
RESEARCH ARTICLE

Characterising spatial patterns of neglected

tropical disease transmission using integrated

sero-surveillance in Northern Ghana

Kimberly M. FornaceID
1,2*, Laura SenyonjoID

3, Diana L. Martin4, Sarah Gwyn4,

Elena Schmidt3, David AgyemangID
5, Benjamin Marfo6, James AddyID

6, Ernest Mensah7,

Anthony W. SolomonID
1,8, Robin BaileyID

1, Chris J. DrakeleyID
1, Rachel L. Pullan1

1 Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London,

United Kingdom, 2 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,

Glasgow, United Kingdom, 3 Research Team, Sightsavers UK, Haywards Heath, United Kingdom, 4 Division

of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United

States of America, 5 Ghana Office, Sightsavers, Accra, Ghana, 6 Neglected Tropical Disease Team, Ghana

Health Service, Accra, Ghana, 7 FHI 360, Accra, Ghana, 8 Department of Control of Neglected Tropical

Diseases, World Health Organization, Geneva, Switzerland

* Kimberly.Fornace@lshtm.ac.uk

Abstract

Background

As prevalence decreases in pre-elimination settings, identifying the spatial distribution of remain-

ing infections to target control measures becomes increasingly challenging. By measuring multi-

ple antibody responses indicative of past exposure to different pathogens, integrated serological

surveys enable simultaneous characterisation of residual transmission of multiple pathogens.

Methodology/Principal findings

Here, we combine integrated serological surveys with geostatistical modelling and remote

sensing-derived environmental data to estimate the spatial distribution of exposure to multi-

ple diseases in children in Northern Ghana. The study utilised the trachoma surveillance sur-

vey platform (cross-sectional two-stage cluster-sampled surveys) to collect information on

additional identified diseases at different stages of elimination with minimal additional cost.

Geostatistical modelling of serological data allowed identification of areas with high probabil-

ities of recent exposure to diseases of interest, including areas previously unknown to con-

trol programmes. We additionally demonstrate how serological surveys can be used to

identify areas with exposure to multiple diseases and to prioritise areas with high uncertainty

for future surveys. Modelled estimates of cluster-level prevalence were strongly correlated

with more operationally feasible metrics of antibody responses.

Conclusions/Significance

This study demonstrates the potential of integrated serological surveillance to characterise

spatial distributions of exposure to multiple pathogens in low transmission and elimination

settings when the probability of detecting infections is low.
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Author summary

Following implementation of successful interventions, one of the primary challenges for

neglected tropical disease programmes is identifying areas with remaining disease trans-

mission. As disease prevalence decreases, these infections become increasingly rare and

hard to detect. Serological assays measure long-lived disease-specific antibody responses

indicating past exposure to pathogens and increase the probability of detecting disease

transmission. Here, we integrate serological assays with environmental and spatial data to

map priority areas for surveillance for multiple neglected tropical diseases in Northern

Ghana using the two-stage cluster-based survey platform established for trachoma surveil-

lance. The use of multiplex bead assays measuring exposure to multiple pathogens allows

integrated surveillance of diseases of interest to the national control programme. We iden-

tify areas with high risks of transmission to selected diseases as well as areas with high

uncertainty which are priorities for future control and surveillance efforts. Together, this

highlights the utility of multiplex serological platforms as a tool for integrated surveillance

and mapping of neglected tropical diseases.

Introduction

Neglected tropical diseases (NTDs), such as trachoma, schistosomiasis, onchocerciasis, lym-

phatic filariasis and soil-transmitted helminthiases, cause substantial public health burdens

globally. With increasing investment in NTD control, elimination and eradication pro-

grammes, community-based surveys are used to monitor impacts of interventions, identify

residual transmission and target high-risk populations [1,2]. These data are frequently ana-

lysed using geostatistical models, relating infection metrics to environmental and spatial covar-

iates to define the geographical extent of transmission, predict disease burdens and prioritise

areas of uncertainty [3,4]. However, as countries move towards elimination, infections become

increasingly rare and difficult to monitor through community-based surveys. Such challenges

are currently faced by NTD control programmes operating in Northern Ghana where tra-

choma elimination was achieved in 2018 and only isolated transmission is reported for oncho-

cerciasis and other NTDs [5,6]. New approaches are needed to cost-effectively identify

remaining infections and areas at high risk of recrudescence.

