# THE LANCET Planetary Health

## Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Wu Y, Li S, Zhao Q, et al. Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19: a three-stage modelling study. *Lancet Planet Health* 2022; **6**: e409–20.

#### Global, regional, and national burden of mortality associated with short-term

#### temperature variability from 2000 to 2019: a three-stage modelling study

#### **Supplementary Appendix**

#### **Table of contents**

Text S1. eMethods.

Table S1. Descriptive statistics by country/region included in MCC study.

**Table S2.** Missing rates by country/region included in MCC study.

**Table S3.** Meta-regression models for explaining variation in overall TV effects: Cochran Q test for heterogeneity,  $I^2$  statistics for residual heterogeneity.

Table S4. The average annual daily temperature variability in 2000 and 2019 by continent and region.

Figure S1. The long-term trend of temperature variability after seasonal-trend decomposition by region from 2000 to 2019.

**Table S5.** Percentage change in mortality associated with an interquartile increase in temperature variability by country.

**Table S6.** Average annual percentage excess in mortality and excess deaths per 100,000 residents due to temperature variability in 2000–19 by continent and region.

**Table S7.** Average annual percentage excess in mortality and excess deaths per 100,000 residents due to temperature variability between 2000–19 by the indicators of Köppen-Geiger climate classification.

Figure S2. Scatter plots of percentage excess in mortality associated with temperature variability from 2000 to 2019.

Figure S3. Scatter plots of excess death rate associated with temperature variability from 2000 to 2019.

Figure S4. Leading 20 countries of excess deaths in 2000 and 2019.

**Table S8.** Average annual global percentage excess in mortality and global excess deaths per 100,000 residents due to temperature variability in 2000–19 on different exposure days.

**Table S9.** Results of sensitivity analyses on global percentage excess in mortality and global excess deaths per 100,000 residents.

Table S10. Results of sensitivity analyses on overall TV-mortality association based on 500 locations with relative humidity data.

**Table S11.** Average annual percentage excess in mortality under the counterfactual scenario of grid-specific mean temperature variability by continent and region.

#### **Text S1. eMethods**

#### Sensitivity analyses

The range of each parameter was decided based on prior knowledge and research.

(1) A maximum exposure period of seven days for short-term TV exposure is commonly used in prior research <sup>1-</sup> <sup>5</sup>. However, the use of a single length of exposure is insufficient to provide evidence on the short-term impact of

TV, thus we use alternative lag from 1 to 6 days and from 8 to 10 days to check if the association still exists.

(2) A lag period of 21 days for mean temperature was commonly used to include the long delay of the effects of cold temperatures <sup>6</sup>. Here, we used longer lag days (24 or 28 lag days) in the sensitivity analyses in case a lag of 21 days was not enough to capture the temperature effects on mortality.

(3) We chose the most commonly used value of the degree of freedom in the main analysis and applied neighboring values on each side to make sure that our results can exist independently of any particular. Small degrees of freedom will fail to capture the main long-term patterns closely, whereas too many will result in overfitting—that a very 'wobbly' function which may compete with the variable of interest to explain the short-term variation of interest, widening confidence intervals of relative risk estimates <sup>7</sup>.

(4) We adjusted relative humidity in the first stage using data from 500 locations with relative humidity data. As 500 locations failed to cover Africa and areas with polar and alpine climates, we were unable to estimate the global mortality burden associated with TV using data from these locations. Thus, we compared the TV-mortality associations with and without adjustment of relative humidity in the sensitivity analyses.

| Country/Region     | Study period | No. of locations | Total deaths |
|--------------------|--------------|------------------|--------------|
| nericas            |              |                  |              |
| Argentina          | 2005-2015    | 3                | 686,333      |
| Brazil             | 1997-2011    | 18               | 3,258,661    |
| Canada             | 1986-2015    | 26               | 3,733,749    |
| Chile              | 2004-2014    | 4                | 285,776      |
| Colombia           | 1998-2013    | 5                | 956,539      |
| Costa Rica         | 2000-2017    | 1                | 31,117       |
| Ecuador            | 2014-2018    | 2                | 112,264      |
| Guatemala          | 2009-2016    | 1                | 62,715       |
| Mexico             | 1998-2014    | 10               | 2,980,086    |
| Panama             | 2013-2016    | 1                | 11,457       |
| Paraguay           | 2004-2016    | 1                | 39,713       |
| Peru               | 2008-2014    | 18               | 628,420      |
| Puerto Rico        | 2009-2016    | 1                | 26,564       |
| United States      | 1979-2006    | 211              | 32,089,970   |
| Uruguay            | 2012-2016    | 1                | 153,554      |
| rope               |              |                  |              |
| Czech Republic     | 1994-2015    | 4                | 711,910      |
| Estonia            | 1997-2015    | 5                | 146,347      |
| Finland            | 1994-2014    | 1                | 153,308      |
| France             | 2000-2014    | 18               | 1,639,262    |
| Germany            | 1993-2015    | 12               | 3,105,865    |
| Greece             | 2001-2010    | 1                | 287,969      |
| Ireland            | 1984-2007    | 6                | 1,058,215    |
| Italy              | 2006-2015    | 18               | 801,302      |
| Moldova            | 2001-2010    | 4                | 59,906       |
| Netherlands        | 1995-2016    | 5                | 453,395      |
| Norway             | 1979-2016    | 1                | 204,188      |
| Portugal           | 1980-2018    | 5                | 1,750,670    |
| Romania            | 1994-2016    | 8                | 951,146      |
| Spain              | 1990-2014    | 52               | 2,809,154    |
| Sweden             | 1990-2016    | 3                | 717,294      |
| Switzerland        | 1995-2013    | 8                | 243,638      |
| United Kingdom     | 1990-2016    | 70               | 6,064,610    |
| rica               |              |                  |              |
| South Africa       | 1997-2013    | 52               | 8,509,130    |
| ia                 |              |                  |              |
| China              | 1996-2015    | 15               | 896,223      |
| Iran, Islamic Rep. | 2004-2013    | 1                | 121,585      |
| Japan              | 1972-2015    | 47               | 35,214,892   |
| Korea, Rep.        | 1997-2018    | 36               | 3,070,357    |

