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the 65 Trial
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Personalizing treatment recommendations or guidelines requires evidence about the heterogeneity of treatment effects
(HTE). Machine-learning (ML) approaches can explore HTE by considering many covariates, including complex
interactions between them. Causal ML approaches can avoid overfitting, which arises when the same dataset is used
to select covariate by treatment interaction terms as to make inferences and reduce reliance on the correct specifica-
tion of fixed parametric models. We investigate causal forests (CF), a ML method based on modified decision trees
that can estimate subgroup- and individual-level treatment effects, without requiring correct prespecification of the
effect model. We consider CF alongside parametric approaches for estimating HTE, within the 65 Trial, which evalu-
ates the effect of a permissive hypotension strategy versus usual care on 90-d mortality for critically ill patients aged
65 y or older with vasodilatory hypotension. Here, the CF approach provides similar estimates of treatment effective-
ness for prespecified and post hoc subgroups to the parametric approach, and the results of a test for overall HTE
show weak evidence of heterogeneity. The CF estimates of individual-level treatment effects, the expected effects of
treatment for individuals in subpopulations defined by their covariates, suggest that the permissive hypotension strat-
egy is expected to reduce 90-d mortality for 98.7% of patients but with 95% confidence intervals that include zero
for 71.6% of patients. A ML approach is then used to assess the patient characteristics associated with these
individual-level effects, and to help target future research that can identify those patient subgroups for whom the
intervention is most effective.

Highlights

� This article examines a causal machine-learning approach, causal forests (CF), for exploring the
heterogeneity of treatment effects, without prespecifying a specific functional form.

� The CF approach is considered in the reanalysis of the 65 Trial and was found to provide similar estimates
of subgroup effects to using a fixed parametric model.

� The CF approach also provides estimates of individual-level treatment effects that suggest that for most
patients in the 65 Trial, the intervention is expected to reduce 90-d mortality but with wide levels of
statistical uncertainty.

� The study illustrates how individual-level treatment effect estimates can be analyzed to generate hypotheses
for further research about those patients who are likely to benefit most from an intervention.
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Introduction

Personalized, stratified, or precision medicine aims to
provide the right treatment to the right patients at the
right time,1,2 which requires reliable evidence on how
effectiveness, harms, and costs of alternative treatments
differ across patient subgroups, a concept known as het-
erogeneity of treatment effects (HTEs).3 Conceptual fra-
meworks have been proposed for recognizing HTEs,4–6

within randomized controlled trials (RCTs)7,8 and obser-
vational studies,9,10 but their implementation tends to
rely on fixed parametric models, which raises important
methodological challenges.3 First, these approaches con-
sider a few ‘‘one-at-a-time’’ prespecified patient sub-
groups rather than combinations of subgroup
variables.11–14 Second, fixed parametric models are
prone to model misspecification and more flexible mod-
els risk ‘‘overfitting’’ to the data at hand. Overfitting can
also occur if the same data set is used to select covariate
by treatment interaction terms and to make inferences,
leading to the estimation of spurious subgroup effects.15

While prespecifying subgroups mitigates this risk, it lim-
its what we can learn from the available data at hand.

Causal machine-learning (ML) approaches have the
potential to address these problems in estimating HTEs.
Athey and Imbens16 and Wager and Athey17 have
extended classification and regression tree (CART) and
random forest algorithms to HTE functions. These non-
parametric methods can predict HTEs according to
observable characteristics by searching over high-

dimensional functions of covariates rather than a few
prespecified subgroups. A causal tree approach recur-
sively splits the sample to minimize the variability of
HTEs within groups defined by the split, and to maxi-
mize their variability across groups16 but can be ineffi-
cient, in the sense that it is not clear which is the best
single tree to use. Causal forests (CFs) are ensembles of
causal trees and can increase efficiency (reduce variance)
by repeatedly estimating causal trees using random sub-
sets of the data, and averaging the predictions to obtain
an overall predicted outcome for each individual under
each treatment.17 These individual-level effects can be
aggregated to generate hypotheses for subgroup effects.
CFs, like causal trees, avoid overfitting by using honest
estimation,16 whereby an observation is either used to
determine the splits, or to estimate the effects, but not
both.

