inclusion 

of additional information minimally impacted estimates of diagnostic accuracy. Model 5, which 

simultaneously considered both indicators in all sample types, provided a single set of sensitivity 

and specificity estimates for each indictor. The estimates were comparable to values observed for 

individual sample types but featured narrower 95% CIs, indicating reduced uncertainty in 

indicator performance with the inclusion of data from multiple sample types. While the estimated 

sensitivity for Mnif [71% (59-83%)] remained similar to the crude value (71%), the estimated 

specificity of both indicators and HF183 sensitivity were somewhat higher than expected from 

crude calculations. 

S11. Accuracy-adjusted effects 

We constructed a series of models to estimate sanitation intervention effects on the 

prevalence of human fecal contamination. In the first model, human-associated fecal indicators 

were used as direct proxies for human fecal contamination, equivalent to assuming 100% 

sensitivity and specificity. The estimated intervention effect, given by the DID prevalence odds 
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ratio, was less than one for both indicators in latrine soil and household soil and above one for 

HF183 in stored water (Figure S1). However, the estimates were imprecise and encompassed 

both large increases and large reductions within the 95% CIs, providing little evidence for an 

effect of the intervention on either indicator in any sample type. Incorporating local validation 

data to account for indicator accuracy (Model 2) further widened the 95% CIs, indicating 

additional uncertainty about the intervention effect on the prevalence of human fecal 

contamination. Effect estimates incorporating multiple validation datasets (Model 3) were 

largely similar to those using local validation data alone. When using HF183 and Mnif to jointly 

estimate human fecal contamination (Model 4), the DID estimates were similar to estimates for 

individual indicators. Similarly, combining observations from all three sample types produced an 

estimated intervention effect close to the null with the 95% CI encompassing both reductions and 

increases in the odds of human fecal contamination at the compound level [POR: 0.93 (95% CI: 

0.42-2.1)]. Across all model formulations, there was little evidence for an effect of the sanitation 

intervention on the prevalence of human fecal contamination. 
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Figure S1. Difference-in-difference prevalence odds ratio (POR) estimates of the sanitation 

intervention effect on human fecal contamination under five different models. Model 1 

made no correction for indicator accuracy, Model 2 used local validation data to account 

for indicator sensitivity and specificity, and Models 3, 4 and 5 used meta-analytic estimates 

of local indicator accuracy. Model 3 was fit separately by indicator and sample type, Model 

4 was fit to both indicators by sample type, and Model 5 used both indicators in all sample 

types to estimate the latent compound prevalence of human fecal contamination. All 

models were adjusted for population density, presence of animals, wealth score, 

temperature, antecedent precipitation, and sun exposure and surface wetness for soil 

samples and storage container mouth width and cover status for water samples. 

 

S12. Human fecal contamination prevalence estimates 

Posterior predictions from each of the five models were used to estimate stratum-specific 

prevalence. We fit unadjusted models that included only intercepts and the DID terms (Table 

S10) as well as adjusted models with meteorological, compound, household, and sample 

characteristics included as covariates (Table 2, main text). 
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Table S10. Estimated sensitivity, specificity, and prevalence of human fecal contamination from unadjusted models 

     prevalence estimate (95% CI)  

  sensitivity 

(95% CI) 

specificity 

(95% CI) 
 control  intervention prevalence DID 

(95% CI)  target N before after  before after 

latrine soil          
bootstrap HF183 1 1 116 0.33 (0.17, 0.50) 0.57 (0.39, 0.75)  0.43 (0.23, 0.64) 0.43 (0.26, 0.61) -0.23 (-0.60, 0.14) 
 Mnif 1 1 116 0.51 (0.35, 0.69) 0.50 (0.32, 0.68)  0.65 (0.45, 0.84) 0.36 (0.19, 0.54) -0.27 (-0.63, 0.08) 

model 1 HF183 1 1 116 0.41 (0.28, 0.54) 0.49 (0.35, 0.64)  0.40 (0.26, 0.56) 0.45 (0.30, 0.61) -0.04 (-0.22, 0.14) 
 Mnif 1 1 116 0.54 (0.41, 0.67) 0.48 (0.35, 0.62)  0.57 (0.41, 0.71) 0.42 (0.27, 0.57) -0.09 (-0.27, 0.09) 

model 2 HF183 0.59 (0.41, 0.80) 0.65 (0.52, 0.79) 116 0.41 (0.05, 0.90) 0.44 (0.05, 0.92)  0.41 (0.04, 0.91) 0.43 (0.04, 0.93) -0.01 (-0.20, 0.19) 
 Mnif 0.68 (0.50, 0.86) 0.67 (0.52, 0.82) 116 0.53 (0.11, 0.92) 0.48 (0.09, 0.91)  0.53 (0.10, 0.92) 0.44 (0.07, 0.93) -0.05 (-0.25, 0.14) 

model 3 HF183 0.65 (0.45, 0.85) 0.68 (0.55, 0.83) 116 0.39 (0.06, 0.87) 0.43 (0.06, 0.89)  0.38 (0.05, 0.88) 0.41 (0.04, 0.91) -0.01 (-0.19, 0.18) 
 Mnif 0.70 (0.55, 0.83) 0.70 (0.55, 0.84) 116 0.54 (0.17, 0.87) 0.49 (0.13, 0.88)  0.55 (0.14, 0.88) 0.44 (0.09, 0.88) -0.05 (-0.25, 0.14) 

model 4 HF183 0.64 (0.45, 0.84) 0.69 (0.55, 0.83) 
116 0.47 (0.16, 0.79) 0.46 (0.13, 0.79) 

 
0.47 (0.13, 0.81) 0.40 (0.10, 0.77) -0.06 (-0.25, 0.13)  Mnif 0.71 (0.56, 0.84) 0.69 (0.54, 0.83)  

model 5 HF183 0.72 (0.55, 0.87) 0.83 (0.76, 0.90) 
107 0.48 (0.25, 0.73) 0.49 (0.27, 0.72) 

