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Malnutrition, including both undernutrition and obesity, is a significant problem in low- and

middle-income countries (LMICs). In order to study malnutrition and develop effective

intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual,

household, and community levels. In a multinational research project supported by

the Bill & Melinda Gates Foundation, we have been using a wearable technology to

conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes

multiple diet-related activities in urban and rural families, including food sources (e.g.,

shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and

consumption (e.g., portion size and nutrition analysis). Our wearable device (“eButton”

worn on the chest) acquires real-life images automatically during wake hours at preset

time intervals. The recorded images, in amounts of tens of thousands per day, are

post-processed to obtain the information of interest. Although we expect future Artificial

Intelligence (AI) technology to extract the information automatically, at present we utilize

AI to separate the acquired images into two binary classes: images with (Class 1) and

without (Class 0) edible items. As a result, researchers need only to study Class-1

images, reducing their workload significantly. In this paper, we present a composite

machine learning method to perform this classification, meeting the specific challenges

of high complexity and diversity in the real-world LMIC data. Our method consists of

a deep neural network (DNN) and a shallow learning network (SLN) connected by a

novel probabilistic network interface layer. After presenting the details of our method, an

image dataset acquired from Ghana is utilized to train and evaluate the machine learning
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system. Our comparative experiment indicates that the new composite method performs

better than the conventional deep learning method assessed by integrated measures

of sensitivity, specificity, and burden index, as indicated by the Receiver Operating

Characteristic (ROC) curve.

Keywords: egocentric image, wearable device, technology-based dietary assessment, low- and middle-income

country, artificial intelligence

INTRODUCTION

More than one-third of low- and middle-income countries
(LMICs) face the double burden of malnutrition: undernutrition
and obesity, particularly in sub-Saharan Africa, South and East
Asia, and Pacific regions (Hawkes et al., 2020; Nugent et al., 2020;
Popkin et al., 2020;Wells et al., 2020). The impact of malnutrition
includes impaired childhood development, overweight
and obesity, and increased risk of chronic diseases. Since
malnutrition leads to low productivity, reduced or lost wages,
and higher medical expenses, nutrition interventions have been
recommended to tackle malnutrition from multiple perspectives
in these countries. To conduct nutrition interventions effectively,

it is desirable to develop a tool to monitor the nutritional status
and to evaluate the impact of interventions at the individual,

household, and community levels. However, commonly
used dietary assessment methods, such as 24-h recall and
food frequency questionnaire, are labor-intensive and highly
subjective. These approaches are based on participants’ memory
and ability to measure food weight/volume and are not suitable
for children and adults with low literacy in LMICs (Kristal et al.,
1997; Baxter et al., 2008; Sharman et al., 2016). In addition,
numerous reports indicate that these methods are biased in
different types of food intake (Sharman et al., 2016; Tugault-

Lafleur et al., 2017); moreover, completing these assessments can
be burdensome for the individual.

Recently, sensor-based dietary monitoring approaches have
been used to conduct objective dietary assessment (Hassannejad
et al., 2017; Doulah et al., 2019; Imtiaz et al., 2019; Bell et al.,
2020). Inertial sensors, proximity sensors, and piezoelectric
sensors have been used to monitor body motion, such as
arm gestures during eating and chewing/swallowing (Zhang
et al., 2009; Li et al., 2013; Thomaz et al., 2017). Microphones
have also been used to detect chewing or swallowing sounds
(Sazonov et al., 2008; Fontana and Sazonov, 2013; Fukuike et al.,
2015; Papapanagiotou et al., 2017). These wearable sensors can
measure certain variables related to eating behavior, such as
eating episodes and chewing frequencies, but identifying non-
eating activities (e.g., talking, smoking) and excluding them from
further analysis have been a challenging problem. In addition,
only limited food properties (e.g., chewing difficulty) can be
assessed from the data recorded by these sensors since it is
almost impossible to know the specific food being consumed.
In another approach, smart phones or wearable cameras have
been used to take pictures of food with or without manual
control (Vu et al., 2017; Min et al., 2018; Doulah et al.,
2019; Bell et al., 2020). The recorded images contain rich