CF has several potential advantages: it incorporates
nonlinear relationships between variables, variable selec-
tion, uses honest estimation to ensure valid inference,
and, unlike some other ML methods (such as random
forests), it is specifically designed to estimate causal
effects.18 An alternative approach to exploring HTE is to
apply more flexible ‘‘classical’’ regression models, for
instance, by specifying a rich set of interactions between
the covariates and the treatment, including splines, and
then estimating individual-level treatment effects by con-
trasting the predicted potential outcomes for each person
under each treatment. However, this approach is prone
to model misspecification with respect to the selection of
interaction terms and how splines are included in the
model.19 Regularization approaches (e.g., least absolute
shrinkage and selection operator [LASSO]20) could be
used to remove irrelevant interactions, but the subse-
quent inference must account for this.21 Although honest
estimation (sample splitting) could be also used for fixed
parametric models, whereby part of the data are used in
model development and the remaining data are used to
fit the model, parametric model specifications are chosen
in practice according to within-sample performance (e.g.,
adjusted R2 or Akaike information criterion). Moreover,
where the number of parameters to be fitted is larger
than the number of observations, regularization (e.g.,
LASSO) would be required.

Department of Health Services Research and Policy, London School of

Hygiene & Tropical Medicine, London, UK (ZS, RG, SO); Department

of Medical Statistics, London School of Hygiene & Tropical Medicine,

London, UK (KD-O); Clinical Trials Unit, Intensive Care National

Audit & Research Centre (ICNARC), London, UK (PM); Université
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Recent articles have applied ML approaches to RCTs,
recognizing the importance of avoiding overfitting and
maintaining valid hypothesis testing.22 However, limited
research has critically examined ML approaches for esti-
mating subgroup- and individual-level treatment effects
in comparative effectiveness studies that intend to inform
clinical decision making and raise hypotheses for future
research. The aim of this article is to examine a causal
ML approach (CF) for estimating subgroup and
individual-level effects and contrast it with fixed para-
metric models as well as to generate hypotheses about
subgroups that can be tested in future research. We con-
sider the methods in reanalyzing a multicenter RCT, the
65 Trial.23 The article proceeds as follows: in the next
section, we introduce the case study, and the section after
that provides an overview of the ML methods used, and
their implementation in the 65 Trial. The ‘‘Discussion’’
section details how the findings extend the literature and
outlines future research priorities.

Case Study: The 65 Trial

The 65 trial was a pragmatic, multicenter, parallel-group
RCT that aimed to assess the effectiveness of reducing
vasopressor exposure through permissive hypotension
versus usual vasopressor exposure in critically ill patients
aged 65 y or older with vasodilatory hypotension.23,24

The study recruited patients from 65 National Health
Service adult, general, and critical care units across Eng-
land, Wales, and Northern Ireland who had vasodilatory
hypotension. The intervention aimed to reduce the dose
and duration of vasopressors by using less restrictive
blood pressure targets (mean arterial pressure range 60–
65 mm Hg). The primary outcome was 90-d all-cause
mortality, with 2463 patients included in the analysis.

The primary publication reported that reducing the
exposure to vasopressors through permissive hypoten-
sion did not reduce overall 90-d mortality (unadjusted
relative risk, 0.93; 95% confidence interval [CI], 0.85 to
1.03; unadjusted absolute difference 22.85; 95%
CI,26.75 to 1.05).23 Prespecified, subgroup analyses con-
sidered covariates such as age, chronic hypertension,
chronic heart failure, atherosclerotic disease, sepsis,
receipt of vasopressors at randomization, physiology
score, and baseline risk of death (both according to the
Intensive Care National Audit & Research Centre
[ICNARC] model) and generated further hypotheses for
HTEs.24 We consider how ML approaches can explore
HTEs, and estimate individual-level treatment effects as
well as to generate hypotheses (post hoc) for subgroup
effects.

Overview of Methods for Estimating Subgroup-

and Individual- Level Treatment Effects

We are interested in estimating the conditional average
treatment effects (CATE), that is, the contrast between
the 2 treatment arms, conditional on observed baseline
covariates X :

t xð Þ=E(Yi 1ð Þ � Yi 0ð ÞjX = x) ð1Þ

where Yi 1ð Þ and Yi 0ð Þ are the individual i’s potential out-
comes with and without treatment, respectively,25,26 and
X defines the subgroup of interest.

Because it is not possible to observe both potential
outcomes simultaneously,27 identification assumptions
are required to estimate t xð Þ from observed data. In an
RCT, these assumptions of consistency, no interference
and unconfoundedness, or mean exchangeability are
plausible, so that, on average, observed and unobserved
confounders are balanced between the arms.