| Table S1. Descriptive statistics by | country/region included in MCC study.  |
|-------------------------------------|----------------------------------------|
| Table 51. Descriptive statistics by | country/region included in Mice study. |

| Kuwait      | 2000-2016 | 1  | 73,748    |
|-------------|-----------|----|-----------|
| Philippines | 2006-2010 | 4  | 274,516   |
| Taiwan      | 1994-2014 | 3  | 1,209,573 |
| Thailand    | 1999-2008 | 62 | 1,827,853 |
| Vietnam     | 2009-2013 | 2  | 108,173   |
| Oceania     |           |    |           |
| Australia   | 1988-2009 | 3  | 1,177,950 |
|             |           |    |           |

| Country/Region | Missing rate (%) |              |                     |                     |
|----------------|------------------|--------------|---------------------|---------------------|
| Country/Region | Total            | Death counts | Minimum temperature | Maximum temperature |
| Argentina      | 0.30             | 0.30         | 0.00                | 0.00                |
| Australia      | 0.17             | 0.16         | 0.01                | 0.01                |
| Brazil         | 0.92             | 0.00         | 0.90                | 0.71                |
| Canada         | 1.36             | 0.88         | 0.47                | 0.47                |
| Chile          | 0.05             | 0.05         | 0.00                | 0.00                |
| China          | 0.43             | 0.43         | 0.00                | 0.00                |
| Colombia       | 0.51             | 0.01         | 0.47                | 0.04                |
| Costa Rica     | 0.00             | 0.00         | 0.00                | 0.00                |
| Czech Republic | 0.00             | 0.00         | 0.00                | 0.00                |
| Ecuador        | 0.00             | 0.00         | 0.00                | 0.00                |
| Estonia        | 0.00             | 0.00         | 0.00                | 0.00                |
| Finland        | 0.01             | 0.01         | 0.00                | 0.00                |
| France         | 0.18             | 0.18         | 0.00                | 0.00                |
| Germany        | 0.01             | 0.01         | 0.00                | 0.00                |
| Greece         | 5.97             | 0.00         | 5.97                | 5.91                |
| Guatemala      | 0.00             | 0.00         | 0.00                | 0.00                |
| Iran           | 2.11             | 2.11         | 0.00                | 0.00                |
| Ireland        | 0.20             | 0.01         | 0.19                | 0.19                |
| Italy          | 0.68             | 0.00         | 0.58                | 0.34                |
| Japan          | 0.17             | 0.00         | 0.16                | 0.16                |
| Kuwait         | 0.00             | 0.00         | 0.00                | 0.00                |
| Mexico         | 0.11             | 0.11         | 0.00                | 0.00                |
| Moldova        | 0.00             | 0.00         | 0.00                | 0.00                |
| Netherland     | 0.00             | 0.00         | 0.00                | 0.00                |
| Norway         | 1.28             | 1.11         | 0.17                | 0.17                |
| Panama         | 0.00             | 0.00         | 0.00                | 0.00                |
| Paraguay       | 0.00             | 0.00         | 0.00                | 0.00                |
| Peru           | 2.32             | 1.49         | 0.73                | 0.83                |
| Philippines    | 0.14             | 0.14         | 0.00                | 0.00                |
| Portugal       | 0.24             | 0.08         | 0.17                | 0.17                |
| Puerto Rico    | 0.00             | 0.00         | 0.00                | 0.00                |
| Romania        | 0.00             | 0.00         | 0.00                | 0.00                |
| South Africa   | 0.09             | 0.00         | 0.09                | 0.02                |
| South Korea    | 0.00             | 0.00         | 0.00                | 0.00                |
| Spain          | 0.01             | 0.00         | 0.01                | 0.01                |
| Sweden         | 0.01             | 0.00         | 0.01                | 0.01                |
| Switzerland    | 0.00             | 0.00         | 0.00                | 0.00                |
| Taiwan         | 0.03             | 0.02         | 0.01                | 0.01                |
| Thailand       | 0.41             | 0.00         | 0.41                | 0.19                |
| UK             | 0.01             | 0.00         | 0.01                | 0.01                |

Table S2. Missing rates by country/region included in MCC study.

| Uruguay | 0.00 | 0.00 | 0.00 | 0.00 |
|---------|------|------|------|------|
| USA     | 0.29 | 0.00 | 0.29 | 0.29 |
| Vietnam | 0.00 | 0.00 | 0.00 | 0.00 |
| Global  | 0.31 | 0.09 | 0.22 | 0.18 |

| Predictor                                | I-square | P-value for Q test |
|------------------------------------------|----------|--------------------|
| Köppen climate classification            | 36.71    | < 0.001            |
| Region                                   | 29.77    | < 0.001            |
| Yearly average of daily mean temperature | 34.63    | < 0.001            |
| Range of daily mean temperature          | 26.53    | < 0.001            |
| GDP per capita                           | 29.68    | < 0.001            |
| All predictors (final model)             | 22.67    | < 0.001            |

Table S3. Meta-regression models for explaining variation in overall TV effects: Cochran Q test for heterogeneity, I<sup>2</sup> statistics for residual heterogeneity.