information about food, such as its contents and the time of
consumption. These images can also be used to estimate food
volume computationally if certain reference information (e.g.,
a checkerboard card) is present (Thompson and Subar, 2001;
Boushey et al., 2009). However, the method using a smartphone
relies on the user’s memory and motivation to take pictures.
In contrast, a wearable camera can record the entire process
of food-related behaviors continuously. Information about the
eating environment (e.g., home, restaurant, family eating, social
gathering etc.) can also be recorded. Besides dietary intake, food
sources (e.g., harvesting and gathering), food preservation and
storage, and food preparation are also important components to
consider in determining the targets of a nutrition intervention.
Wearable cameras become very useful in these cases because of
their unique functionality in conducting a dietary assessment
in multiple perspectives. Despite this attractive feature, there
exists a significant problem in processing image data produced
by this dietary assessment method. A wearable device acquires
an image sequence at a predefined rate (e.g., taking one image
every 2 s). As a result, tens of thousands of images must
be reviewed for each day of assessment. Although recently
developed Artificial Intelligent (AI) technology will eventually
scan the data and extract the desired information automatically,
at present AI has not yet been mature enough to understand
all food-related activities, especially those in LMICs. As an
intermediate solution, we use AI to perform the first step
in automatically quantifying dietary intake from images: to
classify field acquired image data into binary categories: those
that contain food (Class 1) and those do not (Class 0). Once
classified, researchers will need only to review the food related
images in Class 1. This is a major advance since it saves
tremendous effort as eating events are usually a small portion of
daily events.

Food detection from images has been investigated. Traditional
image features, including difference of Gaussian (DoG) and
bag-of-words, have been used to train a Support Vector
Machine (SVM) classifier for food detection (Kitamura and
Aizawa, 2009; Farinella et al., 2015). With the advance of AI
technology, deep neural networks (DNNs) have been utilized
to detect and recognize food from images with improved
performance. For example, GoogLeNet and other forms of
convolutional neural networks (CNNs) have been applied to
food detection (Kagaya et al., 2014; Ragusa et al., 2016). Hossain
et al. proposed a novel CNN which can be implemented
on mobile devices for real-time application (Hossain et al.,
2020). Our team also developed an AI-based method to
classify images into food and non-food classes automatically
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(Jia et al., 2019). However, these existing algorithms are trained
using data acquired in the Western world, where people’s
dietary behaviors and food-related environments (e.g., food
sources and preparation procedures) are very different from
those in LMICs, as the example images shown in Figure 1

which were acquired in Ghana, Africa. Our evaluation of
existing algorithms indicated that they delivered much lower
performance due to the higher complexity and diversity in real-
world LMIC images.

To meet this challenge, we propose a composite classification
architecture with two networks connected by a probabilistic

network interface. The first network is a deep neural network
which utilizes a large-scale CNN to “understand” each field-
acquired image and produce a set of textual tags that describe
the image. CNN was chosen among the available deep neural
networks because of its exceptional performance in learning
complex features in images (Krizhevsky et al., 2012; Farabet
et al., 2013; Karpathy and Li, 2015; LeCun et al., 2015;
Johnson et al., 2016). The second network is a shallow learning
network connected to the first network through a probabilistic
network interface, which forms a feature vector by calculating
conditional probabilistic measures of food presence from the

FIGURE 1 | (A) Four food-related images, (B) four non-food related images.

Frontiers in Artificial Intelligence | www.frontiersin.org 3 April 2021 | Volume 4 | Article 644712

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Chen et al. Food/Non-food Classification of Egocentric Images

FIGURE 2 | Proposed composite machine learning architecture, which includes a deep neural network (DNN) developed by Clarifai, a probabilistic network interface,

and a shallow learning network (SLN).

tags. The shallow learning network then adopts an SVM to
classify feature vectors into either food-related or non-food-
related class.

The rest of the paper is organized as follows. We describe
our food image classification method in section Methods. Our
experimental results are presented in section Experimental
Results. In sections Discussion and Conclusion, we discuss and
conclude our work.