 
0.43 (0.19, 0.70) 0.47 (0.25, 0.71) 0.04 (-0.14, 0.23)  Mnif 0.71 (0.58, 0.84) 0.79 (0.70, 0.88)  

household soil          

bootstrap HF183 1 1 176 0.17 (0.07, 0.28) 0.49 (0.35, 0.64)  0.36 (0.20, 0.52) 0.38 (0.24, 0.52) -0.30 (-0.57, -0.01) 
 Mnif 1 1 175 0.43 (0.30, 0.57) 0.25 (0.13, 0.39)  0.23 (0.09, 0.37) 0.24 (0.12, 0.38) 0.20 (-0.07, 0.46) 

model 1 HF183 1 1 176 0.27 (0.18, 0.37) 0.41 (0.30, 0.53)  0.31 (0.20, 0.44) 0.40 (0.28, 0.53) -0.05 (-0.21, 0.11) 
 Mnif 1 1 175 0.37 (0.26, 0.48) 0.29 (0.19, 0.40)  0.29 (0.18, 0.41) 0.24 (0.14, 0.35) 0.03 (-0.11, 0.17) 

model 2 HF183 0.58 (0.36, 0.80) 0.71 (0.61, 0.83) 176 0.25 (0.03, 0.78) 0.30 (0.02, 0.81)  0.26 (0.02, 0.78) 0.31 (0.02, 0.84) 0.00 (-0.18, 0.19) 
 Mnif 0.65 (0.41, 0.86) 0.75 (0.66, 0.85) 175 0.22 (0.03, 0.55) 0.18 (0.02, 0.48)  0.18 (0.02, 0.49) 0.13 (0.01, 0.43) 0.00 (-0.13, 0.13) 

model 3 HF183 0.65 (0.40, 0.85) 0.74 (0.63, 0.85) 176 0.23 (0.03, 0.64) 0.30 (0.03, 0.71)  0.23 (0.03, 0.66) 0.30 (0.02, 0.76) 0.00 (-0.18, 0.18) 
 Mnif 0.69 (0.52, 0.84) 0.77 (0.68, 0.86) 175 0.22 (0.03, 0.50) 0.17 (0.02, 0.41)  0.17 (0.02, 0.41) 0.12 (0.01, 0.34) 0.00 (-0.12, 0.13) 

model 4 HF183 0.67 (0.44, 0.86) 0.71 (0.62, 0.80) 
175 0.15 (0.02, 0.35) 0.16 (0.02, 0.39) 

 
0.13 (0.02, 0.31) 0.13 (0.01, 0.34) -0.01 (-0.12, 0.11)  Mnif 0.69 (0.52, 0.83) 0.76 (0.67, 0.85)  

model 5 HF183 0.72 (0.55, 0.87) 0.83 (0.76, 0.90) 
156 0.24 (0.09, 0.43) 0.24 (0.10, 0.42) 

 
0.20 (0.06, 0.39) 0.23 (0.08, 0.42) 0.03 (-0.11, 0.17)  Mnif 0.71 (0.58, 0.84) 0.79 (0.70, 0.88)  

stored water          

bootstrap HF183 1 1 193 0.12 (0.04, 0.22) 0.10 (0.02, 0.20)  0.22 (0.10, 0.35) 0.19 (0.09, 0.30) -0.01 (-0.21, 0.19) 

model 1 HF183 1 1 193 0.14 (0.08, 0.23) 0.12 (0.06, 0.20)  0.19 (0.11, 0.29) 0.18 (0.10, 0.28) 0.01 (-0.09, 0.11) 

model 2 HF183 0.58 (0.34, 0.80) 0.84 (0.78, 0.89) 193 0.08 (0.01, 0.23) 0.07 (0.01, 0.22)  0.08 (0.01, 0.27) 0.07 (0.01, 0.26) 0.00 (-0.08, 0.09) 

model 3 HF183 0.65 (0.40, 0.85) 0.85 (0.79, 0.90) 193 0.07 (0.01, 0.20) 0.06 (0.01, 0.19)  0.08 (0.01, 0.25) 0.07 (0.01, 0.24) 0.00 (-0.08, 0.08) 

model 5 HF183 0.72 (0.55, 0.87) 0.83 (0.76, 0.90) 176 0.08 (0.01, 0.20) 0.09 (0.01, 0.21)  0.07 (0.01, 0.18) 0.08 (0.01, 0.20) 0.01 (-0.05, 0.08) 

latent compound          

m5 HF183 0.72 (0.55, 0.87) 0.83 (0.76, 0.90) 
113 0.26 (0.08, 0.55) 0.26 (0.08, 0.55) 

 
0.22 (0.06, 0.50) 0.25 (0.07, 0.53) 0.03 (-0.11, 0.18)  Mnif 0.71 (0.58, 0.84) 0.79 (0.70, 0.88)  
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S13. Prior distributions 

For all models, we sought to select regularizing ("weakly informative") priors where 

feasible. Regularizing priors impose soft constraints on parameter values, discouraging the 

model fitting algorithm from exploring extreme values that can reasonably be assumed 

implausible a priori.25 In addition to the practical benefit of often aiding model convergence, 

particularly for complex, high-dimensional models, regularization can help improve the precision 

of estimates for parameters for which the underlying data are somewhat noisy. This also has the 

effect of shrinking estimates towards a common value—often the null, in the case of regression 

coefficients, which mildly increases the strength of the evidence necessary to demonstrate a 

probable effect but provides the advantage of reducing false positives that can arise from typical 

sampling variation.25 While setting regularizing priors is subjective in the strictest sense, one 

generally possesses sufficient information to determine a broadly plausible range of parameter 

values that arguably are more readily accepted than the assumption implicit in flat ("non-

informative") priors that the range of potential parameter values is essentially infinite. 

 For the basic DID models used to assess the intervention effect on individual fecal 

indicators in separate sample types (Table S8), we included a compound-varying intercept that 

used the brms package default positive-constrained student-t prior with 3 degrees of freedom 

(df) and scale determined from the link-transformed data.39 Censored linear regression was used 

to estimate the intervention impact on the log10 concentrations of the two E. coli assays, cEC and 

EC23S, using regularizing normal priors with standard deviation (SD) = 5 on the population-

level intercept and SD = 2 on the predictor coefficients, including the DID terms.25,39,40 We 

estimated the effect of the intervention on human-associated indicator prevalence using logistic 

regression and the prevalence odds ratio (POR) as the measure of effect. Under the logistic link, 



 S22 

priors are defined on the continuous log-odds scale but are best understood on the probability 

scale, which is more intuitive but constrained between 0 and 1 prevalence.41 As such, the 

population-level intercept and predictor coefficients were given regularizing normal priors with 

SD = 1.5 and SD = 0.5, respectively, which on the probability scale corresponded to a ~95% 

chance the population-level prevalence was between 0.05 and 0.95 and an effect of up to ±0.23 

for each predictor at a population-level prevalence of 0.5.40 This represents a substantial effect 

size on the probability scale—a reduction in absolute risk from 50% to 27%, for example—

which would be unexpected in an environmental context.23 Furthermore, as a soft constraint, 

estimates could still exceed this effect size given sufficient and sufficiently strong data in support 

of a larger effect. 