|                                 | Mean ±        | SD (°C)       |
|---------------------------------|---------------|---------------|
| Region —                        | 2000          | 2019          |
| Global                          | $6.0 \pm 1.3$ | $6.2 \pm 1.3$ |
| Americas                        | $6.4 \pm 1.4$ | $6.4 \pm 1.4$ |
| Northern America                | $7.0 \pm 1.3$ | $7.0 \pm 1.3$ |
| Latin America and the Caribbean | $5.8 \pm 1.3$ | $5.9 \pm 1.4$ |
| Europe                          | $5.5 \pm 1.1$ | $5.8 \pm 1.1$ |
| Northern Europe                 | $4.3 \pm 0.7$ | $4.7\pm0.8$   |
| Eastern Europe                  | $5.8 \pm 0.9$ | $6.1 \pm 1.0$ |
| Western Europe                  | $4.7\pm0.6$   | $5.2\pm0.7$   |
| Southern Europe                 | $5.6 \pm 0.9$ | $5.8 \pm 1.0$ |
| Africa                          | $6.1 \pm 1.3$ | $6.2 \pm 1.5$ |
| Northern Africa                 | $6.9 \pm 0.9$ | $6.9 \pm 1.1$ |
| Sub-Saharan Africa              | $5.9 \pm 1.2$ | $6.0 \pm 1.5$ |
| Asia                            | $6.1 \pm 1.3$ | $6.3 \pm 1.2$ |
| South-eastern Asia              | $4.5 \pm 0.9$ | $5.0 \pm 1.0$ |
| Western Asia                    | $6.9 \pm 1.2$ | $6.7\pm0.9$   |
| Central Asia                    | $6.7 \pm 0.7$ | $6.9 \pm 0.6$ |
| Southern Asia                   | $6.2 \pm 1.0$ | $6.4 \pm 1.1$ |
| Eastern Asia                    | $6.2 \pm 1.3$ | $6.4 \pm 1.3$ |
| Oceania                         | $5.2 \pm 1.2$ | $5.5 \pm 1.6$ |
| Australia and New Zealand       | $5.1 \pm 1.0$ | 6.1 ± 1.3     |
| Other regions in Oceania        | $5.5 \pm 1.7$ | $4.1 \pm 1.4$ |

| Table S4. The average annual daily temperature variability in 2000 and 2019 by continent and region | • |
|-----------------------------------------------------------------------------------------------------|---|
|-----------------------------------------------------------------------------------------------------|---|

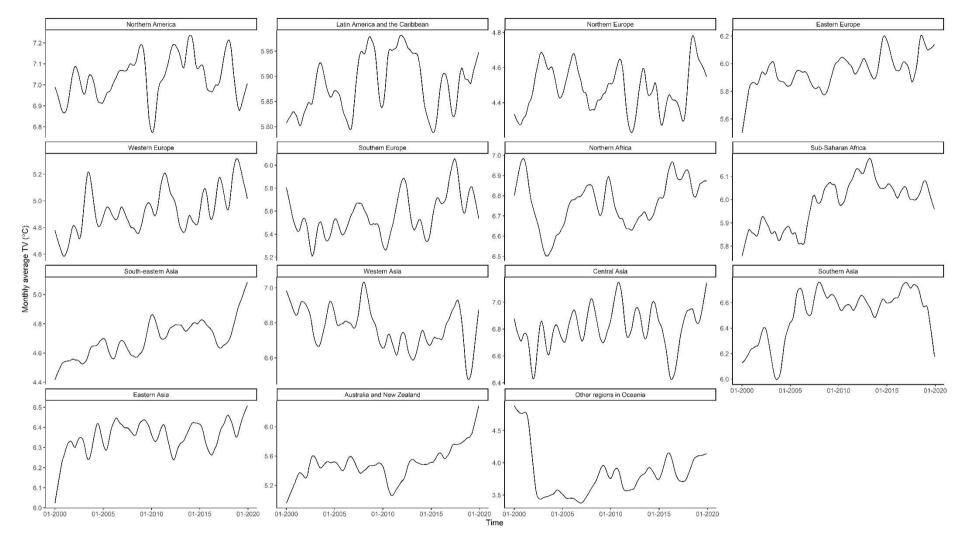



Figure S1. The long-term trend of temperature variability after seasonal-trend decomposition by region from 2000 to 2019.

| Country/Region                   | Percentage change in mortality (%) |
|----------------------------------|------------------------------------|
| Afghanistan                      | 1.70 (1.66 to 1.74)                |
| Albania                          | 0.65 (0.61 to 0.70)                |
| Algeria                          | 0.69 (0.68 to 0.71)                |
| Angola                           | 0.49 (0.44 to 0.54)                |
| Antigua and Barbuda              | 0.16 (0.09 to 0.22)                |
| Argentina                        | 0.85 (0.84 to 0.86)                |
| Armenia                          | 1.39 (1.31 to 1.48)                |
| Australia                        | 1.16 (1.12 to 1.20)                |
| Austria                          | 0.60 (0.57 to 0.64)                |
| Azerbaijan                       | 1.46 (1.39 to 1.53)                |
| The Bahamas                      | 0.23 (0.20 to 0.26)                |
| Bahrain                          | 1.62 (1.40 to 1.83)                |
| Bangladesh                       | 1.57 (1.48 to 1.66)                |
| Barbados                         | 0.19 (0.09 to 0.30)                |
| Belarus                          | 0.63 (0.60 to 0.66)                |
| Belgium                          | 0.70 (0.65 to 0.74)                |
| Belize                           | 0.25 (0.20 to 0.29)                |
| Benin                            | 0.45 (0.34 to 0.56)                |
| Bhutan                           | 1.85 (1.75 to 1.95)                |
| Bolivia                          | 0.77 (0.72 to 0.82)                |
| Bosnia and Herzegovina           | 0.59 (0.55 to 0.63)                |
| Botswana                         | 1.41 (1.38 to 1.44)                |
| Brazil                           | 0.45 (0.44 to 0.46)                |
| Brunei Darussalam                | 0.38 (0.33 to 0.43)                |
| Bulgaria                         | 0.57 (0.53 to 0.61)                |
| Burkina Faso                     | 1.25 (1.13 to 1.38)                |
| Burundi                          | 0.15 (0.02 to 0.27)                |
| Cabo Verde                       | 0.08 (0.02 to 0.13)                |
| Cambodia                         | 1.01 (0.96 to 1.06)                |
| Cameroon                         | 0.23 (0.19 to 0.27)                |
| Canada                           | 0.34 (0.33 to 0.34)                |
| Central African Republic         | 0.39 (0.32 to 0.46)                |
| Chad                             | 1.26 (1.22 to 1.31)                |
| Chile                            | 0.59 (0.57 to 0.61)                |
| China                            | 1.14 (1.13 to 1.15)                |
| Colombia                         | 0.25 (0.24 to 0.27)                |
| Comoros                          | 0.17 (0.06 to 0.27)                |
| Democratic Republic of the Congo | 0.14 (0.12 to 0.15)                |
| Republic of the Congo            | 0.11 (0.09 to 0.13)                |
| Costa Rica                       | 0.35 (0.30 to 0.40)                |
| Côte d'Ivoire                    | 0.19 (0.16 to 0.23)                |