One can estimate the overall ATEs using the method
of recycled predictions28 by first estimating a regression
model including an indicator for the group randomized
to treatment (Di):

Yi =Xib+a1Di + εi

where Xi is a vector of covariates including an intercept,
and then calculating the marginal treatment effect by
comparing (counterfactual) predictions for every individ-
ual under each treatment. The sample average of these
effects can be taken over the full sample to obtain the
ATE. This approach assumes that the model is correctly
specified and can be termed ‘‘outcome regression imputa-
tion’’ or ‘‘G-computation.’’29

Studies commonly report CATEs for a defined sub-
group rather than across the full range of values x, and
we refer to this estimand as the group ATE. The indica-
tor Gi equals 1 for individuals in the subgroup and 0
otherwise. This definition of subgroups can refer to cate-
gorical variables but also to groups defined by thresholds
for continuous variables (e.g., according to quintiles).
The group ATE is the average effect for individuals for
whom Gi= 1. Where the interest is in subgroup effects,
we can include a main effect for the subgroup indicator
(Gi) and an interaction term between the subgroup and
treatment indicators:

Yi =Xib+bGGi +a1Di +a2DiGi + εi

where bG captures difference in the mean outcome
between subgroups in the absence of treatment, a1 is the
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treatment effect for those not in Gi, and a1 +a2 is the
treatment effect for those in subgroup Gi. One could also
interact individual coefficients as opposed to a prespeci-
fied group indicator; however, such an approach is prone
to overfitting.30 For a binary outcome, such as mortality,
one can use logistic rather than linear regression.

We can obtain the group ATE for subgroup G by
contrasting predictions for each individual under each
treatment level but considering indicators for both the
subgroup and the treatment level. Let Ŷi d, I(G = gð Þ) be
the predicted outcome under treatment d for subgroup
level g for individual i, the interaction effect compares
the following 4 predictions for all patients31:

Ŷi 1, 1ð Þ � Ŷ i 0, 1ð Þ+ Ŷ i 1, 0ð Þ � Ŷ i 0, 0ð Þ
� �

while the total effect for the subgroup can be obtained
using

Ŷi 1, 1ð Þ � Ŷi 0, 1ð Þ

and the group ATE by taking the sample average of these
effects, with standard errors calculated by the nonpara-
metric bootstrap.32

If the subgroups are not prespecified, it may be tempt-
ing to report subgroup results for those groups with sta-
tistically significant and clinically meaningful effects that
are potentially due to random chance, rather than ‘‘true’’
HTE.33 This problem is compounded if the study reports
CIs that do not recognize when subgroups are chosen
post hoc from the data at hand.34 While prespecifying
the subgroups to be considered may mitigate this con-
cern, it may miss subgroups with important effects.

CF

Athey and Imbens16 propose a data-driven approach to
estimate individual-level treatment effects that can be
aggregated for subgroups of interest while providing
valid CIs for treatment effects within prespecified sub-
groups, with a sample splitting (‘‘honest’’) estimation
approach. This approach, ‘‘causal trees,’’ has been
expanded to CF17 and is a nonparametric, tree-based
method for estimating HTE that recursively splits the
observations into groups, according to whether or not a
particular variable exceeds a threshold value, with the
variables and thresholds chosen by the algorithm to max-
imize the variance of the estimated treatment effect, t̂ xið Þ,
for the sample used to define the splits. For instance, the
algorithm might initially split the sample into those aged
.85 y versus � 85 y, because this age threshold leads to
estimated HTEs that are maximally different between the

2 resulting groups. These groups (leaves) can each be split
into further subgroups, possibly using a different variable
or the same variable with a different threshold. Thus,
subgroups are formed so that the estimated treatment
effect is as homogenous as possible within a leaf (created
by splitting at the threshold) and as different as possible
between leaves. Under unconfoundedness, the mean
observed outcome for the individuals under control
(treatment), and in the leaf L corresponding to X = xð Þ
can be used to estimate t xð Þ within our subgroups at leaf
L using

t̂ xð Þ= 1

i : Di = 1,Xi 2 Lf gj j
X

i:Di = 1,Xi2Lf g
Yi

0
@

1
A�

1

i : Di = 0,Xi 2 Lf gj j
X

j i:Di = 0,Xi2Lf g
Yi

0
@

1
A

Thus, the estimated effect for the subgroup is the differ-
ence in average outcomes for treated versus control units
within the leaf of the tree, L, in which the unit lies.

A CF is defined as an ensemble of B causal trees, ana-
logous to decision trees and random forests, and implies
averaging predictions t̂b xð Þ over a large number of differ-
ent possible covariate splits to estimate a CATE for each
individual in the sample.17 The CF aggregates the predic-
tions from the B causal trees by averaging them:

t̂ xð Þ=
PB

b= 1 t̂b xð Þ
B

The ensemble approach helps reduce variance, smooth
sharp decision boundaries as it does not rely on a single
set of splits,17,35 and yields valid asymptotic CIs for the
true underlying treatment effect,17 by using sample split-
ting (‘‘honesty’’). An ‘‘honest’’ estimation approach is
where each individual response Yi is used either when
learning where to split the leaves, or estimating the
within-leaf treatment effect, but not both.17,36