The diagnostic accuracy-corrected models of human fecal contamination prevalence 

shared the same basic structure as the human-associated indicator prevalence model described 

above. Accordingly, we set the same priors for the population-level intercept, the DID terms, and 

the covariates in the adjustment set: 

 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

𝑝𝑖 = 𝜋𝑖 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽𝑃𝑃𝑖 + 𝛽𝑇𝑇𝑖 + 𝛽𝐷𝐼𝐷𝑃𝑖 × 𝑇𝑖 + 𝑿𝑖𝜸 

𝛽0  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5) 

𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 1 

 

Model 2 introduced parameters for sensitivity (𝑆𝑒) and specificity (𝑆𝑝), which required 

priors as well. Due the modest sample sizes of the local validation analysis, particularly of 

human samples (n=14), the use of non-informative priors risks unrealistically broad sensitivity 

and specificity estimates.23,42 As we possessed prior information on the typical ranges for 𝑆𝑒 and 
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𝑆𝑝 in resource-limited settings (Table S9), we used informative 𝑏𝑒𝑡𝑎(3,2) priors as soft 

constraints, corresponding to a 95% chance they fall between 0.19 and 0.93 on the probability 

scale, with mean 0.6. 

 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

𝑝𝑖 = 𝑆𝑒 × 𝜋𝑖 + (1 − 𝑆𝑝)(1 − 𝜋𝑖)  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽𝑃𝑃𝑖 + 𝛽𝑇𝑇𝑖 + 𝛽𝐷𝐼𝐷𝑃𝑖 × 𝑇𝑖 + 𝑿𝑖𝜸 

𝑦𝑆𝑒~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑆𝑒 , 𝑆𝑒) 

 𝑦𝑆𝑝~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑆𝑝, 𝑆𝑝) 

𝑆𝑒, 𝑆𝑝 ~ 𝑏𝑒𝑡𝑎(3,2) 

𝛽0 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5); 𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 2 

  

Because our validation sample set was small and performance estimates vary widely 

between studies, we fit a third model (Model 3) featuring a meta-analysis of indicator sensitivity 

and specificity. We assumed the log-odds of the sensitivity in the 𝑘th study, 𝑆𝑒[𝑘], were normally 

distributed with mean 𝜇𝑆𝑒 and SD 𝜎𝑆𝑒, with an equivalent structure for specificity. We assigned 

𝜇𝑆𝑒  and 𝜇𝑆𝑝 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 1) priors, which provided approximately equivalent coverage on the 

probability scale as the previous beta priors in Model 2, with weakly-informative 

𝑛𝑜𝑟𝑚𝑎𝑙+(0, 0.5) [half-normal] priors on 𝜎𝑆𝑒 and 𝜎𝑆𝑝, as discussed by Gelman and Carpenter.23 
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 𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

𝑝𝑖 = 𝑆𝑒[1] × 𝜋𝑖 + (1 − 𝑆𝑝[1])(1 − 𝜋𝑖)  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽𝑃𝑃𝑖 + 𝛽𝑇𝑇𝑖 + 𝛽𝐷𝐼𝐷𝑃𝑖 × 𝑇𝑖 + 𝑿𝑖𝜸 

𝑦[𝑘]
𝑆𝑒 ~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛[𝑘]

𝑆𝑒 , 𝑆𝑒[𝑘]); 𝑦[𝑘]
𝑆𝑝~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛[𝑘]

𝑆𝑝 , 𝑆𝑝[𝑘])  

𝑙𝑜𝑔𝑖𝑡(𝑆𝑒[𝑘])~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑆𝑒 , 𝜎𝑆𝑒 );  𝑙𝑜𝑔𝑖𝑡(𝑆𝑝[𝑘])~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 𝑆𝑝, 𝜎𝑆𝑝) 

𝜇𝑆𝑒 , 𝜇 𝑆𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 1) 

 𝜎𝑆𝑒 , 𝜎𝑆𝑝~𝑛𝑜𝑟𝑚𝑎𝑙+(0, 0.5) 

𝛽0  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5);  𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 3 

  

Model 4 followed the same structure as Model 3, but incorporated two different fecal 

indicators, represented as 𝑦𝑖
[𝑎𝑠𝑠𝑎𝑦]

, with a corresponding duplication of the sensitivity and 

specificity model components. All priors remain the same as Model 3. 

 𝑦𝑖
[𝑎𝑠𝑠𝑎𝑦]

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑖
[𝑎𝑠𝑠𝑎𝑦]

) 

𝑝𝑖
[𝑎𝑠𝑠𝑎𝑦]

= 𝑆𝑒[1]
[𝑎𝑠𝑠𝑎𝑦]

× 𝜋𝑖 + (1 − 𝑆𝑝[1]
[𝑎𝑠𝑠𝑎𝑦]

) (1 − 𝜋𝑖)  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽𝑃𝑃𝑖 + 𝛽𝑇𝑇𝑖 + 𝛽𝐷𝐼𝐷𝑃𝑖 × 𝑇𝑖 + 𝑿𝑖𝜸 

𝑦[𝑘]
[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛[𝑘]

[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒,, 𝑆𝑒[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ; 𝑦[𝑘]
[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛[𝑘]

[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝,, 𝑆𝑝[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

)  

𝑙𝑜𝑔𝑖𝑡 (𝑆𝑒[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒) 

𝑙𝑜𝑔𝑖𝑡 (𝑆𝑝[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑝, 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝) 

𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 1) 

 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝~𝑛𝑜𝑟𝑚𝑎𝑙+(0, 0.5) 

𝛽0  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5);  𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 4 

  

Finally, Model 5 included multiple sample types with type-specific prevalence variables, 

𝜋𝑖
[𝑡𝑦𝑝𝑒]

, derived from sample-type specific intercepts 𝛼[𝑡𝑦𝑝𝑒] and a shared compound-varying 
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intercept 𝛼[𝑗]
𝑐𝑜𝑚𝑝

 corresponding to the 𝑗the compound that replaced the previously fixed, 

population-level intercept 𝛽0. As before, all 𝛽 and 𝛾 parameters were given normal priors with 

SD = 0.5. We assumed 𝛼[𝑗]
𝑐𝑜𝑚𝑝~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑐𝑜𝑚𝑝, 𝜎𝑐𝑜𝑚𝑝) and 𝛼[𝑡𝑦𝑝𝑒]~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑡𝑦𝑝𝑒), with 

half-normal, SD = 0.5 priors on 𝜎𝑐𝑜𝑚𝑝 and 𝜎𝑡𝑦𝑝𝑒 and the same 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1.5) prior on 𝜇𝑐𝑜𝑚𝑝 

used for the fixed intercept 𝛽0 in previous models.  