METHODS

We propose a composite machine learning architecture that

includes a deep neural network (DNN), a probabilistic network
interface layer, and a shallow learning network (SLN), as shown

in Figure 2. The DNN and SLN are trained separately using
different datasets. Specifically, an advanced DNN developed by

Clarifai (New York, NY) was adopted. This DNN consists of a
large-scale convolutional neural network for annotating images
(Zeiler and Fergus, 2014; Clarifai Inc., 2020). The network is
trained using an extremely large set of generic images available in
the public domain. Therefore, utilizing this well-trained general-
purpose DNN solved our problem of labeling and training
using a large image set. For each input image, the Clarifai
DNN outputs a list of annotation tags (up to 11,000 items)
with associated likelihood values. These textual tags, which are
mostly nouns but occasionally adjectives in the English language,
provide explanations of the input mage. In our approach,
the complex machine learning from generic image contents is
converted to a set of linguistic descriptors which explain our
field-acquired images.

The probabilistic network interface provides a seamless link
between the DNN and the SLN. The input of this interface is a
list of selected textual tags and their likelihood values produced
by the DNN, and its output is a vector of conditional probabilistic
measures quantifying the food-prediction power of each tag. This
feature vector is then passed on to the SLN, which can be selected
from a number of high-performance classifiers, such as the SVM

classifier. The operation and mechanism of the probabilistic
network interface layer and the SLN structure are explained in
detail as follows.

The construction of the probabilistic network interface layer
is described as follows. Given an image as the input, the
DNN outputs a list of annotation tags in the form of {Tag
1, Tag 2, · · · , Tag M} with corresponding likelihood values
{v1, v2, . . . , vM}, each representing the confidence for a tag. The
likelihood value vi (i = 1, . . . ,M) is defined as the probability for
Tag i to be a correct description of the given image: vi ≡ P(Ti =

1), where Ti is a binary random variable which equals 1 when
Tag i is correctly used to describe the image. The definitions of
vi and Ti also imply P (Ti = 0) = 1 − vi. The vi values are fed
to the probabilistic network interface, which calculates the food-
prediction power Pi of Tag i. Here the food-prediction power Pi
indicates the possibility that the food is predicted to be present
in the given input image only considering Tag i. According to the
total probability formula, we have

Pi = P(Food,Ti = 1)+ P(Food,Ti = 0) (1)

where P(Food,Ti = 1) denotes the joint probability of (i) that the
given image being predicted (only using Tag i) as having “Food”
in it and (ii) Tag i being a correct description of the given image,
and similarly P(Food,Ti = 0) denotes the joint probability when
Ti = 0. Using the definition of conditional probability, Equation
(1) can be further expanded as

Pi = P
(

Food
∣

∣ Ti = 1)P(Ti = 1)+ P
(

Food
∣

∣ Ti = 0)P(Ti = 0)

= P
(

Food
∣

∣ Ti = 1) vi + P
(

Food
∣

∣ Ti = 0)(1− vi) (2)

where P
(

Food | Ti = 1
)

represents the probability for a
randomly chosen image to have food in it if the image can
be correctly annotated with Tag i, and P

(

Food | Ti = 0
)

the
probability for the image to have food in it if the image
cannot be described by Tag i. Since P

(

Food | Ti = 1
)

and
P

(

Food | Ti = 0
)

could hardly be calculated directly, we
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FIGURE 3 | Histogram of the tags representing the occurrence frequency of each tag. The tags on the left side of the vertical line were used to construct the feature

vector.

estimate them from a training dataset of the field-acquired
images in which each image is labeled as “Food” or “Non-
food.” Then P

(

Food | Ti = 1
)

can be approximated by the
ratio between (i) the number of images labeled as “Food” and
annotated with Tag i and (ii) all the images annotated with Tag
i, while P

(

Food | Ti = 0
)

can be calculated accordingly in a
similar manner.