The CF yields an estimated effect and standard error
for each individual by aggregating their estimated effects
for the leaves in which they lie, for each tree within the
forest. Moreover, CF implements an overall test for
treatment effect heterogeneity, the omnibus test, by fit-
ting the individual-level CATEs as a linear function of
the out-of-bag CF estimates (For details see Chernozhu-
kov et al), yielding 2 parameters to which we refer here
as the ATE and heterogeneity parameters. This allows us
to test 1) whether effect estimates are well-calibrated, and
2) whether the CF found heterogeneity. A coefficient of
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1 for the ATE parameter indicates that the mean forest
prediction is correct, with the associated P value inter-
preted as a test for the null hypothesis of good calibra-
tion. Analogously, a coefficient of 1 for the heterogeneity
parameter suggests that the heterogeneity estimates from
the forest are well calibrated. Thus, if the heterogeneity
parameter is positive, the P value associated with it can
be interpreted as the strength of evidence in favour of the
null hypothesis of no heterogeneity, as this provides evi-
dence of a positive association between the estimated het-
erogeneous treatment effects and the true effects.36

CFs can therefore estimate individual HTEs according
to complex covariate interactions while being less prone
to overfitting than fixed parametric approaches. Follow-
ing Athey and Wager36 and Basu et al,37 we estimate a
second CF in which, to improve precision we exclude
those variables that have a low importance score (below
the mean) which indicates that they were not split on
often. In low-signal situations, this allows the forest to
make more splits on the most important features.36 Since
an honest estimation approach is again applied, with
splits chosen, and effects estimated on separate samples,
this step avoids overfitting.

The CF approach is implemented as an adaptive
locally weighted estimator.18 First, a forest is used to cal-
culate a weighted set of neighbors. The weights are
derived from the fraction of trees in the forest in which
an observation appears in the same leaf as the unit of
interest. Then effects of interest are estimated, applying a
plug-in estimating equation to these neighbors. We can
then aggregate the individual-level effects to obtain
group ATEs, with a variant of doubly robust estimators
already implemented in the generalized random forest R
package grf.38 Here we used augmented inverse propen-
sity weighting (AIPW).36,39

Applying Logistic Regression and CF Approaches to
Estimate Group ATEs in the 65 Trial

The trial considered the following prespecified sub-
groups: age (quintiles), chronic hypertension (yes, no),
chronic heart failure (yes, no), atherosclerotic disease
(yes, no), predicted risk of death (ICNARC prognostic
model), Sepsis-3 (no sepsis, sepsis without septic shock,
sepsis with septic shock), vasopressors received at ran-
domization (none, norepinephrine \0.1 mg/kg/min,
norepinephrine �0.1 mg/kg/min, metaraminol, other/
combination). We also considered the following addi-
tional subgroup variables: sex (male, female), ethnicity
(white, Black/Black mixed, Asian/Asian mixed, other/not
stated), dependency prior to acute hospital admission
(yes/no), mean arterial pressure at randomization

(quintiles), source of admission (emergency department
[ED]/not in hospital, elective surgery, emergency surgery,
other critical care unit, ward or intermediate care
area), acute physiology and chronic health evaluation
(APACHE) II score (quintiles), ICNARC physiology
score (quintiles), cardiopulmonary resuscitation (CPR)
within 24 h prior to admission (community CPR, in-
hospital CPR, no CPR), and Sequential Organ Failure
Assessment (SOFA) score (quintiles). Observations with
missing ethnicity data (n = 14) were excluded, and for
the other baseline covariates, missing data (\0.1% of
patients) were handled with multivariate imputation by
chained equation.23 There were no missing data for the
primary outcome.

The estimand of interest was the ATE, defined as a
risk difference, or absolute risk reduction (ARR) in 90-d
all-cause mortality. For the parametric regression
approaches, we used logistic regression as in the primary
study.24 For each subgroup of interest, we model the log
odds of mortality as a function of dummy variables for
treatment (randomized arm), a binary subgroup identi-
fier, and treatment by subgroup interaction terms as:

log
pi

1� pi

� �
=bGGi +a1Di +a2DiGi + εi

We estimated CATEs for each individual based on their
covariate values and subgroup group ATEs, using the
CF method for each outcome according to the following
steps:

1. We used the tune_causal_forest function in the grf
package38 to select tuning parameters.36

2. We grew an initial CF consisting of 5000 causal trees
using the causal_forest function in the grf package in
R,38 we ranked those variables included according
to their importance in determining splits within these
trees, retained those whose importance was above
the mean importance, then repeated steps 1 and 2 to
obtain the final CF.

3. We used this CF to estimate the CATE for each indi-
vidual, along with their standard errors, by predict-
ing from the CF using their covariate values.

4. We aggregated these individual CATEs to obtain
group ATEs for each subgroup using AIPW.

In step 2 above, the rationale for retaining a subset of
the variables is that this enables the forest to make more
splits on the most important features in low-signal situa-
tions. We assessed the sensitivity of findings to alterna-
tive thresholds (0.2 times the mean importance), and to
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including the full set of variables, and found results were
not sensitive to this choice.