 𝑦𝑖
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑖
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

) 

𝑝𝑖
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

= 𝑆𝑒[1]
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

× 𝜋𝑖
[𝑡𝑦𝑝𝑒]

+ (1 − 𝑆𝑝[1]
[𝑎𝑠𝑠𝑎𝑦,𝑡𝑦𝑝𝑒]

) (1 − 𝜋𝑖
[𝑡𝑦𝑝𝑒]

)  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖
[𝑡𝑦𝑝𝑒]

) = 𝛼[𝑡𝑦𝑝𝑒] +  𝑿𝑖
[𝑡𝑦𝑝𝑒]

𝜸[𝑡𝑦𝑝𝑒] +  𝑙𝑜𝑔𝑖𝑡(𝜋[𝑗]
𝑐𝑜𝑚𝑝) 

𝑙𝑜𝑔𝑖𝑡(𝜋[𝑗]
𝑐𝑜𝑚𝑝) = 𝛼[𝑗]

𝑐𝑜𝑚𝑝 + 𝛽𝑃𝑃[𝑗] + 𝛽𝑇𝑇[𝑗] + 𝛽𝐷𝐼𝐷𝑃[𝑗] × 𝑇[𝑗] + 𝑿[𝑗]
𝑐𝑜𝑚𝑝𝜸𝑐𝑜𝑚𝑝  

𝑦[𝑘]
[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛[𝑘]

[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒,, 𝑆𝑒[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ; 𝑦[𝑘]
[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛[𝑘]

[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝,, 𝑆𝑝[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

)  

𝑙𝑜𝑔𝑖𝑡 (𝑆𝑒[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒) 

𝑙𝑜𝑔𝑖𝑡 (𝑆𝑝[𝑘]
[𝑎𝑠𝑠𝑎𝑦]

) ~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑝, 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝) 

𝛼[𝑗]
𝑐𝑜𝑚𝑝~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑐𝑜𝑚𝑝, 𝜎𝑐𝑜𝑚𝑝); 𝛼[𝑡𝑦𝑝𝑒]~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑡𝑦𝑝𝑒) 

𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜇 [𝑎𝑠𝑠𝑎𝑦],𝑆𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 1); 𝜇𝑐𝑜𝑚𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1.5) 

 𝜎[𝑡𝑦𝑝𝑒], 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑒 , 𝜎[𝑎𝑠𝑠𝑎𝑦],𝑆𝑝~𝑛𝑜𝑟𝑚𝑎𝑙+(0, 0.5) 

𝛽𝑃 , 𝛽𝑇 , 𝛽𝐷𝐼𝐷 , 𝜸[𝑡𝑦𝑝𝑒], 𝜸𝑐𝑜𝑚𝑝 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,0.5) 

Model 5 
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S14. Stan code 

S14.1. Model 1 

// Model 1: 

// single sample type, single target 

// no correction for sensitivity/specificity 

// no compound-varying intercepts 

 

data{ 

// sample data 

  int<lower = 0> N_samp;  // number of sample observations 

  int<lower = 0, upper = 1> y_samp[N_samp];  // sample observations 

  vector<lower = 0, upper = 1>[N_samp] phase;  // survey phase 

  vector<lower = 0, upper = 1>[N_samp] treat;  // treatment arm 

  vector<lower = 0, upper = 1>[N_samp] did;  // phase*treat interaction 

  int<lower = 0> K;  // number of predictors 

  matrix[N_samp, K] X;  // predictor values 

 

// prior predictive check? 

  int<lower = 0, upper = 1> prior_only;  // toggle on to sample priors only 

} 

 

parameters{ 

// linear model parameters 

  real b0;  // intercept 

  real bP;  // phase 

  real bT;  // treatment 

  real bD;  // DID 

  vector[K] g;  // predictor coefficients 

} 

 

model{ 

// linear model for probability of human contamination 

  vector[N_samp] p_samp = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// Likelihood 

  if(prior_only == 0){ 

    y_samp ~ binomial(1, p_samp); 

  } 

 

// linear model priors 

  b0 ~ normal(0, 1.5); 

  bD ~ normal(0, 0.5); 

  bT ~ normal(0, 0.5); 

  bP ~ normal(0, 0.5); 

  g ~ normal(0, 0.5); 

} 

 

generated quantities{ 

// posterior predictions (or prior predictions, if prior_only == 1) 

// define predicted variables 

  int<lower = 0, upper = 1> y_pred[N_samp];  // predicted sample observations 

  int<lower = 0> n_pos;  // number of predicted positives 

  real<lower = 0, upper = 1> p_samp_avg;  // mean target prevalence in samples 
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// calculate human contamination probability 

  vector[N_samp] p_samp_sim = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// predict sample observations   

  y_pred = binomial_rng(1, p_samp_sim); 

  n_pos = sum(y_pred);   

 

// summarise prevalence calculations 

  p_samp_avg = mean(p_samp_sim); 

} 
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S14.2. Model 2 

// Model 2: 

// single sample type, single target 

// diagnostic performance data from this study only 

// no compound-varying intercepts 

 

data{ 

// sample data 

  int<lower = 0> N_samp;  // number of sample observations 

  int<lower = 0, upper = 1> y_samp[N_samp];  // sample observations 

  vector<lower = 0, upper = 1>[N_samp] phase;  // survey phase 

  vector<lower = 0, upper = 1>[N_samp] treat;  // treatment arm 

  vector<lower = 0, upper = 1>[N_samp] did;  // phase*treat interaction 

  int<lower = 0> K;  // number of predictors 

  matrix[N_samp, K] X;  // predictor values 

   

// sens/spec data   

  int<lower = 0> y_spec;  // number of true negatives observed 

  int<lower = 0> n_spec;  // number of non-target samples 

  int<lower = 0> y_sens;  // number of true positives observed 

  int<lower = 0> n_sens;  // number of target samples 

   

// prior predictive check? 

  int<lower = 0, upper = 1> prior_only;  // toggle on to sample priors only 

} 

 

parameters{ 

// linear model parameters 

  real b0;  // intercept 

  real bP;  // phase 

  real bT;  // treatment 

  real bD;  // DID 

  vector[K] g;  // predictor coefficients 

 

// diagnostic performance parameters 

  real<lower=0, upper=1> spec;  // specificity 

  real<lower=0, upper=1> sens;  // sensitivity 

} 

 

model{ 

// linear model for probability of human contamination 

  vector[N_samp] p = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  vector[N_samp] p_samp = sens * p + (1 - spec) * (1 - p); 

   

// Likelihoods 

  if(prior_only == 0){ 

  // samples   

    y_samp ~ binomial(1, p_samp); 

     

  // validation studies  

    y_spec ~ binomial(n_spec, spec); 

    y_sens ~ binomial(n_sens, sens); 