The values of food-prediction powers {P1, P2, . . . , PM} of the
selected tags are then fed to the SLN as a feature vector. Based on
these features, an SVM with a polynomial kernel is developed to
classify the feature vector and thus the input image into one of
the two classes: “Food” or “Non-food.” The output of the SVM is
the final classification result of the whole learning machine. Note
that the results with the SVM will also be compared with those
using linear discriminant analysis (LDA) as the SLN. LDA can
find the optimal linear combination of features to distinguish two
classes, but SVM further supports learning of non-linear models
with robust performance.

In practice, the number of tags produced by the DNN can
be as large as 11,000, resulting in a very high feature dimension
for the SLN. Considering the cost and time to acquire and
label large image dataset in our field study, the size of training
dataset must be limited. Thus, the number of tags, i.e., the
dimension of the feature vector, must be decreased to avoid
overfitting. In our experiment, the number of tags for each
image is limited by Clarifai to 200, but when all the tags in our
training set are combined, a total of more than 2,000 tags can be
obtained (see Figure 3). This is still a large dimension compared
to the size of the training dataset, usually of some thousands
of images. So only the most-frequently appearing tags, which
account for 50% of the occurrences of all tags, were used in
the experiment.

EXPERIMENTAL RESULTS

Data Acquisition and Labeling
A multinational research team conducted a field study in
Ghana to measure food and nutrient intake of local residents
using multiple innovative technologies, including eButton, a
wearable device developed in our laboratory (Sun et al.,
2015; Jobarteh et al., 2020). This device is equipped with
a wide-angle camera worn on the participant’s chest using
a pin or a lanyard. The camera is tilted downwards in an
appropriate angle to take images of food and other food-
related objects and activities. In this particular dietary study,
the eButton was configured to record approximately 900 images
an hour. All the images were saved in the microSD card inside
the device and uploaded to a computer or cloud server at
the end of each day. Households comprising one or more
children qualified for this study. Informed consent was obtained
from one of the adults in each household. This experiment
used data from nine participants living in a Ghanaian rural
community. Each participant wore the eButton for 2 days during
waking hours.

The recorded images were reviewed and labeled (“Class 1” or
“Class 0,” i.e., “Food” or “Non-food”) manually by researchers
as the ground truth. Images containing any food-related
information, such as food shopping, gathering and harvesting,
food storage and preservation, cooking, and food preparation
and consumption were all labeled as food-related images.

Experimental Procedure and Results
First, an image dataset was constructed containing 59,448
images, in which 8,243 were food images and 51,205 were
non-food images. Second, 200 tags and their likelihood values

Frontiers in Artificial Intelligence | www.frontiersin.org 5 April 2021 | Volume 4 | Article 644712

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Chen et al. Food/Non-food Classification of Egocentric Images

were generated for each image using the DNN (Figure 2). For
example, a list of tag and likelihood pairs {(“people”,0.997),
(“woman”,0.966), (“adult”,0.956), (“food”, 0.942), . . . } was
generated for the upper left image in Figure 1A. Third, the
available images were randomly divided into two datasets, a
training set containing 75% of all images and a test set containing
the remaining images. Then, in the training set, the number
of non-food images was reduced (by randomly removing non-
food images) to the same number of food images in order to
balance the degree of training for the two classes. Next, the feature
vectors of conditional probabilistic measures, i.e., outputs of the
probabilistic network interface (Figure 2), were calculated using
Equation (2) for all training images to train the SLN (here an
SVM classifier). Last, the testing images were used to evaluate the
performance of the proposed method.

In addition to the commonly used performance measures,
such as True Positive (TP), True Negative (TN), False Positive
(FP), False Negative (FN), Sensitivity, and Specificity, we defined
a burden index to represent the ratio between the total number of
predicted positive images (sum of true positive and false positive)
and the total number of images. The burden index, denoted by
B, is a measure of human workload (i.e., B = 0% means “fully
automatic” and B = 100% means “fully manual”), indicating the
percentage of images that need to be reviewed and annotated
manually by researchers after the automatic processing.