As transmission of infectious diseases decrease, the probability of detecting infections

becomes correspondingly low and requires prohibitively large sample sizes to identify infec-

tions. For many diseases, this also corresponds with more pronounced spatial heterogeneity,

with transmission concentrated in specific geographic areas or sub-populations [7–9]. Serolog-

ical assays are potentially sensitive tools in these contexts; by measuring specific antibody

responses reflecting previous exposure to pathogens, changes in transmission can be detected

over longer durations in higher proportions of populations [10]. This enables estimation of the

force of infection and historical transmission intensities using age-stratified antibody magni-

tudes or longitudinal sampling, allowing exploration of control measure impacts over time

[11–14]. These sero-epidemiological methods have been applied to NTDs including trachoma,

lymphatic filariasis, schistosomiasis, and onchocerciasis as well as enteropathogens and are

strongly correlated with commonly used metrics of infection prevalence (e.g. [13,15–17]).

The development of multiplex serological assays increases the operational feasibility of sero-

logical techniques by enabling measurement of a broad range of responses with high repeat-

ability from limited blood samples. Multiplex bead assays (MBA) are a well-validated method

to measure population-level serological responses to a wide panel of NTDs, malaria, vaccine
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preventable diseases and other infections [18]. These assays allow measurement of antibody

responses to multiple pathogens simultaneously for relatively low cost, creating new opportu-

nities for integrated serological surveillance and maximising the benefit of limited resources

[19,20]. Applying these integrated approaches can detect populations at high risks of multiple

infections, identifying public health gaps and allowing targeting of coordinated interventions.

Further, analysis of these data within geostatistical modelling frameworks provides new oppor-

tunities to characterise the spatial distribution of multiple diseases and identify environmental

factors driving residual transmission [21]. Geostatistical modelling typically also allows greater

precision of estimates using fewer data points than conventional analytical approaches [22].

Despite increasing collection of serological data, challenges remain in translating these data

into actionable programmatic information [23]. Spatial analysis of serological data is compli-

cated by the duration of antibody responses and frequency of exposure to infection; while it is

possible to map seropositivity, resulting maps may reflect historical exposure rather than cur-

rent transmission and have limited utility to programmes. Additionally, applying commonly

used geostatistical modelling approaches to quantitative antibody responses may not capture

outlying values of high responders, likely representing individuals recently or repeatedly

exposed to a pathogen. A recent study demonstrated how the force of infection calculated

from paired serological surveys could be used to quantify spatial heterogeneity of schistosomi-

asis transmission, showing close correlation with other routinely collected measures of schisto-

somiasis infection intensity [24]. While highlighting the utility of serological assays to

characterise spatial patterns of transmission, this modelling approach utilises surveys of the

same area over multiple time points to quantify transmission over time, data not routinely col-

lected by NTD programmes. Alternatively, for diseases such as malaria and cholera, detailed

longitudinal cohort studies have identified markers of recent exposure or been used to train

machine learning approaches to estimate sero-incidence; however, these cohort data are not

available for most NTDs [25,26].

Here, we adapt a commonly used Gaussian mixture model and binomial geostatistical mod-

els to describe the spatial distribution of antibody responses to multiple diseases in a popula-

tion-based survey of children in Northern Ghana. Conducted as part of routine surveillance

for trachoma elimination, this survey utilised a two-stage cluster-sampling population-based

survey design and identified very low levels of the sign “trachomatous inflammation—follicu-

lar”, a finding supported by estimates of seroconversion rates [27–29]. Although this low prev-

alence precludes modelling the spatial distribution of infection, geostatistical modelling of

serological data allows prioritisation of geographical areas of potential risk of recrudescence

that can be targeted for future trachoma post-validation surveillance efforts. As this survey

used a systematically- and randomly- sampled population-based approach rather than pur-

poseful sampling, assessment of spatial patterns of other disease transmission is possible.

Using multiplex serological data, we demonstrate how an integrated surveillance approach can

be used to estimate the geographical distribution of exposure to other pathogens within this

population and identify areas with previously unknown elevated risks of multiple diseases

requiring prioritisation for national surveillance programmes.

Methods

Ethics statement

This study was approved by the Ghana Health Service Ethics Review Committee (GHS-ERC:

03/07/15) and the London School of Hygiene & Tropical Medicine (10285). Written informed

consent was sought from parents or guardians of all participating children. Verbal assent was
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additionally obtained from children who were able to provide this. The CDC investigators

were not considered to be engaged in human subjects research.