We applied the regression and CF approaches to
obtain individual- and subgroup-level estimates, from
each imputed data set and combined these estimates with
Rubin’s formulae to obtain a single set of effect estimates
and accompanying measures of uncertainty.40 We pres-
ent the subgroup effects with forest plots. To assess the
strength of evidence for HTEs, we applied the omnibus
tests for the final estimates of the ARRs.17

Describing the Effect of Covariate Combinations on the
Magnitude of the Individual CATEs

To describe covariates associated with larger estimated
treatment effects, Nilsson et al.41 suggested regressing the
estimated individual CATEs on the covariates of interest.

The model for the expected individual treatment
effects is then:

E ITEjXi½ �=Da+
XJ

j= 1

DbjXji

where Da represents the treatment effect independent of
the covariates (X), that is, the overall treatment effect,
and DbjXji is the effect explained by observable charac-
teristics Xji.

41 The D indicates that the coefficients repre-
sent differences between the 2 potential outcomes
underlying the estimated model.

However, this approach assumes linearity and does
not allow for interactions between covariates unless pre-
specified.i This strategy is similar to the meta-learners
described by Kunzel et al.,42 whereby first-stage models
are used to obtain estimates of the individual CATEs. In
a second stage, a regression or a supervised ML method
is run with the estimated CATEs as a dependent variable
in a model on X, the effect modifier of interest, thus
obtaining an estimate of the group ATE function.

We are interested in exploring the effect of covariate
combinations on the CATE estimates, and so we employ
a single CART that can recognize interactions between
covariates.ii We use the individual-level CATEs estimated
by the CF approach as the dependent variable, with the
full set of baseline covariates used to determine splits. In
theory, we could continue to recursively split the data set
until, for binary or categorical variables, all individuals
in each leaf have the same outcome. However, this may
lead to overfitting and to subgroups that are difficult to
interpret. Therefore, we ‘‘prune’’ the tree, by choosing a
complexity parameter that imposes a penalty to the tree
for having too many splits. Here, we choose a complexity
parameter of 0.2, which yields a manageable (� 10)

number of subgroups. It should be noted that effects are
not homogenous within these subgroups, and further
splitting would lead to more precisely estimated effects.

Because a single CART may overfit the data, we con-
ducted 2 further analyses: 1) we applied an honest estima-
tion approach by identifying subgroups on a subset of the
data, and then predicting (estimated) effects for these sub-
groups using the remaining, out-of-sample, data, which
provide valid CIs, and 2) we estimated a regression forest
and chose the best tree from this forest, that is, the tree that
gives predictions that are most representative of the forest’s
predictions. To control the depth of this forest, we chose
the minimum number of individuals that must be a leaf
before further splitting occurs (minN). We set minN = 1
(giving the deepest possible tree), 50, 100, and 200.

We calculated the proportion of variation (R2) in esti-
mated CATEs explained by the estimates from each
method, in both in-sample and out-of-sample data, with
a low R2 in the out-of-sample data indicating poor per-
formance in explaining the estimated subgroup effects
(see Supplementary Table A1). Finally, for the CART
and best tree approaches, we calculated the estimated
ATEs for the subgroups found using the in-sample data,
and report honest estimates in the sense that the out-of-
sample data were not used to identify the subgroups.

Results

Estimated Group ATEs in the 65 Trial

Baseline characteristics were balanced across the rando-
mized arms (Table 1). The logistic regression model
reported an overall ARR for 90-d mortality of 20.029
(SE 0.020), that is 2.9 percentage points (SE 2.0), and the
CF approach an overall ARR of 3.9 percentage points
(SE 1.8). The forest plots (Figure 1) show that the esti-
mated group ATEs using the logistic regression and CF
approaches were similar, with their CIs overlapping. The
estimated group ATEs from both methods generated
hypotheses that for those patients with chronic hyperten-
sion, an ICNARC model physiology score in quintile 3,
a predicted risk of death in quintile 3, and APACHE II
score in quintile 4, the intervention strategy reduced 90-d
mortality. For patients in the oldest quintile, the point
estimates for the group ATEs suggested that the permis-
sive hypertension strategy led to reduced 90-d mortality
but with 95% CIs that crossed (logistic regression) or
were close to zero (CF).

The omnibus test of HTE from the CF approach indi-
cated weak evidence of heterogeneity (P value for a
test of the null hypothesis of homogeneous treatment
effects = 0.083, the HTE coefficient = 1.210, SE =
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0.875). This test also suggests that the HTE estimates
were well calibrated (with the P value associated with the
null hypothesis that the HTE estimates were well cali-
brated = 0.810) and that the mean forest prediction was
correct (P value for a test of the null hypothesis that the
ATE estimate was well calibrated = 0.995).