We also used the DNN alone (without the SLN structure) for
food detection and classified each image as food or non-food
image by identifying whether the likelihood value of “food”–an
explicit tag produced by the CNN model of Clarifai–was larger
than a pre-defined threshold. This threshold was a parameter
empirically chosen as the borderline value separating food and
non-food images. For example, when the threshold was set to
0.7, the input image was classified as a food-related image if
the likelihood value of “food” was larger than 0.7. Although a
higher sensitivity could have been achieved if a smaller threshold
was chosen, the burden index increased rapidly, diminishing the
benefits of using automatic classification. As shown in Table 1,
our “DNN + SLN” classifier performed better in terms of the
overall measures of sensitivity, specificity, and burden index.

In our previous work (Jia et al., 2019), we studied the
classification of eButton images acquired in the United States. In
that study, we calculated the total number of food-related tags in

each image and defined it as the “evidence value.” If this value
was higher than a threshold k, the input was classified as a food
image. For comparison, we also included the results using our
method from Jia et al. (2019) (referred to as “previous algorithm”)
in Table 1. It can be seen that the specificity values are much
lower than the new method. It demonstrates that our previous
algorithm, which delivered acceptable performance for Western-
world images, does not work well on the images from LMICs,
mainly because of the considerable differences in food sources
and preparation/cooking/eating environments.

As another comparison, the linear discriminant analysis
(LDA) method was used in the SLN (replacing the SVM)
and applied to the same dataset. In order to map the output
of classifier to a binary decision (“Food” or “Non-food”), a
threshold must be used. By changing the threshold, a Receiver
Operating Characteristic (ROC) curve was obtained (Figure 4).
Note that an ROC curve plots Sensitivity vs. (1− Specificity)
at different classification thresholds. It can be observed that the
SVM classifier provides the best performance because the red star

FIGURE 4 | ROC curve of linear discriminative analysis: The blue curve and

the red star, respectively, represent the results of the LDA and the SVM

classifier. These results indicate that the SVM classifier performs better than

the LDA because the red star at (0.18, 0.85) is closer to the ideal point (0, 1).

TABLE 1 | Comparison of classification results using different approaches.

Method TP FN TN FP Sensitivity* Specificity* Burden index B* (%)

DNN + SLN 1,750 311 10,545 2,256 0.85 0.82 27.0%

DNN (Clarifai, threshold = 0.7) 1,296 765 10,400 2,401 0.63 0.81 24.9%

DNN (Clarifai, threshold = 0.6) 1,474 587 9,281 3,520 0.72 0.73 33.6%

DNN (Clarifai, threshold = 0.5) 1,630 431 7,929 4,872 0.79 0.62 43.7%

DNN (Clarifai, threshold = 0.4) 1,756 305 6,491 6,310 0.85 0.51 54.3%

Previous algorithm (k = 2) 1,854 207 885 11,916 0.90 0.07 92.7%

Previous algorithm (k = 3) 1,469 592 2,751 10,050 0.71 0.21 77.5%

Previous algorithm (k = 4) 955 1,106 5,456 7,345 0.46 0.43 55.8%

*Sensitivity = TP
TP+FN , Specificity =

TN
TN+FP , B = TP+FP

TP+TN+FN+ FP *100%.
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TABLE 2 | Averaged performances in five random trials (mean ± standard deviation).

Method Sensitivity Specificity Burden index B(%)

DNN + SLN 0.856 ± 0.014 0.831 ± 0.005 26.3% ± 0.4%

DNN (Clarifai, threshold = 0.7) 0.637 ± 0.007 0.819 ± 0.004 24.4% ± 0.3%

DNN (Clarifai, threshold = 0.6) 0.723 ± 0.008 0.730 ± 0.003 33.2% ± 0.3%

DNN (Clarifai, threshold = 0.5) 0.798 ± 0.007 0.625 ± 0.003 43.3% ± 0.2%

DNN (Clarifai, threshold = 0.4) 0.858 ± 0.006 0.514 ± 0.003 53.8% ± 0.3%

at (0.18, 0.85) is closest to the ideal point (0, 1) which represents
100% sensitivity and 100% specificity.