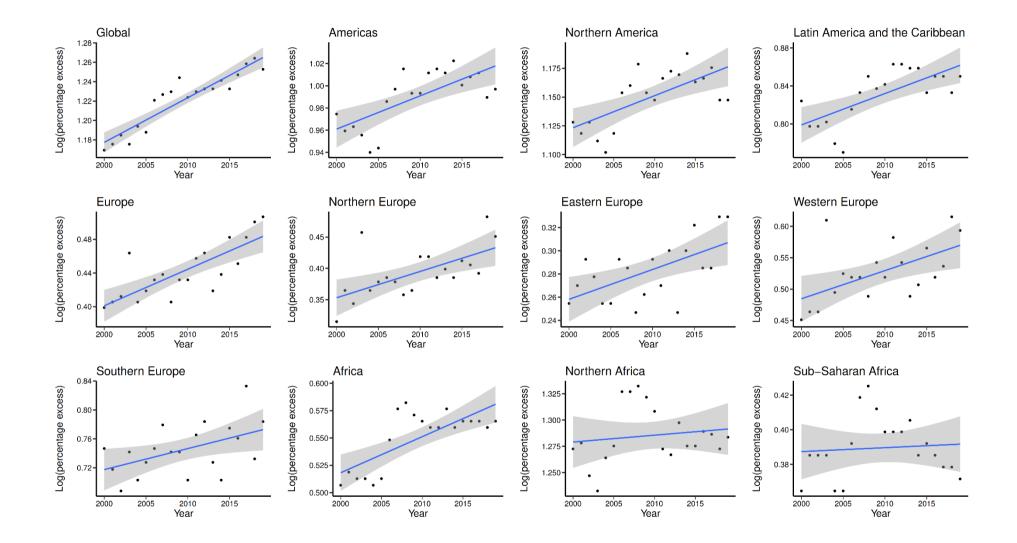
Table S5. Percentage change in mortality associated with an interquartile increase in temperature variability.

Croatia 0.57 (0.53 to 0.61) Cuba 0.22 (0.20 to 0.25) Cyprus 0.87 (0.78 to 0.96) Czech Republic 0.65 (0.62 to 0.69) Denmark -0.22 (-0.34 to -0.10) Djibouti 0.72 (0.63 to 0.80) Dominican Republic 0.25 (0.21 to 0.30) Ecuador 0.38 (0.32 to 0.44) The Arab Republic of Egypt 0.64 (0.63 to 0.65) El Salvador 0.42 (0.33 to 0.52) Equatorial Guinea 0.14 (0.08 to 0.20) 0.63 (0.59 to 0.67) Eritrea 0.44 (0.40 to 0.48) Estonia Eswatini 0.89 (0.77 to 1.00) Ethiopia 0.63 (0.60 to 0.66) Fiji 0.37 (0.31 to 0.44) 0.35 (0.33 to 0.37) Finland 0.54 (0.53 to 0.56) France Gabon 0.10 (0.08 to 0.12) The Gambia 1.93 (1.58 to 2.28) Georgia 1.15 (1.11 to 1.20) Germany 0.66 (0.64 to 0.68) Ghana 0.17 (0.13 to 0.21) Greece 0.54 (0.50 to 0.57) Grenada 0.20 (0.12 to 0.27) Guatemala 0.45 (0.39 to 0.51) Guinea 0.23 (0.18 to 0.28) Guinea-Bissau 0.34 (0.22 to 0.46) Guyana 0.21 (0.19 to 0.23) Haiti 0.19 (0.15 to 0.23) Honduras 0.24 (0.21 to 0.27) 0.69 (0.65 to 0.72) Hungary Iceland 0.22 (0.18 to 0.26) India 2.19 (2.14 to 2.24) 0.49 (0.48 to 0.49) Indonesia The Islamic Republic of Iran 1.61 (1.57 to 1.64) 1.92 (1.87 to 1.97) Iraq Ireland 0.34 (0.32 to 0.35) Israel 1.36 (1.26 to 1.47) 0.50 (0.48 to 0.52) Italy Jamaica 0.15 (0.11 to 0.19) 0.86 (0.84 to 0.88) Japan Jordan 1.55 (1.48 to 1.61) Kazakhstan 1.38 (1.36 to 1.40)