Exploring Heterogeneity in Individual CATEs

The distribution of the estimated individual treatment
effects can identify individuals for whom the intervention
may be expected to be most effective (or harmful) and to
generate further hypotheses for subgroup effects.44 As
with the parametric approach, if subgroups have not

Table 1 Baseline Characteristics of All Participants in the 65 Trial

Characteristic Permissive Hypotension (n = 1211) Usual Care (n = 1238)

Age, y, mean (SD) 75.2 (6.9) 75.2 (6.7)
Sex, n (%)
Male 695 (57.4) 691 (55.8)
Female 516 (42.6) 547 (44.2)

Comorbidities, n/N (%)
Chronic hypertension 555/1211 (45.8) 568/1238 (45.9)
Atherosclerotic disease 174/1211 (14.4) 180/1238 (14.5)
Chronic heart failure 134/1211 (11.1) 136/1237 (11.0)

Assistance with daily activities prior
to admission, n (%)

414 (34.4) 380 (30.9)

Location prior to admission to critical
care and urgency of surgery, n (%)
ED/not in hospital 430 (35.5) 419 (33.8)
Theater: elective/scheduled surgery 53 (4.4) 60 (4.9)
Theater: emergency/urgent surgery 256 (21.1) 264 (21.3)
Other critical care unit 14 (1.2) 22 (1.8)
Ward or intermediate care area 458 (37.8) 473 (38.2)

APACHE II score, mean (SD) 20.9 (6.5) 20.6 (6.1)
ICNARC Physiology score, mean (SD) 23.9 (8.8) 23.5 (8.8)
ICNARCH-2015 predicted risk of death, median (IQR) 0.33 (0.15, 0.60) 0.32 (0.14, 0.61)
Sepsis-3, n (%)
No sepsis 261 (21.6) 275 (22.2)
Sepsis (not in shock) 363 (30.0) 368 (29.7)
Septic shock 587 (48.5) 595 (48.1)

Arterial pressure at randomization (mm Hg), mean (s) 69.8 (10.2) 71.0 (11.6)
Vasopressor infusions received at time
of randomization, n (%)
None 14 (1.2) 22 (1.8)
Norepinephrine equivalent \0.1 mg/kg/mind 140 (11.7) 147 (12.1)
Norepinephrine equivalent �0.1 mg/kg/min 645 (54.0) 652 (53.5)
Metaraminol 382 (32.0) 385 (31.6)
Other/combination 14 (1.2) 13 (1.1)

Duration of vasopressor infusion prior to
randomization, min, median (IQR)

186 (103, 276) 186 (104, 283)

SOFA score, mean (s) 5.5 (1.9) 5.5 (2.0)
Ethnicity, n (%)
White 1,133 (93.6) 1,163 (93.9)
Black/Black mixed 14 (1.2) 12 (1.0)
Asian/Asian mixed 19 (1.6) 18 (1.5)
Other/not stated 45 (3.7) 45 (3.6)

CPR received within 24 h prior to admission, n (%)
Community CPR 26 (2.2) 21 (1.7)
In-hospital CPR 37 (3.1) 37 (3.0)
No CPR 1148 (94.8) 1180 (95.3)

APACHE, Acute Physiology and Chronic Health Evaluation; ED, emergency department; ICNARC, Intensive Care National Audit & Research

Centre; IQR, interquartile range; SD, standard deviation.
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Figure 1 Forest plot of group average treatment effects for 90-d mortality from logistic regression and the causal forest approach.
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been prespecified, subgroup effects based on the individ-
uals’ estimated CATEs using CFs should be interpreted
as exploratory.

The individual-level CATEs for mortality were esti-
mated using the CF method and ranged from 211.0%
to 0.8% (Figure 2). These estimated individual-level
treatment effects suggest that the permissive hypotension
strategy reduces 90-d mortality for 98.7% of patients,
but there is great uncertainty with 95% confidence inter-
vals that include zero for the majority (78.2%) of
patients. For 28.4% (n = 696) of patients, the CATE
estimates were negative with CIs below zero, suggesting
that for these individuals, we can be relatively certain
that the permissive hypertension strategy would be
expected to reduce mortality.