  } 
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// linear model priors 

  b0 ~ normal(0, 1.5); 

  bD ~ normal(0, 0.5); 

  bT ~ normal(0, 0.5); 

  bP ~ normal(0, 0.5); 

  g ~ normal(0, 0.5); 

   

// validation priors 

  sens ~ beta(3, 2); 

  spec ~ beta(3, 2); 

} 

 

generated quantities{ 

// posterior predictions (or prior predictions, if prior_only == 1) 

// define predicted variables 

  int<lower = 0, upper = 1> y_pred[N_samp];  // predicted sample observations 

  int<lower = 0> n_pos;  // number of predicted positives 

  real<lower = 0, upper = 1> p_avg;  //  mean human contamination prevalence 

  real<lower = 0, upper = 1> p_samp_avg;  // mean target prevalence in samples 

 

// calculate human contamination probability 

  vector[N_samp] p_sim = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  vector[N_samp] p_samp_sim = sens * p_sim + (1 - spec) * (1 - p_sim); 

 

// predict sample observations   

  y_pred = binomial_rng(1, p_samp_sim); 

  n_pos = sum(y_pred); 

   

// summarise prevalence calculations 

  p_avg = mean(p_sim); 

  p_samp_avg = mean(p_samp_sim); 

} 
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S14.3. Model 3 

// Model 3: 

// single sample type, single target 

// diagnostic performance meta-analysis 

// no compound-varying intercepts 

 

data{ 

// sample data 

  int<lower = 0> N_samp;  // number of sample observations 

  int<lower = 0, upper = 1> y_samp[N_samp];  // sample observations 

  vector<lower = 0, upper = 1>[N_samp] phase;  // survey phase 

  vector<lower = 0, upper = 1>[N_samp] treat;  // treatment arm 

  vector<lower = 0, upper = 1>[N_samp] did;  // phase*treat interaction 

  int<lower = 0> K;  // number of predictors 

  matrix[N_samp, K] X;  // predictor values 

   

// sens/spec data   

  int<lower = 0> J_spec; 

  int<lower = 0> y_spec[J_spec]; 

  int<lower = 0> n_spec[J_spec]; 

  int<lower = 0> J_sens; 

  int<lower = 0> y_sens[J_sens]; 

  int<lower = 0> n_sens[J_sens]; 

   

// prior predictive check? 

  int<lower = 0, upper = 1> prior_only;  // toggle on to sample priors only 

} 

 

parameters{ 

// linear model parameters 

  real b0;  // intercept 

  real bP;  // phase 

  real bT;  // treatment 

  real bD;  // DID 

  vector[K] g;  // predictor coefficients 

 

// sens/spec meta-analysis parameters 

  real mu_logit_spec;  // mean spec on the logit scale 

  real mu_logit_sens; 

  real<lower = 0> sigma_logit_spec;  // spec SD on logit scale 

  real<lower = 0> sigma_logit_sens; 

  // non-centered parameterization of logit-transformed sens/spec 

  vector<offset = mu_logit_spec, multiplier = sigma_logit_spec>[J_spec] logit_spec; 

  vector<offset = mu_logit_sens, multiplier = sigma_logit_sens>[J_sens] logit_sens; 

} 

 

transformed parameters{ 

// recover sens/spec on probability scale 

  vector[J_spec] spec = inv_logit(logit_spec); 

  vector[J_sens] sens = inv_logit(logit_sens); 

} 

 

model{ 

// linear model for probability of human contamination 

  vector[N_samp] p = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 
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// adjust for sens/spec 

  vector[N_samp] p_samp = sens[1] * p + (1 - spec[1]) * (1 - p); 

   

// Likelihoods 

  if(prior_only == 0){ 

  // samples   

    y_samp ~ binomial(1, p_samp); 

     

  // validation studies  

    y_spec ~ binomial(n_spec, spec); 

    y_sens ~ binomial(n_sens, sens); 

  } 

 

// linear model priors 

  b0 ~ normal(0, 1.5); 

  bD ~ normal(0, 0.5); 

  bT ~ normal(0, 0.5); 

  bP ~ normal(0, 0.5); 

  g ~ normal(0, 0.5); 

   

// validation priors 

  logit_spec ~ normal(mu_logit_spec, sigma_logit_spec);  

  logit_sens ~ normal(mu_logit_sens, sigma_logit_sens); 

  sigma_logit_spec ~ normal(0, .5); 

  sigma_logit_sens ~ normal(0, .5); 

  mu_logit_spec ~ normal(.5, 1); 

  mu_logit_sens ~ normal(.5, 1); 

} 

 

generated quantities{ 

// posterior predictions (or prior predictions, if prior_only == 1) 

// define predicted variables 

  int<lower = 0, upper = 1> y_pred[N_samp];  // predicted sample observations 

  int<lower = 0> n_pos;  // number of predicted positives 

  real<lower = 0, upper = 1> p_avg;  //  mean human contamination prevalence 

  real<lower = 0, upper = 1> p_samp_avg;  // mean target prevalence in samples 

 

// calculate human contamination probability 

  vector[N_samp] p_sim = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  vector[N_samp] p_samp_sim = sens[1] * p_sim + (1 - spec[1]) * (1 - p_sim); 

 

// predict sample observations   

  y_pred = binomial_rng(1, p_samp_sim); 

  n_pos = sum(y_pred); 

   

// summarise prevalence calculations 

  p_avg = mean(p_sim); 

  p_samp_avg = mean(p_samp_sim); 

} 
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S14.4. Model 4 

// Model 4:  

// single sample type, two targets 

// diagnostic performance meta-analysis 

// no compound-varying intercepts 

 

data{ 

// sample data 

  int<lower = 0> N_samp;  // number of sample observations 

  int<lower = 0, upper = 1> y_hf[N_samp];  // HF183 observations 

  int<lower = 0, upper = 1> y_mn[N_samp];  // Mnif observations 

  vector<lower = 0, upper = 1>[N_samp] phase;  // survey phase 

  vector<lower = 0, upper = 1>[N_samp] treat;  // treatment arm 

  vector<lower = 0, upper = 1>[N_samp] did;  // phase*treat interaction 

  int<lower = 0> K;  // number of predictors 

  matrix[N_samp, K] X;  // predictor values 

   

// sens/spec data   

  int<lower = 0> J_spec_hf; 

  int<lower = 0> y_spec_hf[J_spec_hf]; 

  int<lower = 0> n_spec_hf[J_spec_hf]; 

  int<lower = 0> J_sens_hf; 

  int<lower = 0> y_sens_hf[J_sens_hf]; 

  int<lower = 0> n_sens_hf[J_sens_hf]; 

  int<lower = 0> J_spec_mn; 

  int<lower = 0> y_spec_mn[J_spec_mn]; 

  int<lower = 0> n_spec_mn[J_spec_mn]; 

  int<lower = 0> J_sens_mn; 

  int<lower = 0> y_sens_mn[J_sens_mn]; 

  int<lower = 0> n_sens_mn[J_sens_mn]; 