| Kenya                            | 0.60 (0.56 to 0.65)  |
|----------------------------------|----------------------|
| Kiribati                         | 0.55 (0.34 to 0.76)  |
| North Korea                      | 1.01 (0.98 to 1.03)  |
| The Republic of Korea            | 1.07 (1.03 to 1.11)  |
| Kuwait                           | 1.81 (1.72 to 1.91)  |
| Kyrgyz Republic                  | 1.28 (1.19 to 1.38)  |
| Lao People's Democratic Republic | 1.43 (1.34 to 1.53)  |
| Latvia                           | 0.50 (0.46 to 0.55)  |
| Lebanon                          | 1.29 (1.13 to 1.45)  |
| Lesotho                          | 0.50 (0.43 to 0.56)  |
| Liberia                          | 0.21 (0.15 to 0.27)  |
| Libya                            | 0.73 (0.71 to 0.75)  |
| Liechtenstein                    | 0.46 (0.15 to 0.77)  |
| Lithuania                        | 0.62 (0.57 to 0.68)  |
| Luxembourg                       | 0.73 (0.62 to 0.83)  |
| Madagascar                       | 0.32 (0.29 to 0.36)  |
| Malawi                           | 0.44 (0.37 to 0.51)  |
| Malaysia                         | 0.38 (0.37 to 0.40)  |
| Maldives                         | 0.71 (0.65 to 0.76)  |
| Mali                             | 1.28 (1.22 to 1.33)  |
| Malta                            | 0.14 (-0.03 to 0.32) |
| Mauritania                       | 1.08 (1.04 to 1.13)  |
| Mauritius                        | 0.09 (-0.05 to 0.23) |
| Mexico                           | 0.99 (0.96 to 1.02)  |
| Federated States of Micronesia   | 0.64 (0.49 to 0.79)  |
| Moldova                          | 0.58 (0.52 to 0.64)  |
| Mongolia                         | 0.93 (0.91 to 0.95)  |
| Montenegro                       | 0.61 (0.54 to 0.68)  |
| Morocco                          | 0.63 (0.61 to 0.66)  |
| Mozambique                       | 0.41 (0.36 to 0.46)  |
| Myanmar                          | 1.89 (1.81 to 1.97)  |
| Namibia                          | 1.11 (1.07 to 1.15)  |
| Nepal                            | 1.83 (1.71 to 1.96)  |
| Netherlands                      | 0.55 (0.49 to 0.62)  |
| New Zealand                      | 0.62 (0.59 to 0.66)  |
| Nicaragua                        | 0.25 (0.22 to 0.28)  |
| Niger                            | 1.23 (1.19 to 1.28)  |
| Nigeria                          | 0.72 (0.64 to 0.81)  |
| North Macedonia                  | 0.71 (0.64 to 0.77)  |
| Norway                           | 0.31 (0.30 to 0.33)  |
| Oman                             | 1.47 (1.38 to 1.57)  |
| Pakistan                         | 1.90 (1.84 to 1.97)  |
| Panama                           | 0.29 (0.26 to 0.32)  |
| Papua New Guinea                 | 0.34 (0.31 to 0.37)  |
|                                  |                      |

Paraguay Peru Philippines Poland Portugal Qatar Romania Russian Federation Rwanda Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Slovak Republic Slovenia Solomon Islands Somalia South Africa Spain Sri Lanka St. Lucia St. Vincent and the Grenadines Sudan Suriname Sweden Switzerland Syrian Arab Republic Tajikistan Tanzania Thailand Timor-Leste Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Uganda Ukraine United Arab Emirates United Kingdom United States

0.82 (0.76 to 0.88) 0.48 (0.46 to 0.51) 0.48 (0.47 to 0.49) 0.60 (0.57 to 0.62) 0.81 (0.71 to 0.90) 1.60 (1.42 to 1.78) 0.58 (0.55 to 0.60) 0.24 (0.24 to 0.25) 0.27 (0.16 to 0.39) 0.08 (0.00 to 0.17) 1.21 (1.20 to 1.23) 1.41 (1.28 to 1.54) 0.67 (0.63 to 0.71) 0.16 (0.08 to 0.23) 0.18 (0.12 to 0.24) 0.49 (0.28 to 0.70) 0.70 (0.65 to 0.75) 0.64 (0.59 to 0.69) 0.26 (0.22 to 0.30) 0.76 (0.74 to 0.78) 0.79 (0.77 to 0.82) 0.75 (0.71 to 0.78) 0.66 (0.61 to 0.70) 0.20 (0.12 to 0.28) 0.17 (0.07 to 0.26) 1.00 (0.97 to 1.03) 0.27 (0.23 to 0.30) 0.38 (0.37 to 0.40) 0.54 (0.49 to 0.60) 1.78 (1.70 to 1.85) 1.72 (1.61 to 1.82) 0.25 (0.22 to 0.28) 1.13 (1.07 to 1.20) 0.97 (0.88 to 1.06) 0.24 (0.17 to 0.31) 0.21 (0.14 to 0.28) 0.74 (0.70 to 0.78) 1.40 (1.36 to 1.43) 1.80 (1.76 to 1.83) 0.18 (0.13 to 0.22) 0.56 (0.54 to 0.57) 1.67 (1.63 to 1.72) 0.38 (0.37 to 0.40) 0.65 (0.64 to 0.65)


| Uruguay                              | 0.77 (0.74 to 0.79) |
|--------------------------------------|---------------------|
| Uzbekistan                           | 1.81 (1.77 to 1.85) |
| Vanuatu                              | 0.49 (0.40 to 0.57) |
| The Bolivarian Republic of Venezuela | 0.25 (0.24 to 0.27) |
| Vietnam                              | 0.79 (0.74 to 0.85) |
| West Bank and Gaza                   | 1.32 (1.15 to 1.50) |
| The Republic of Yemen                | 1.34 (1.30 to 1.37) |
| Zambia                               | 0.80 (0.74 to 0.86) |
| Zimbabwe                             | 1.10 (1.05 to 1.15) |