Effect of Covariate Combinations on the Magnitude of the
Individual CATEs

We find that the pruned CART on the full data set iden-
tified 10 subgroups with estimates of individual-level
CATEs for 90-d mortality that were sufficiently different
to justify splitting, given the choice of complexity para-
meter (Figure 3). The ARR estimates differed between
5.1 and 2.8 percentage points, for those who had chronic
hypertension versus those who did not. The chronic
hypertension subgroup was split further into those with
sepsis (ARR = 5.7%) and those without (ARR =
3.1%). Within the ‘‘no sepsis’’ subgroup, the heterogene-
ity was insufficient to justify further splitting, but for the
sepsis subgroup, there was considerable heterogeneity
when splitting further, according to the duration of vaso-
pressor received prior to randomization, age, and septic

shock or not. For patients who did not have chronic
hypertension, there was considerable heterogeneity, with
further subgroups identified based on a combination of
covariates such as duration of vasopressors, sepsis, and
SOFA score.

We can interpret these individual-level group ATEs as
the expected effect of the permissive hypotension strategy
versus usual care, for an individual chosen at random
within that subgroup. The findings raise the hypothesis
that the permissive hypotension strategy is more effective
(ARR = 7.4%) in those subgroups of patients who have
chronic hypertension and sepsis, who received vasopres-
sors for at least 128 min before randomization, were aged
at least 77 y, and who had not developed septic shock
(Figure 3).

Supplementary Table A1 in the appendix compares
the performance of ordinary least squares (OLS), CART,
and best-tree approaches in terms of the proportion of
variation in the HTE explained and the number of sub-
groups identified. When the maximum depth is used for
the best tree, 161 subgroups are identified, which explain
97.5% of the variation in estimated individual-level
HTEs. However, when we require at least 200 observa-
tions per group, we identify 3 groups that can explain
86.2% of the variation, suggesting that fairly coarse group-
ings may be beneficial in understanding heterogeneity. By
contrast, the OLS model had lower explanatory power
(65.6%). Supplementary Tables A2, A3, and A4 report the
identified subgroup effects and CIs in sample and out of
sample. The CART estimated in an honest fashion identi-
fied similar subgroups to the CART estimated on the full
sample. The best-tree approach identified subgroups using
similar variables (chronic hypertension, sepsis, duration of

Figure 2 The 95% confidence intervals (light gray) for the estimates of individual-level treatment effects, ordered by the
magnitude of the estimates of the individual-level conditional average treatment effects (black line).
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vasopressor infusion prior to randomization, and age) to
those used by the CART, suggesting that, in this example,
subgroup selection was not driven by overfitting CART to
the in-sample data.

Discussion

This article examines and applies a causal ML approach,
CF, to complement parametric regression models for
estimating subgroup effects. The 65 Trial typifies the set-
ting in which an intervention for a broad patient popula-
tion (critically ill patients aged �65 y) has the potential
to benefit some patients but harm others. The paper
illustrates the relative advantages of CF in avoiding
overfitting by calculating CIs using a sample splitting,
‘‘honest’’ estimation approach. The CF approach avoids
assuming a particular parametric regression model is cor-
rectly specified, and provides an overall assessment of
HTE via the omnibus test. Here, the CF approach pro-
vides similar estimates of subgroup effects to those from
a fixed parametric method, with the omnibus test report-
ing weak evidence of heterogeneity (P = 0.083). The CF
approach also provides estimates of the distribution of
the individual-level treatment effects and reports that for
98.7% of patients, the intervention is expected to reduce

the individual’s 90-d mortality, although the CIs of the
estimates include zero in 71.6% of cases. The post hoc
analysis of these individual-level effects raises new
hypotheses for future research, in proposing more
nuanced subgroup combinations that may modify the
relative effectiveness of the intervention, but these war-
rant careful assessment in further research.

This article contributes to methods for exploring HTE
in comparative effectiveness research.42,45–52 Previous
studies have highlighted the advantages of causal ML
approaches in avoiding overfitting or type 1 errors, from
using the same data to select and interpret covariate by
treatment interaction terms, and reducing reliance on
correct model specification.3 We add to this previous
methodological research in illustrating how an advanced
ML approach can provide evidence to inform aggregate-
and individual-level decision making, but also to help
target future research.

This article extends the published analyses of the 65
Trial23,24 in finding evidence of heterogeneity, according
to one of the prespecified subgroups (hypertension or
not). This reanalysis also considered 9 subgroup variables
in addition to those defined in the prespecified analysis
plan. Although consideration of these additional vari-
ables must be regarded as exploratory, and raising rather

Figure 3 Pruned decision tree for individual-level conditional average treatment effect estimates using causal forest for 90-d
mortality.
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than testing hypotheses, their use illustrates how CF
methods can consider a fuller list of subgroup variables
in the exploration of HTE while avoiding reliance on cor-
rect specification of a regression model, which is made
more challenging when there is an extensive number of
covariates. The post hoc analyses of the individual-level
treatment effects illustrates how more nuanced hypoth-
eses can be generated. For example, the results raise the
hypothesis that the permissive hypotension strategy is
effective for critically ill patients aged �65 y who have
chronic hypertension, and within that subgroup that the
intervention is more effective for patients with sepsis.
Before these findings can inform personalized medicine,
these hypotheses must be tested in external data sets53–55

to assess whether the subgroup combinations proposed
are replicated.