   

// prior predictive check? 

  int<lower = 0, upper = 1> prior_only;  // toggle on to sample priors only 

} 

 

parameters{ 

// linear model parameters 

  real b0;  // intercept 

  real bP;  // phase 

  real bT;  // treatment 

  real bD;  // DID 

  vector[K] g;  // predictor coefficients 

 

// sens/spec meta-analysis parameters 

  real mu_logit_spec_hf;  // mean spec for HF183 on the logit scale 

  real mu_logit_sens_hf; 

  real mu_logit_spec_mn; 

  real mu_logit_sens_mn; 

  real<lower = 0> sigma_logit_spec_hf;  // spec SD on logit scale 

  real<lower = 0> sigma_logit_sens_hf; 

  real<lower = 0> sigma_logit_spec_mn; 

  real<lower = 0> sigma_logit_sens_mn; 

  // non-centered parameterization of logit-transformed sens/spec for each target 

  vector<offset = mu_logit_spec_hf, multiplier = sigma_logit_spec_hf>[J_spec_hf] 

logit_spec_hf; 
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  vector<offset = mu_logit_sens_hf, multiplier = sigma_logit_sens_hf>[J_sens_hf] 

logit_sens_hf; 

  vector<offset = mu_logit_spec_mn, multiplier = sigma_logit_spec_mn>[J_spec_mn] 

logit_spec_mn; 

  vector<offset = mu_logit_sens_mn, multiplier = sigma_logit_sens_mn>[J_sens_mn] 

logit_sens_mn; 

} 

 

transformed parameters{ 

// recover sens/spec on probability scale 

  vector[J_spec_hf] spec_hf = inv_logit(logit_spec_hf); 

  vector[J_sens_hf] sens_hf = inv_logit(logit_sens_hf); 

  vector[J_spec_mn] spec_mn = inv_logit(logit_spec_mn); 

  vector[J_sens_mn] sens_mn = inv_logit(logit_sens_mn); 

} 

 

model{ 

// linear model for probability of human contamination 

  vector[N_samp] p = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  // by convention the first sens/spec element represents this current study 

  vector[N_samp] p_hf = sens_hf[1] * p + (1 - spec_hf[1]) * (1 - p); 

  vector[N_samp] p_mn = sens_mn[1] * p + (1 - spec_mn[1]) * (1 - p); 

   

// Likelihoods 

  if(prior_only == 0){ 

  // samples   

    y_hf ~ binomial(1, p_hf); 

    y_mn ~ binomial(1, p_mn); 

     

  // validation studies  

    y_spec_hf ~ binomial(n_spec_hf, spec_hf); 

    y_sens_hf ~ binomial(n_sens_hf, sens_hf); 

    y_spec_mn ~ binomial(n_spec_mn, spec_mn); 

    y_sens_mn ~ binomial(n_sens_mn, sens_mn); 

  } 

 

// linear model priors 

  b0 ~ normal(0, 1.5); 

  bD ~ normal(0, 0.5); 

  bT ~ normal(0, 0.5); 

  bP ~ normal(0, 0.5); 

  g ~ normal(0, 0.5); 

   

// validation priors 

  logit_spec_hf ~ normal(mu_logit_spec_hf, sigma_logit_spec_hf);  

  logit_sens_hf ~ normal(mu_logit_sens_hf, sigma_logit_sens_hf); 

  sigma_logit_spec_hf ~ normal(0, .5); 

  sigma_logit_sens_hf ~ normal(0, .5); 

  mu_logit_spec_hf ~ normal(.5, 1); 

  mu_logit_sens_hf ~ normal(.5, 1); 

  logit_spec_mn ~ normal(mu_logit_spec_mn, sigma_logit_spec_mn);  

  logit_sens_mn ~ normal(mu_logit_sens_mn, sigma_logit_sens_mn); 

  sigma_logit_spec_mn ~ normal(0, .5); 

  sigma_logit_sens_mn ~ normal(0, .5); 

  mu_logit_spec_mn ~ normal(.5, 1); 
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  mu_logit_sens_mn ~ normal(.5, 1); 

} 

 

generated quantities{ 

// posterior predictions (or prior predictions, if prior_only == 1) 

// define predicted variables 

  int<lower = 0, upper = 1> y_pred_hf[N_samp];  // predicted HF183 observations 

  int<lower = 0> n_pos_hf;  // number of predicted HF183 positives 

  real<lower = 0, upper = 1> p_samp_avg_hf;  // mean HF183 prevalence in samples 

  int<lower = 0, upper = 1> y_pred_mn[N_samp];  // predicted Mnif observations 

  int<lower = 0> n_pos_mn;  // number of predicted Mnif positives 

  real<lower = 0, upper = 1> p_samp_avg_mn;  // mean Mnif prevalence in samples 

  real<lower = 0, upper = 1> p_avg;  //  mean human contamination prevalence 

 

// calculate human contamination probability 

  vector[N_samp] p_sim = inv_logit(b0 + bP*phase + bT*treat + bD*did + X*g); 

 

// adjust for sens/spec 

  vector[N_samp] p_hf_sim = sens_hf[1] * p_sim + (1 - spec_hf[1]) * (1 - p_sim); 

  vector[N_samp] p_mn_sim = sens_mn[1] * p_sim + (1 - spec_mn[1]) * (1 - p_sim); 

 

// predict sample observations   

  y_pred_hf = binomial_rng(1, p_hf_sim); 

  n_pos_hf = sum(y_pred_hf); 

  y_pred_mn = binomial_rng(1, p_mn_sim); 

  n_pos_mn = sum(y_pred_mn); 

   

// summarise prevalence calculations 

  p_avg = mean(p_sim); 

  p_samp_avg_hf = mean(p_hf_sim); 

  p_samp_avg_mn = mean(p_mn_sim); 

} 
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S14.5. Model 5 

// Model 5: 

// three sample types, two targets 

// diagnostic performance meta-analysis 

// compound-varying intercept, type-varying intercept 

 

data{ 

  int<lower = 0> N_type;  // number of sample types considered 

    

// compound data 

  int<lower = 0> J_comp;  // number of unique compounds 

  int<lower = 0> N_comp;  // number of compound observations 

  int<lower = 1, upper = J_comp> comp[N_comp]; // compound index 

  int<lower = 0> K_comp;  // number of compound-level predictors 

  matrix[N_comp, K_comp] X_comp;  // compound-level predictors 

   