Survey and laboratory methods

This study was conducted in the Northern, North East, Savanna and Upper West regions of

Ghana in a predominantly rural agricultural population (Fig 1). The climate is tropical and ele-

vations range from sea level to 900 metres above sea level. This area includes several national

parks and multiple rivers, including tributaries to the Volta [27]. From 2015–2016, two-stage

cluster-sampled population-based surveys were conducted as part of trachoma elimination

pre-validation activities [27]. Briefly, clusters (villages) were sampled with probability propor-

tional to size and households selected using compact segment sampling across 18 evaluation

units. All children aged 1–9 years were eligible for inclusion. These ages were targeted as youn-

ger children have the highest risk of active trachoma and the primary purpose of the survey

was to provide evidence for the validation of elimination of trachoma in Ghana. Basic demo-

graphic data and GPS coordinates of household locations were collected electronically using

Open Data Kit (www.getodk.org).

All children from consenting households provided a finger-prick blood sample, which was

collected and stored on filter paper (Trop-Bio, Townsville, Australia) and processed at the U.S.

Centers for Disease Control and Prevention as previously described [28]. Using a multiplex

bead assay (MBA), immunoglobulin G antibody responses were measured to the following

antigens: Pgp3 trachoma (Chlamydia trachomatis), Wb123 lymphatic filariasis (Wucheria ban-
crofti), Ov16 onchocerciasis (Onchocerca volvulus), NIE strongyloidiasis (Strongyloides

Fig 1. Study site in Northern Ghana; administrative shapefiles obtained from National Information Technology

Agency (NITA), Government of Ghana (https://data.gov.gh/dataset/shapefiles-all-districts-ghana-170-districts).

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion

whatsoever on the part of the authors, or the institutions with which they are affiliated, concerning the legal status of

any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

https://doi.org/10.1371/journal.pntd.0010227.g001
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stercoralis), soluble egg antigen (SEA) schistosomiasis (Schistosoma mansoni), rp17 and TmpA

yaws (Treponema pallidum), VSP3 giardiasis (Giardia lamblia). Glutathione s-transferase

(GST) was used as a negative control. MBA were conducted using standard methods [28].

Antibody responses were quantified as median fluorescence intensity (MFI) for each antigen

and sample. We excluded samples that had an MFI value for GST over 1000 (3 samples

excluded, median GST MFI = 4, IQR: 2–7), which indicates high background levels and unreli-

able measurements.

Classification of seropositivity

In the absence of standard controls or clinically characterised sera to determine cut-off values,

Gaussian mixture models are commonly used to determine seropositivity, modelling antibody

responses as latent populations for a user-defined number of distributions. These distributions

can then be used to define antigen-specific cut-off values dependent on the number of observa-

tions and ranges of values. While these algorithms are frequently applied to differentiate sero-

negative and seropositive populations, this approach can be extended to include more than

two components, with components corresponding to different degrees of pathogen exposure

[30]. As programmes require data on the distribution of recent exposure operationally, and

environmental and spatial data reflected current conditions, we fit a three-component Gauss-

ian mixture model to log-transformed antibody data. We assumed these components corre-

sponded to unexposed, historically exposed and recently or repeatedly exposed populations

[31]. While antibody responses may have differing numbers of components, we chose to use a

three-component mixture model specifically to identify individuals with the highest MFI

responses likely to be recently exposed. Other approaches, such as modelling continuous anti-

body response data, may characterise mean antibody response levels but are unlikely to accu-

rately capture outliers. Similarly, approaches using a predefined centile of the highest

responders may identify the individuals with highest likelihoods of recent exposure but cannot

be used to assess prevalence as the percentage positive is predetermined [32]. Using an

approach described for enteropathogens, where high intensity and repeated exposure is

observed in young children, we fit mixture models to children aged under 3 years to ensure

sufficient proportions of unexposed individuals that would enable characterisation of the sero-

negative population [15]. Mixture models were informed by priors on the expected propor-

tions of individuals in each component based on published data and consultations with the

NTD programme (Table A in S1 Text). For example, we assumed a low prior probability of

recent or historical yaws due to previous reports of elimination in this area [33]. For geostatis-

tical modelling, we defined seropositive individuals as individuals belonging the highest com-

ponent and most likely to have recent or repeated exposure.