| Country/Region                  | Percentage excess in mortality (%) | Excess deaths per 100,000 residents |
|---------------------------------|------------------------------------|-------------------------------------|
| Global                          | 3.4 (2.2 to 4.6)                   | 26 (17 to 35)                       |
| Americas                        | 2.7 (1.5 to 4.0)                   | 17 (9 to 25)                        |
| Northern America                | 3.2 (1.8 to 4.5)                   | 25 (15 to 36)                       |
| Latin America and the Caribbean | 2.3 (1.1 to 3.5)                   | 13 (6 to 19)                        |
| Europe                          | 1.6 (0.8 to 2.3)                   | 17 (9 to 26)                        |
| Northern Europe                 | 1.5 (0.9 to 2.1)                   | 13 (8 to 19)                        |
| Eastern Europe                  | 1.3 (0.5 to 2.2)                   | 19 (6 to 31)                        |
| Western Europe                  | 1.7 (1.0 to 2.4)                   | 16 (9 to 22)                        |
| Southern Europe                 | 2.1 (1.4 to 2.8)                   | 19 (13 to 25)                       |
| Africa                          | 1.7 (0.5 to 3.0)                   | 17 (5 to 30)                        |
| Northern Africa                 | 3.6 (2.4 to 4.9)                   | 21 (14 to 28)                       |
| Sub-Saharan Africa              | 1.5 (0.3 to 2.7)                   | 16 (3 to 30)                        |
| Asia                            | 4.7 (3.5 to 5.9)                   | 31 (23 to 40)                       |
| South-eastern Asia              | 3.2 (2.1 to 4.3)                   | 19 (12 to 26)                       |
| Western Asia                    | 5.7 (4.6 to 6.7)                   | 28 (23 to 33)                       |
| Central Asia                    | 5.1 (3.8 to 6.5)                   | 33 (25 to 42)                       |
| Southern Asia                   | 5.3 (4.0 to 6.7)                   | 39 (29 to 48)                       |
| Eastern Asia                    | 4.3 (3.2 to 5.5)                   | 29 (22 to 37)                       |
| Oceania                         | 3.2 (1.0 to 5.4)                   | 20 (6 to 34)                        |
| Australia and New Zealand       | 3.8 (1.5 to 6.1)                   | 23 (9 to 38)                        |
| Other regions in Oceania        | 1.3 (-0.6 to 3.3)                  | 9 (-4 to 22)                        |

Table S6. Average annual percentage excess in mortality and excess deaths per 100,000 residents due to temperature variability in 2000–19 by continent and region.

| Climate classification             | Percentage excess in mortality (%) | Excess deaths per 100,000 residents |  |
|------------------------------------|------------------------------------|-------------------------------------|--|
|                                    |                                    | • /                                 |  |
| Group A: Tropical climates         | 2.1 (0.9 to 3.4)                   | 16 (7 to 25)                        |  |
| Group B: Dry climates              | 6.0 (4.6 to 7.5)                   | 43 (33 to 54)                       |  |
| Group C: Temperature climates      | 3.4 (2.5 to 4.3)                   | 26 (19 to 33)                       |  |
| Group D: Continental climates      | 2.3 (1.4 to 3.3)                   | 22 (13 to 32)                       |  |
| Group E: Polar and alpine climates | -2.6 (-9.3 to 4.6)                 | -18 (-65 to 33)                     |  |

Table S7. Average annual percentage excess in mortality and excess deaths per 100,000 residents due to temperature variability between 2000–19 by the indicators of Köppen-Geiger climate classification.



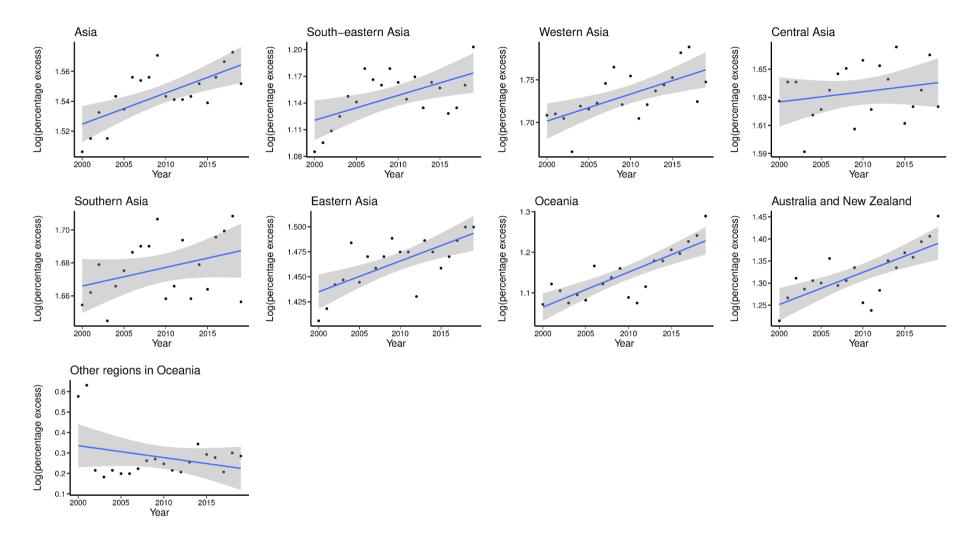
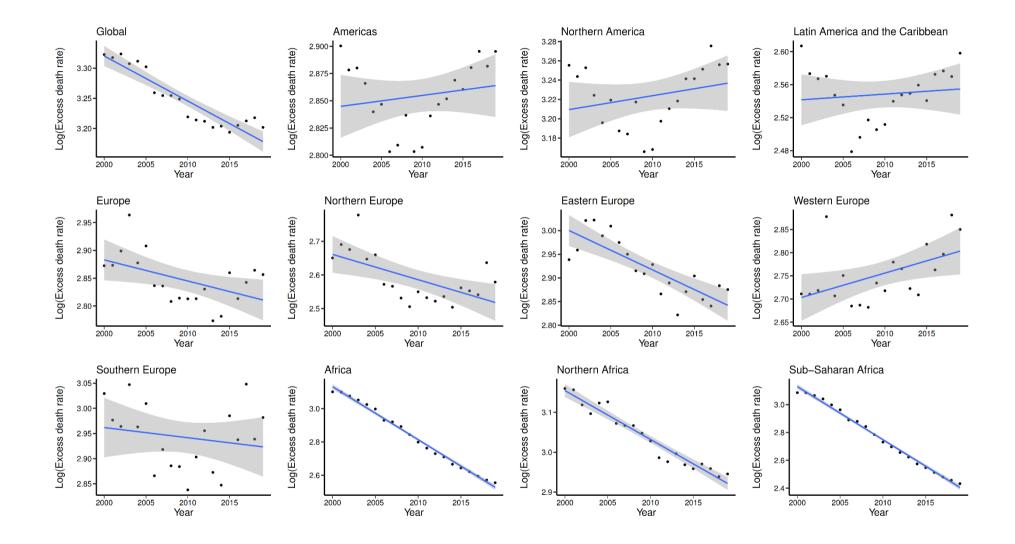




Figure S2. Scatter plots of percentage excess in mortality associated with temperature variability from 2000 to 2019.