When using ML methods to explore HTE for the
purposes of targeting future research, it is important
to recognize the role of more personalized estimates
(individual-level CATEs), which are more nuanced
toward individual-level decisions, and aggregated groups
ATEs, which are more readily interpreted for national
guidelines. The expected value of individualized care5

provides a framework to consider when providing rec-
ommendations according to individual-level CATEs
provides sufficient additional value to justify moving
away from subgroup recommendations based on group
ATEs.

The finding that the group ATE estimates from a
fixed parametric approach were similar to those from a
causal ML method may reflect some features of the case
study, notably small differences in the magnitude of
effect across subgroups, and the moderate sample size,
typical of many RCTs. However, this does not imply
that a simple parametric method will suffice in other set-
tings. Here, the RCT design ensured a reasonable bal-
ance on all potential effect modifiers, which reduces the
extent to which the estimates are reliant on correct model
specification. In observational studies with large baseline
covariate imbalances, if the parametric model is misspe-
cified, then the estimates are liable to be biased.56,57 The
CF approach based on generalized random forests can
be helpful as it uses nonparametric estimation of the pro-
pensity for treatment and outcome models, incorporates
variable selection, and allows for interactions, which are
then combined using augmented inverse propensity
weighting to obtain doubly robust individual effect esti-
mates.58 Related research in observational studies has
developed individual-level instrumental variables to con-
sider the problem of confounding, but also heterogeneity
according to unobserved factors.9,59 However, the current
implementation of these individual-level instrumental

variable approaches also relies on the correct specification
of the statistical model, and a useful extension would be to
incorporate causal ML approaches to subgroup selection
in this context, analogous to the approach described in this
article.

The article has several limitations. First, we have used
a single causal ML approach, CF, which is a principled
ML approach for estimating subgroup heterogeneity,
but other ML methods warrant consideration. Second,
the article considers only CF for the primary clinical
endpoint. Currently available software would only allow
the CF approach to be applied to cost-effectiveness anal-
ysis, if defined with a single compositive endpoint, for
example, through net-benefit regression. However, this
approach would make restrictive assumptions about cor-
rect model specification across the underlying endpoints
(e.g., mortality, cost, health-related quality of life).
Third, the article considers only causal ML in the con-
text of a single RCT. Fourth, the estimates of group
ATE and individual-level CATE are intended to generate
rather than test hypotheses, as some of the subgroups
considered were not prespecified, and allowance was not
made for multiple testing.

The study raises questions for further research. Other
causal ML methods are available that can be used to
estimate HTEs and may have particular appeal in com-
parative effectiveness research. The squared loss support
vector machine (L2-SVM)60 uses separate sparsity con-
straints for the HTE parameters and the covariate para-
meters. This is likely to be particularly helpful in settings
where treatment has a relatively modest effect on out-
comes. The X-learner42 allows any supervised learning
or regression estimators to be used to estimate the CATE
and may be preferred to CF for survival outcomes. Our
choice of approach was informed by the fact that forest-
based methods have been found to perform well across a
range of relevant contexts,61–64 and software applying
these approaches is available in many commonly used
packages (e.g., Python and R). Further research could
examine ML methods for providing estimates of group
ATEs and individual-level CATE for cost-effectiveness
analysis, with bivariate ML approaches that use the mul-
tivariate random forest method.65 Finally, alternative
methods to identify subgroups after estimating the
CATEs could be explored, such as causal rule ensem-
bles,66 which have been shown to perform well when
there is overlap between the confounders and effect
modifiers.

Identifying the effects of an intervention within sub-
groups of the population can help target treatments and
lead to overall improvements in population health, given
resource constraints. Causal ML methods allow for
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automated variable selection and can easily relax para-
metric modeling assumptions. In this case study, in
which effects were fairly homogeneous across individu-
als, a parametric approach provided similar estimates of
comparative effectiveness to the CF method. Further
research into the relative merits of ML versus parametric
regression approaches is warranted in alternative set-
tings, such as the evaluation of complex interventions.
Here, treatment effects may be modified by combina-
tions of individual and contextual factors, and hence,
flexible approaches may provide more useful evidence
for decision making.
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Notes

i. If the individual-level treatment effects (ITE) were quadra-
tic in age, for instance, with positive effects for the young
and old and negative effects for middle ages, fitting a linear
model without interactions could return a null effect of age
even though it may be an important driver of ITEs. In con-
trast, a tree-based method such as CART can choose to
recursively split at different ages, overcoming this limitation.

ii. A comprehensive survey of methods for subgroup identifi-
cation is provided by Lipkovich et al.43
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