Environmental and spatial data

We assembled plausible spatial and environmental covariates including population density

[34], travel time to the nearest city [35], insecticide treated bednet coverage, soil types [36], for-

est cover [37] and bioclimatic factors representing long-term and more recent historical

annual trends, seasonality and extreme or limiting environmental factors [38]. Topographic

wetness index was calculated from a digital elevation model [39] and Euclidean distance to

roads and water bodies were calculated at 30m resolution from Open Street Map data [40]

(Table A in S1 Text). Normalised difference vegetation index and normalised difference water

index were calculated from cloud-free composites of Landsat data during the survey time

period [41]. Pearson correlation analysis was used to assess multicollinearity between variables,

excluding variables with correlation coefficients > 0.75. Models were fit separately to assess
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exposure to each pathogen and covariates were selected based on the Bayesian information cri-

teria (BIC) of the most parsimonious non-spatial binomial regression model for each disease

and residual spatial autocorrelation was assessed using Moran’s I. To generate covariates for

predictions, we resampled all data to 1000m resolution and extracted values. We excluded all

national parks and protected areas [42].

Geostatistical modelling

Final models were developed within a Bayesian hierarchical modelling framework. In addition

to including identified covariates, these models also used a geostatistical modelling approach

to account for residual spatial autocorrelation not explained by these covariates. For each dis-

ease, we fit separate models with p(xi) denoting the seroprevalence at locations xi, i = 1. . .n,

with mi individuals sampled per location. The full model was specified as:

Yi � Binomialðmi; pðxiÞÞ

With the linear predictor for the binomial model specified as:

logitðpðxiÞÞ ¼ b0 þ dðxiÞ
0βþ wi

Where β0 represents the intercept, d(xi)0β represents a vector of location specific covariate

effects and wi represents the spatial effect. Weakly informative priors of Normal (0, 100) were

used for intercepts and fixed effect coefficients and penalised complexity priors were used for

the spatial effect [43]. As Moran’s I showed significant spatial autocorrelation for all diseases

modelled, we additionally fit models with the spatial effect modelled as a Matern covariance

function between locations sj and sk:

W � Multivariate Normal ð0;SÞ

Sjk ¼ Cov x sj
� �

; x skð Þ
� �

¼ Cov xj; xk

� �
¼

s2

GðlÞ2l� 1
ðkjjsi � skjjÞ

lKl kjjsj � skjj
� �

Final models were assessed using the deviance information criteria (DIC) and conditional pre-

dictive ordinate (CPO). All models were implemented in R statistical software version 3.6

using Integrated Nested Laplace Approximation (INLA), using 1,000 samples to estimate pos-

terior probabilities [44].

To prioritise areas for future sampling, we calculated exceedance probabilities for a thresh-

old of 10% seroprevalence of high responders. We chose a threshold of 10% as this indicates

on-going transmission in most settings, although this threshold could be adjusted based on

programmatic requirements. These exceedance probabilities represent the probability that an

area has over 10% seroprevalence, enabling visualisation of high-risk areas as well as identifica-

tion of areas with high uncertainty [45]. Priority areas with high probabilities of multiple dis-

eases were identified by overlaying classified exceedance probabilities. To define areas with

high probabilities of recent exposure, we classified high-risk areas as areas with 70% or greater

probabilities of exceeding the 10% seroprevalence threshold. We additionally classified areas

where further data are needed to estimate serological exposure. These areas were classified as

having exceedance probabilities between 40–60%, indicating further data are needed to deter-

mine whether these areas are above or below this threshold.

As fitting geostatistical models is likely not feasible for most control programmes, we com-

pared estimates of seroprevalence derived from geostatistical models to more simple metrics of

exposure which included the arithmetic mean, geometric mean, median, coefficient of varia-

tion and standard deviation of cluster MFI values. To evaluate these, we calculated the mean
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posterior estimates of seroprevalence for all households within each cluster from geostatistical

models. Exploratory analysis identified the strongest correlation between arithmetic mean and

seroprevalence. To further assess this metric, relationships between estimated seroprevalence

and arithmetic mean MFI values per cluster were explored using B-spline regression, with

optimal degrees selected using BIC.