// hw sample data 

  int<lower = 0> N_hw;  // number of compound observations 

  int<lower = 0, upper = 1> y_hw_hf[N_hw];  // hw HF183 observations 

  // int<lower = 0, upper = 1> y_hw_mn[N_hw];  // no hw Mnif observations 

  int<lower = 1, upper = J_comp> comp_hw[N_hw]; // hw compound index 

  int<lower = 0> K_hw;  // number of hw sample-level predictors 

  matrix[N_hw, K_hw] X_hw;  // hw predictors 

 

// ds sample data  

  int<lower = 0> N_ds;  // number of compound observations 

  int<lower = 0, upper = 1> y_ds_hf[N_ds];  // ds HF183 observations 

  int<lower = 0, upper = 1> y_ds_mn[N_ds];  // ds Mnif observations 

  int<lower = 1, upper = J_comp> comp_ds[N_ds]; // ds compound index 

  int<lower = 0> K_ds;  // number of ds sample-level predictors 

  matrix[N_ds, K_ds] X_ds;  // ds predictors 

 

// ls sample data   

  int<lower = 0> N_ls;  // number of compound observations 

  int<lower = 0, upper = 1> y_ls_hf[N_ls];  // ls HF183 observations 

  int<lower = 0, upper = 1> y_ls_mn[N_ls];  // ls Mnif observations 

  int<lower = 1, upper = J_comp> comp_ls[N_ls]; // ls compound index 

  int<lower = 0> K_ls;  // number of ls sample-level predictors 

  matrix[N_ls, K_ls] X_ls;  // ls predictors 

 

// sens/spec data   

  int<lower = 0> J_spec_hf; 

  int<lower = 0> y_spec_hf[J_spec_hf]; 

  int<lower = 0> n_spec_hf[J_spec_hf]; 

  int<lower = 0> J_sens_hf; 

  int<lower = 0> y_sens_hf[J_sens_hf]; 

  int<lower = 0> n_sens_hf[J_sens_hf]; 

  int<lower = 0> J_spec_mn; 

  int<lower = 0> y_spec_mn[J_spec_mn]; 

  int<lower = 0> n_spec_mn[J_spec_mn]; 

  int<lower = 0> J_sens_mn; 

  int<lower = 0> y_sens_mn[J_sens_mn]; 

  int<lower = 0> n_sens_mn[J_sens_mn]; 

   

// prior predictive check? 
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  int<lower = 0, upper = 1> prior_only; 

} 

 

parameters{ 

// compound prevalence linear model parameters 

  vector[K_comp] b_comp; // compound-level coefficients 

  real mu_comp;  // mean of compound-varying intercept 

  real<lower = 0> sigma_comp;  // SD of compound-varying intercept 

  vector<offset = mu_comp, multiplier = sigma_comp>[J_comp] a_comp; 

 

// sample-level parameters 

  vector[K_hw] g_hw;  // hw predictor coefficients 

  vector[K_ds] g_ds;  // ds predictor coefficients 

  vector[K_ls] g_ls;  // ls predictor coefficients 

  real<lower = 0> sigma_type;  // SD of sample differences 

  vector<multiplier = sigma_type>[N_type] a_type;  // sample type-varying intercept 

   

// sens/spec meta-analysis parameters 

  real mu_logit_spec_hf; 

  real mu_logit_sens_hf; 

  real mu_logit_spec_mn; 

  real mu_logit_sens_mn; 

  real<lower = 0> sigma_logit_spec_hf; 

  real<lower = 0> sigma_logit_sens_hf; 

  real<lower = 0> sigma_logit_spec_mn; 

  real<lower = 0> sigma_logit_sens_mn; 

  vector<offset = mu_logit_spec_hf, multiplier = sigma_logit_spec_hf>[J_spec_hf] 

logit_spec_hf; 

  vector<offset = mu_logit_sens_hf, multiplier = sigma_logit_sens_hf>[J_sens_hf] 

logit_sens_hf; 

  vector<offset = mu_logit_spec_mn, multiplier = sigma_logit_spec_mn>[J_spec_mn] 

logit_spec_mn; 

  vector<offset = mu_logit_sens_mn, multiplier = sigma_logit_sens_mn>[J_sens_mn] 

logit_sens_mn; 

} 

 

transformed parameters{ 

  vector[J_spec_hf] spec_hf = inv_logit(logit_spec_hf); 

  vector[J_sens_hf] sens_hf = inv_logit(logit_sens_hf); 

  vector[J_spec_mn] spec_mn = inv_logit(logit_spec_mn); 

  vector[J_sens_mn] sens_mn = inv_logit(logit_sens_mn); 

} 

 

model{ 

// linear model for compound contamination 

  vector[N_comp] logit_p_comp = a_comp[comp] + X_comp * b_comp; 

   

// linear models for sample-type specific prevalence 

  vector[N_hw] p_hw = inv_logit(logit_p_comp[comp_hw] + a_type[1] + X_hw * g_hw); 

  vector[N_ds] p_ds = inv_logit(logit_p_comp[comp_ds] + a_type[2] + X_ds * g_ds); 

  vector[N_ls] p_ls = inv_logit(logit_p_comp[comp_ls] + a_type[3] + X_ls * g_ls);                

   

// adjust for sens/spec 

  vector[N_hw] p_hw_hf = sens_hf[1] * p_hw + (1 - spec_hf[1]) * (1 - p_hw); 

  vector[N_hw] p_hw_mn = sens_mn[1] * p_hw + (1 - spec_mn[1]) * (1 - p_hw); 

  vector[N_ds] p_ds_hf = sens_hf[1] * p_ds + (1 - spec_hf[1]) * (1 - p_ds); 

  vector[N_ds] p_ds_mn = sens_mn[1] * p_ds + (1 - spec_mn[1]) * (1 - p_ds); 
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  vector[N_ls] p_ls_hf = sens_hf[1] * p_ls + (1 - spec_hf[1]) * (1 - p_ls); 

  vector[N_ls] p_ls_mn = sens_mn[1] * p_ls + (1 - spec_mn[1]) * (1 - p_ls); 

   

// Likelihoods 

  if(prior_only == 0){ 

  // samples   

    y_hw_hf ~ binomial(1, p_hw_hf); 

    // y_hw_mn ~ binomial(1, p_hw_mn); no Mnif for HW samples 

    y_ds_hf ~ binomial(1, p_ds_hf); 

    y_ds_mn ~ binomial(1, p_ds_mn); 

    y_ls_hf ~ binomial(1, p_ls_hf); 

    y_ls_mn ~ binomial(1, p_ls_mn); 