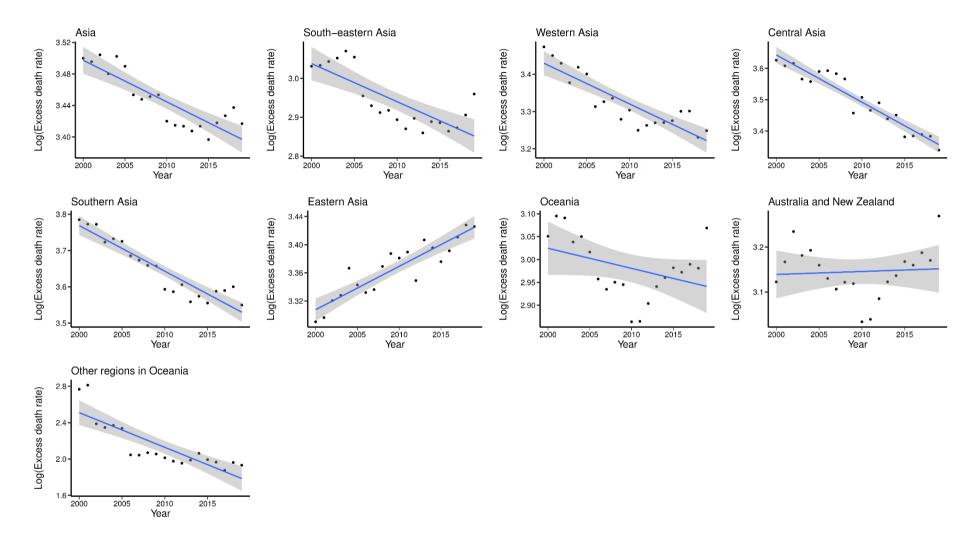



Figure S3. Scatter plots of excess death rate associated with temperature variability from 2000 to 2019.

| Country            | Excess deaths in 2000        |
|--------------------|------------------------------|
| ndia               | 498,171 (369,887 to 628,652) |
| China              | 333,967 (252,328 to 417,660) |
| Pakistan           | 78,735 (62,748 to 94,947)    |
| United States      | 77,861 (46,087 to 110,417)   |
| Indonesia          | 43,903 (28,156 to 59,806)    |
| Japan              | 41,437 (29,993 to 53,158)    |
| Russian Federation | 29,652 (5,542 to 54,066)     |
| Bangladesh         | 27,872 (18,008 to 37,846)    |
| razil              | 22,650 (11,484 to 33,950)    |
| Myanmar            | 22,119 (15,579 to 28,746)    |
| Ethiopia           | 21,518 (11,030 to 32,131)    |
| Turkey             | 19,647 (16,509 to 22,813)    |
| Nigeria            | 19,476 (-8,904 to 48,276)    |
| Mexico             | 19,410 (13,389 to 25,507)    |
| Iran, Islamic Rep. | 18,742 (14,892 to 22,643)    |
| Egypt, Arab Rep.   | 16,882 (11,524 to 22,313)    |
| Thailand           | 15,805 (9,583 to 22,129)     |
| South Africa       | 15,608 (9,078 to 22,225)     |
| Vietnam            | 14,175 (10,245 to 18,139)    |
| Germany            | 13,022 (8,169 to 17,919)     |
|                    |                              |
| Sudan              | 11,335 (7,561 to 15,169)     |
| 5 Philippines      | 10,612 (6,918 to 14,337)     |

Figure S4. Leading 20 countries of excess deaths in 2000 and 2019.

| Exposure<br>days | Percentage excess in mortality<br>(%) | P for<br>difference | Excess death per 100,000 residents | P for difference |
|------------------|---------------------------------------|---------------------|------------------------------------|------------------|
| TV 0-1           | 2.5 (1.9 to 3.2)                      | 0.21                | 19 (14 to 24)                      | 0.21             |
| TV 0–2           | 2.3 (1.6 to 3.1)                      | 0.13                | 18 (12 to 24)                      | 0.13             |
| TV 0–3           | 2.4 (1.6 to 3.2)                      | 0.17                | 18 (12 to 25)                      | 0.17             |
| TV 0-4           | 2.6 (1.7 to 3.5)                      | 0.30                | 20 (13 to 27)                      | 0.30             |
| TV 0–5           | 2.9 (1.9 to 3.9)                      | 0.55                | 22 (15 to 30)                      | 0.55             |
| TV 0-6           | 3.2 (2.1 to 4.3)                      | 0.78                | 24 (16 to 32)                      | 0.78             |
| TV 0–7           | 3.4 (2.2 to 4.6)                      | Reference           | 26 (17 to 35)                      | Reference        |
| TV 0-8           | 3.6 (2.4 to 4.8)                      | 0.83                | 27 (18 to 37)                      | 0.83             |
| TV 0–9           | 3.6 (2.4 to 5.0)                      | 0.77                | 28 (18 to 38)                      | 0.77             |
| TV 0–10          | 3.8 (2.4 to 5.2)                      | 0.66                | 29 (19 to 39)                      | 0.66             |

Table S8. Average annual global percentage excess in mortality and global excess deaths per 100,000 residents due to temperature variability in 2000–19 on different exposure days.