Results

A total of 10993 children from 201 clusters across 9 districts were sampled between November

2015 and April 2016. Data on 154 children were excluded due to high background or incom-

plete GPS data, resulting in a final dataset of 10840 children from 3444 households. The

median age of children included was 5 years (IQR: 3–7), with roughly equal numbers of male

and female children included (50.3% male, n = 5531). Distributions of antibody responses var-

ied by pathogen (Fig A in S1 Text). Age-specific patterns of antibody responses were markedly

different between antigens (Fig A in S1 Text). Antibody responses for VSP3, SEA and NIE all

showed high responses in very young age groups, consistent with previous literature describ-

ing high exposure in very young children [15]. To further explore age-specific antibody

responses, we compared densities between different age groups (Fig B in S1 Text). Using mix-

ture models, we estimated seroprevalence and identified the distribution of MFI responses

within the highest component (Table 1).

Using these data, we identified environmental and spatial risk factors for household sero-

prevalence of high responders for each disease. As the seroprevalence for yaws was very low,

consistent with available data from this region [33], we excluded these antigens from spatial

modelling. Final models identified different effects of covariates, with most diseases showing

some association with climatic factors (Table 2). Varying spatial effects were observed across

diseases; however, model fit was improved by the inclusion of spatial terms for all diseases.

Within Northern Ghana, we predicted the probability of exceeding the 10% seropositivity

at 1000m resolution (Fig 2). Using these exceedance probabilities, we identified regions with

high probabilities of recent transmission of multiple diseases (Fig 3A). We also found areas

with high probabilities of multiple diseases, such as at the western border of the study area; this

may indicate poor coverage by health programmes, human movement from neighbouring

countries or other risk factors. We additionally identified priority areas for future surveys

based on high uncertainty; these were defined as having exceedance probabilities between 40

and 60%, indicating models were not able to determine whether these regions were above or

below 10% seropositivity (Fig 3B).

Table 1. Estimates of seroprevalence by antigen and disease, including distributions of responses for all individuals and individuals classified as exposed.

MFI (median, IQR)

Disease Antigen Exposed (p, %) All individuals Exposed

Trachoma Pgp3 201 (1.9%) 10 (6–20) 9870 (2517–26115)

Lymphatic Filariasis Wb123 54 (0.5%) 161 (79–326) 5688 (3633–9096)

Onchocerciasis Ov16 116 (1.1%) 5 (3–7) 1002 (486–4294)

Strongyloidiasis NIE 278 (2.6%) 43 (24–81) 865 (530–2192)

Schistosomiasis SEA 1460 (13.5%) 275 (143–531) 1029 (871–1302)

Giardiasis VSP3 967 (8.9%) 315 (115–1219) 15630 (10424–23933)

Yaws rP17 19 (0.2%) 16 (11–25) 1842 (1208–20565)

TmpA 8 (0.1%) 6 (4–9) 3722 (467–13088)

https://doi.org/10.1371/journal.pntd.0010227.t001
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Table 2. Mean posterior estimates of coefficients of fixed effects and spatial range, including 95% Bayesian credi-

ble intervals (BCI).

Covariate� 95% BCI

Mean 2.5% 97.5%

a. Trachoma Pgp3

Annual precipitation (mm) -0.568 -1.079 -0.066

Mean precipitation of warmest quarter (1970–2000), (mm) 0.182 -0.100 0.454

Mean precipitation of coldest quarter (1970–2000), (mm) 0.999 0.274 1.735

Mean temperature (1970–2000), (˚C) -1.225 -1.754 -0.709

Minimum temperature (1970–2000), (˚C) 1.155 0.450 1.861

Accessibility, (hours to city) 0.106 -0.117 0.319

Soil type (water pH at 0cm) 0.252 -0.002 0.507

Spatial range (km) 17.416 8.016 34.97

b. Lymphatic filariasis Wb123

Mean temperature (1970–2000), (˚C) -1.083 -1.692 -0.403

Minimum temperature (1970–2000), (˚C) 1.008 0.303 1.601

Land surface temperature at night, (2002–2017), (˚C) -0.338 -0.739 0.036

Topographic wetness index 0.289 -0.085 0.637

Population density -0.189 -0.696 0.254

Distance to roads (km) 0.176 -0.096 0.413

Soil type (water pH at 0cm) 0.776 0.291 1.255

Spatial range (km) 43.01 8.852 141.62

c. Onchocerciasis Ov16

Annual precipitation (mm) -0.348 -0.833 0.147

Land surface temperature at night, (2002–2017), (˚C) -0.686 -1.046 -0.344

Topographic wetness index -0.343 -0.721 0.013

Accessibility, (hours to city) 0.501 0.010 0.978

Soil type (proportion of silt at 0cm) 0.310 -0.040 0.666

Spatial range (km) 29.83 14.67 55.17

d. Schistosomiasis SEA

Mean precipitation of warmest quarter (1970–2000), (mm) 0.528 0.347 0.710

Mean precipitation of coldest quarter (1970–2000), (mm) 0.619 0.439 0.800

Mean temperature, (1970–2000), (˚C) 0.620 0.440 0.799

Distance to water bodies, (km)