     

  // validation studies  

    y_spec_hf ~ binomial(n_spec_hf, spec_hf); 

    y_sens_hf ~ binomial(n_sens_hf, sens_hf); 

    y_spec_mn ~ binomial(n_spec_mn, spec_mn); 

    y_sens_mn ~ binomial(n_sens_mn, sens_mn); 

  } 

 

// sample priors 

  // compound-level 

  a_comp ~ normal(mu_comp, sigma_comp); 

  mu_comp ~ normal(0, 1.5); 

  sigma_comp ~ normal(0, 0.5); 

  b_comp ~ normal(0, 0.5); 

   

  // sample-level 

  a_type ~ normal(0, sigma_type); 

  sigma_type ~ normal(0, 0.5); 

  g_hw ~ normal(0, 0.5); 

  g_ds ~ normal(0, 0.5); 

  g_ls ~ normal(0, 0.5); 

 

// validation priors 

  logit_spec_hf ~ normal(mu_logit_spec_hf, sigma_logit_spec_hf);  

  logit_sens_hf ~ normal(mu_logit_sens_hf, sigma_logit_sens_hf); 

  sigma_logit_spec_hf ~ normal(0, .5); 

  sigma_logit_sens_hf ~ normal(0, .5); 

  mu_logit_spec_hf ~ normal(.5, 1); 

  mu_logit_sens_hf ~ normal(.5, 1); 

  logit_spec_mn ~ normal(mu_logit_spec_mn, sigma_logit_spec_mn);  

  logit_sens_mn ~ normal(mu_logit_sens_mn, sigma_logit_sens_mn); 

  sigma_logit_spec_mn ~ normal(0, .5); 

  sigma_logit_sens_mn ~ normal(0, .5); 

  mu_logit_spec_mn ~ normal(.5, 1); 

  mu_logit_sens_mn ~ normal(.5, 1); 

} 

 

generated quantities{ 

// simulated sample outcome containers   

  int y_hw_hf_sim[N_hw]; 

  int y_hw_mn_sim[N_hw]; 

  int y_ds_hf_sim[N_ds]; 

  int y_ds_mn_sim[N_ds]; 

  int y_ls_hf_sim[N_ls]; 

  int y_ls_mn_sim[N_ls]; 
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  int n_pos_hw_hf; 

  int n_pos_hw_mn; 

  int n_pos_ds_hf; 

  int n_pos_ds_mn; 

  int n_pos_ls_hf; 

  int n_pos_ls_mn; 

  real<lower = 0, upper = 1> p_avg_comp; 

  real<lower = 0, upper = 1> p_avg_hw; 

  real<lower = 0, upper = 1> p_avg_ds; 

  real<lower = 0, upper = 1> p_avg_ls; 

  real<lower = 0, upper = 1> p_samp_avg_hw_hf; 

  real<lower = 0, upper = 1> p_samp_avg_hw_mn; 

  real<lower = 0, upper = 1> p_samp_avg_ds_hf; 

  real<lower = 0, upper = 1> p_samp_avg_ds_mn; 

  real<lower = 0, upper = 1> p_samp_avg_ls_hf; 

  real<lower = 0, upper = 1> p_samp_avg_ls_mn; 

   

// simulate type-specific probabilities 

  vector[N_comp] logit_p_comp_sim = a_comp[comp] + X_comp * b_comp; 

  vector[N_comp] p_comp_sim = inv_logit(logit_p_comp_sim); 

  vector[N_hw] p_hw_sim = inv_logit(logit_p_comp_sim[comp_hw] + a_type[1] + X_hw * 

g_hw); 

  vector[N_ds] p_ds_sim = inv_logit(logit_p_comp_sim[comp_ds] + a_type[2] + X_ds * 

g_ds); 

  vector[N_ls] p_ls_sim = inv_logit(logit_p_comp_sim[comp_ls] + a_type[3] + X_ls * 

g_ls);                              

// adjust simulations for sens/spec 

  vector[N_hw] p_hw_hf_sim = sens_hf[1] * p_hw_sim + (1 - spec_hf[1]) * (1 - 

p_hw_sim); 

  vector[N_hw] p_hw_mn_sim = sens_mn[1] * p_hw_sim + (1 - spec_mn[1]) * (1 - 

p_hw_sim); 

  vector[N_ds] p_ds_hf_sim = sens_hf[1] * p_ds_sim + (1 - spec_hf[1]) * (1 - 

p_ds_sim); 

  vector[N_ds] p_ds_mn_sim = sens_mn[1] * p_ds_sim + (1 - spec_mn[1]) * (1 - 

p_ds_sim); 

  vector[N_ls] p_ls_hf_sim = sens_hf[1] * p_ls_sim + (1 - spec_hf[1]) * (1 - 

p_ls_sim); 

  vector[N_ls] p_ls_mn_sim = sens_mn[1] * p_ls_sim + (1 - spec_mn[1]) * (1 - 

p_ls_sim); 

   

// simulate sample observations 

  y_hw_hf_sim = binomial_rng(1, p_hw_hf_sim); 

  y_hw_mn_sim = binomial_rng(1, p_hw_mn_sim); 

  y_ds_hf_sim = binomial_rng(1, p_ds_hf_sim); 

  y_ds_mn_sim = binomial_rng(1, p_ds_mn_sim); 

  y_ls_hf_sim = binomial_rng(1, p_ls_hf_sim); 

  y_ls_mn_sim = binomial_rng(1, p_ls_mn_sim); 

   

// summarize simulated samples 

  n_pos_hw_hf = sum(y_hw_hf_sim); 

  n_pos_hw_mn = sum(y_hw_mn_sim); 

  n_pos_ds_hf = sum(y_ds_hf_sim); 

  n_pos_ds_mn = sum(y_ds_mn_sim); 

  n_pos_ls_hf = sum(y_ls_hf_sim); 

  n_pos_ls_mn = sum(y_ls_mn_sim); 

   

// mean prevalence predictions 
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  p_avg_comp = mean(p_comp_sim); 

  p_avg_hw = mean(p_hw_sim); 

  p_avg_ds = mean(p_ds_sim); 

  p_avg_ls = mean(p_ls_sim); 

  p_samp_avg_hw_hf = mean(p_hw_hf_sim); 

  p_samp_avg_hw_mn = mean(p_hw_mn_sim); 

  p_samp_avg_ds_hf = mean(p_ds_hf_sim); 

  p_samp_avg_ds_mn = mean(p_ds_mn_sim); 

  p_samp_avg_ls_hf = mean(p_ls_hf_sim); 

  p_samp_avg_ls_mn = mean(p_ls_mn_sim); 

} 
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