To further verify the robustness of our algorithm constrained
by limited availability of data, we repeated the training and
testing processes five times randomly using the same set of
input data. In each trial, the system was trained (starting from
scratch) utilizing randomly assigned images from the dataset, and
then tested using the remaining data. After the five trials, the
sensitivity and specificity values were averaged with the standard
deviation values calculated. The results of the new DNN + SLN
method and the DNN onlymethod with four choices of threshold
values are shown in Table 2. It can be observed that all standard
deviations are reasonably small, indicating the robustness of our
experimental results.

DISCUSSION

Detecting food from field-acquired egocentric images in LMICs
is a very challenging problem due to complexity and diversity
of image contents. Due to the differences in culture and
socioeconomical infrastructure between the Western world
and LMICs, there are significant differences in food sources
and preparation/cooking/eating environments. Therefore, image
analysis methods developed for the Western world often fail in
processing LMIC images. In many cases, the scenes with and
without food are quite similar since food often covers only a very
small portion of the whole image, as exemplified by the lower
right image in Figures 1A and 5A. In images containing activities
of food shopping and harvest/collection (e.g., lower left image
in Figures 1A and 5A), small edible items are easy to miss even
for humans. Image rotation (see Figure 5B) was common due to
variations in body orientation/movement while the participant
was performing various activities, such as childcare or serving
food for family members. In addition, indoor illumination is
often a very significant problem in LMICs, especially in the
evenings, which results in dark and blurry images with poor
quality. These practical issues increase the difficulty of the food
detection problem. Figure 5 illustrates eight images misclassified
by our algorithm.

A popular approach to detect or recognize objects from
images is to use advanced convolutional neural networks, such
as ALexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al.,
2015), and ResNet (He et al., 2016). These networks have
extraordinary abilities to classify images. Almost concurrently as
these networks were developed, another class of networks, such
as R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015),

and YOLO (Redmon et al., 2015) emerged, capable of not only
classifying but also detecting objects by finding a bounding box
around each object. Although these two classes of networks are
excellent tools to solve our food detection problem, they all
require training by a large number of images, and the number
increases proportionally to the number of objects. This imposes a
high constraint because human food includes tens of thousands
(if not more) forms, and the images required for network
training could be astronomical. In this paper, we solve the food
detection problem by developing a composite machine learning
approach built upon two advanced concepts. First, we use the
concept of semantic integration (Noy, 2004; Mountantonakis
and Tzitzikas, 2019). A pre-trained CNN (Clarifai) produces
individual textual tags. The set of tags forms linguistic descriptors
of the input image as a whole, instead of individual objects.
As a result, diet related activities are described by not only
individual edible items, but also a number of related non-edible
items such as tables, stools, cookware, utensils and even the
gender of humans. Second, we utilize the concept of transfer
learning, which solves one problem and applies the knowledge
to a different but related problem (Yosinski et al., 2014). We
implement the transfer learning concept by developing a novel
probabilistic network interface followed by a shallow learning
network (SLN). The input to the interface is the output of a
DNN which was already trained using images in the Western
world with significant differences from those in LIMCs. But the
knowledge of the DNN is transferred to the LIMC images by
the subsequent network structure which uses the set of linguistic
descriptors to both confirm and predict edible items in the input
image in a statistical sense (Equations 1, 2). The two concepts
implemented by our approach greatly improved deep learning
performance with limited input data. We believe that our new
network structure provides the AI research community with a
new tool for not only detecting edible items in images, but also
solving a class of practical problems where training data are
limited. We also believe that the proposed machine learning
approach can be improved further by exploiting more semantic
information in the input image, which we are still working on.

CONCLUSION

We have proposed a composite machine learning approach to
detect food-related images from large amounts of egocentric
images acquired from LMICs. Our composite approach consists
of two inter-connected learning networks: 1) a well-trained
large-scale DNN that produces a set of textual tags of the
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FIGURE 5 | Examples of: (A) food images misclassified as non-food images; (B) non-food images misclassified as food images.

input image, and 2) a SLN with a probabilistic network
interface layer to integrate the information provided by the
tags to classify the input image. Our comparative experiments

with challenging real-world images acquired from Africa have
produced significantly greater improved performance than the
conventional approaches.
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