Normalised difference vegetation index

-0.167

0.214

-0.347

0.104

0.012

0.325

Distance to roads, (km) -0.381 -0.564 -0.197

Spatial range (km) 7.102 6.420 8.054

e. Strongyloidiasis NIE

Annual precipitation (mm) 0.326 0.037 0.615

Mean precipitation of warmest quarter (1970–2000), (mm) -0.245 -0.525 0.035

Mean precipitation of coldest quarter (1970–2000), (mm) -0.575 -0.890 -0.260

Minimum temperature, (1970–2000), (˚C) -0.222 -0.506 0.061

Insecticide treated net coverage

Population density

0.213

-0.100

-0.062

-0.209

0.488

0.009

Soil type (silt at 0cm) -0.158 -0.367 0.050

Distance from roads (km) 0.349 -0.059 0.757

Spatial range (km) 26.235 3.458 98.559

f. Giardia VSP3

Annual precipitation (mm) 0.113 -0.032 0.257

Mean precipitation of warmest quarter (1970–2000), (mm) -0.180 -0.304 -0.056

(Continued)
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When simple metrics of cluster MFI values were compared to the exceedance probabilities

for all households within the cluster, the arithmetic mean MFI showed the strongest correla-

tion with mean posterior estimates of cluster seroprevalence. Heterogeneity between MFI val-

ues allowed identification of high-risk clusters (Fig 4). Relationships between these metrics

were nonlinear and highly variable for all diseases surveyed, with arithmetic mean MFI values

closely associated with cluster-level seroprevalence for high burden diseases (e.g. schistosomia-

sis) but less correlated for lower burden diseases (Fig C in S1 Text). However, for all diseases

surveyed, prioritising clusters with the highest mean MFI values would enable targeting clus-

ters with the highest probabilities of recent exposure.

Discussion

This study demonstrates the utility of geostatistical modelling of integrated serological surveys

to characterise spatial patterns of NTDs and other pathogens. Despite the increasing use of this

Table 2. (Continued)

Covariate� 95% BCI

Mean 2.5% 97.5%

Mean precipitation of coldest quarter (1970–2000), (mm) -0.332 -0.498 -0.166

Land surface temperature at night, (2002–2017), (˚C) -0.107 -0.211 -0.003

Minimum temperature, (1970–2000), (˚C)

Normalised difference vegetation index

-0.137

-0.111

-0.288

-0.200

0.013

-0.021

Spatial range (km) 12.315 2.880 33.69

� All covariates mean-centred and scaled

https://doi.org/10.1371/journal.pntd.0010227.t002

Fig 2. Posterior estimates of the probability of exceeding 10% seroprevalence of high responders to A) Trachoma

Pgp3; B) Lymphatic filariasis Wb123; C) Onchoceriasis Ov16; D) Strongyloidiasis NIE; E) Schistosomiasis SEA; F)

Giardiasis VSP3; administrative shapefiles obtained from National Information Technology Agency (NITA),

Government of Ghana (https://data.gov.gh/dataset/shapefiles-all-districts-ghana-170-districts).

https://doi.org/10.1371/journal.pntd.0010227.g002
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MBA, to our knowledge, this is the first study integrating multi-disease data within geostatisti-

cal frameworks. By estimating proportions of individuals with elevated antibody levels suggest-

ing recent exposure, we demonstrate how serological data can be combined with

contemporaneous spatial and environmental data. These geostatistical models of serological

data broadly reflect known disease status, while additionally highlighting some previously

unknown foci of possible transmission. This could become a valuable tool for control pro-

grammes operating in low transmission settings where probabilities of detecting infections are

extremely low. In these cases, analysis of serological data within geostatistical frameworks

enables identification of environmental and spatial risk factors associated with residual trans-

mission and allows prioritisation of areas for future control and surveillance efforts. Further,

we demonstrate how simple metrics of antibody responses can provide actionable information

to control and elimination programmes to prioritise areas with high probabilities of

transmission.