| Parameters                                          | Excess death<br>ratio (%) | P for<br>difference | Excess deaths per 100,000 residents | P for<br>difference |
|-----------------------------------------------------|---------------------------|---------------------|-------------------------------------|---------------------|
| Main model                                          | 3.4 (2.2 to 4.6)          | Reference           | 26 (17 to 35)                       | Reference           |
| Df/per year for seasonality and long-<br>term trend |                           |                     |                                     |                     |
| 6                                                   | 3.5 (2.3 to 4.7)          | 0.91                | 27 (18 to 35)                       | 0.91                |
| 8                                                   | 3.5 (2.4 to 4.7)          | 0.86                | 27 (18 to 36)                       | 0.86                |
| Df for lag-response curve of temperature            |                           |                     |                                     |                     |
| 5                                                   | 3.3 (2.2 to 4.5)          | 0.91                | 25 (17 to 34)                       | 0.92                |
| 6                                                   | 3.2 (2.1 to 4.4)          | 0.86                | 25 (16 to 33)                       | 0.86                |
| Lag period of temperature                           |                           |                     |                                     |                     |
| 24                                                  | 3.3 (2.1 to 4.4)          | 0.87                | 25 (16 to 34)                       | 0.87                |
| 28                                                  | 3.1 (2.0 to 4.3)          | 0.77                | 24 (15 to 33)                       | 0.77                |
| Different knots for temperature                     | 3.5 (2.3 to 4.6)          | 0.91                | 27 (18 to 35)                       | 0.91                |

Table S9. Results of sensitivity analyses on global percentage excess in mortality and global excess deaths per 100,000 residents.

| Table S10. Results of sensitivity analyses on overall TV-mortality association based on 500 locations with |
|------------------------------------------------------------------------------------------------------------|
| relative humidity data.                                                                                    |

| Models                    | Coefficient | Standard error | P for difference |
|---------------------------|-------------|----------------|------------------|
| With relative humidity    | 0.0049      | 0.0002         | Reference        |
| Without relative humidity | 0.0052      | 0.0002         | 0.29             |

|                                 | Percentage excess in mortality (%)                     |                                               |  |  |
|---------------------------------|--------------------------------------------------------|-----------------------------------------------|--|--|
| Region                          | Counterfactual scenario of grid-specific<br>minimum TV | Counterfactual scenario of no TV<br>variation |  |  |
| Global                          | 2.2 (1.5 to 2.9)                                       | 3.4 (2.2 to 4.6)                              |  |  |
| Americas                        | 1.6 (0.9 to 2.4)                                       | 2.7 (1.5 to 4.0)                              |  |  |
| Northern America                | 1.9 (1.1 to 2.7)                                       | 3.2 (1.8 to 4.5)                              |  |  |
| Latin America and the Caribbean | 1.4 (0.7 to 2.0)                                       | 2.3 (1.1 to 3.5)                              |  |  |
| Europe                          | 1.2 (0.6 to 1.8)                                       | 1.6 (0.8 to 2.3)                              |  |  |
| Northern Europe                 | 1.0 (0.6 to 1.5)                                       | 1.5 (0.9 to 2.1)                              |  |  |
| Eastern Europe                  | 1.1 (0.4 to 1.8)                                       | 1.3 (0.5 to 2.2)                              |  |  |
| Western Europe                  | 1.2 (0.8 to 1.7)                                       | 1.7 (1.0 to 2.4)                              |  |  |
| Southern Europe                 | 1.4 (1.0 to 1.9)                                       | 2.1 (1.4 to 2.8)                              |  |  |
| Africa                          | 1.0 (0.2 to 1.7)                                       | 1.7 (0.5 to 3.0)                              |  |  |
| Northern Africa                 | 1.7 (1.1 to 2.3)                                       | 3.6 (2.4 to 4.9)                              |  |  |
| Sub-Saharan Africa              | 0.9 (0.1 to 1.6)                                       | 1.5 (0.3 to 2.7)                              |  |  |
| Asia                            | 3.0 (2.3 to 3.8)                                       | 4.7 (3.5 to 5.9)                              |  |  |
| South-eastern Asia              | 1.7 (1.1 to 2.3)                                       | 3.2 (2.1 to 4.3)                              |  |  |
| Western Asia                    | 3.6 (3.0 to 4.3)                                       | 5.7 (4.6 to 6.7)                              |  |  |
| Central Asia                    | 3.9 (2.9 to 4.9)                                       | 5.1 (3.8 to 6.5)                              |  |  |
| Southern Asia                   | 3.5 (2.6 to 4.4)                                       | 5.3 (4.0 to 6.7)                              |  |  |
| Eastern Asia                    | 2.8 (2.1 to 3.6)                                       | 4.3 (3.2 to 5.5)                              |  |  |
| Oceania                         | 2.1 (0.7 to 3.6)                                       | 3.2 (1.0 to 5.4)                              |  |  |
| Australia and New Zealand       | 2.5 (1.0 to 4.1)                                       | 3.8 (1.5 to 6.1)                              |  |  |
| Other regions in Oceania        | 0.8 (-0.3 to 2.0)                                      | 1.3 (-0.6 to 3.3)                             |  |  |

 Table S11. Average annual percentage excess in mortality under the counterfactual scenario of grid-specific

 minimum temperature variability by continent and region.

### **References:**

1. Xu R, Zhao Q, Coelho MSZS, et al. Socioeconomic inequality in vulnerability to allcause and cause-specific hospitalisation associated with temperature variability: a time-series study in 1814 Brazilian cities. *The Lancet Planetary Health* 2020; **4**(12): e566-e76.

2. Yang J, Zhou M, Li M, et al. Vulnerability to the impact of temperature variability on mortality in 31 major Chinese cities. 2018; **239**: 631-7.

3. Ma C, Yang J, Nakayama SF, Honda YJEi. The association between temperature variability and cause-specific mortality: Evidence from 47 Japanese prefectures during 1972–2015. 2019; **127**: 125-33.

4. Yi WZ, Zhang XL, Pan RB, et al. Quantifying the impacts of temperature variability on hospitalizations for schizophrenia: A time series analysis in Hefei, China. *Science of the Total Environment* 2019; **696**: 133927.

5. Guo Y, Gasparrini A, Armstrong BG, et al. Temperature variability and mortality: a multi-country study. *Environmental health perspectives* 2016; **124**(10): 1554-9.

6. Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. *Lancet* 2015; **386**(9991): 369-75.

7. Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series regression studies in environmental epidemiology. *Int J Epidemiol* 2013; **42**(4): 1187-95.