Although a large body of literature explores the utility of serological assays as measures of

transmission, these data are rarely analysed within geostatistical frameworks and then primar-

ily for single diseases (e.g. [21,46]). This is in part due to the challenges linking serological

data, which may represent past exposure, with spatial and environmental data representing

current locations and conditions. While in some cases, simple maps of serological data may be

Fig 3. Combining disease measures to A) identify regions with high probabilities of exceeding 10% seroprevalence

(exceedance probabilities> 70%); and B) identify regions with high uncertainty (exceedance probabilities 40–60%);

administrative shapefiles obtained from National Information Technology Agency (NITA), Government of Ghana

(https://data.gov.gh/dataset/shapefiles-all-districts-ghana-170-districts).

https://doi.org/10.1371/journal.pntd.0010227.g003

Fig 4. Arithmetic mean MFI values per cluster by region.

https://doi.org/10.1371/journal.pntd.0010227.g004
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sufficient to delineate the boundaries of transmission or monitor infection introductions,

identification of areas of on-going transmission of a previously endemic disease requires esti-

mation of recent exposure. There remains no standard approach for classifying seropositivity

from these MBAs, with reference values typically only available for vaccine preventable dis-

eases [19]. Similar to previous studies, we identified very high rates of exposure to entero-path-

ogens in young children, necessitating fitting mixture models using subsets of the youngest

children to ensure sufficient unexposed individuals [15]. In the absence of longitudinal data

on antibody kinetics, identifying high responses can act as a proxy for recent or repeated expo-

sure. Within this study, a three-component mixture model was used to identify the highest

responders for each antigen. While this has the advantage of identifying individuals with the

highest antibody titres and priorities for future surveillance, estimates of seropositivity should

be interpreted cautiously as this may not represent all exposed individuals. Similarly, public

health implications of groups identified with high responses may vary by disease and epidemi-

ology within this context. If more detailed longitudinal measurements were available, future

studies could explore mechanistic modelling of antibody dynamics to more accurately identify

exposure groups (e.g. [47,48]). However, the correlation between serological estimates and

other metrics of disease transmission strongly supports the use of these assumptions.

Within this setting, serological data support other estimates of NTD burdens and associated

environmental risk factors within Northern Ghana. These results are consistent with previous

findings of very low prevalence of trachoma and additionally demonstrate how serology may

be employed to identify areas for post-elimination surveillance for potential recrudescence

[27,28]. Additionally, analysis of serological data on exposure to endemic pathogens can be

used to prioritise areas with high probabilities of recent transmission or high uncertainty for

one or multiple diseases, to identify targets for future control or surveillance efforts. In particu-

lar, examination of areas with high uncertainty reveals key knowledge gaps. For example,

despite strong associations with distance from water and other environmental predictors,

household-level prevalence of schistosomiasis is unknown for most of the study sites due to

the extremely high focality of the disease. These levels of focality may not be represented by

school-based or other indicator surveys not capturing the full distribution of schistosomiasis

within the community. The uncertainty in model results also reflects the distribution of sam-

pling points; visualisation of this uncertainty allows prioritisation of areas for future surveys.

This has important implications both when planning surveillance and when allocating treat-

ment at larger administrative units, as is commonly done for mass drug administration [49].

Geostatistical modelling of serological data representing exposure to multiple pathogens

has important implications for survey design. The systematic and random population-based

sampling strategy used for trachoma mapping enabled assessment of the distribution of other

NTDs; this approach would not have been feasible with purposive sampling. For example, this

study identified a focus of onchocerciasis with a significant prevalence of anti-Ov16 antibodies

in children aged 1–9 years in Saboba-Cherepon. Previous mapping of onchocerciasis in this

area through the Rapid Epidemiological Mapping of Onchocerciasis (REMO) in 2009 deter-

mined this to be an area of hypo-endemicity, not requiring onchocerciasis specific MDA at

that time. Since then, the area has been treated for lymphatic filariasis, which includes the

delivery of ivermectin (the drug also given in MDA for onchocerciasis) and the expectation

had been this would also impact on O. volvulus transmission. However, lymphatic filariasis

MDA ceased in 2014, and these serological data indicate an increase in onchocerciasis previ-

ously unknown to GHS and as a direct result of the integrated surveillance approach, GHS

decided to start MDA specifically for onchocerciasis in this focus (personal communication,

Ghana Health Service). While further work is required to confirm transmission and disease

burdens may have changed since 2015, this identifies a priority area for surveillance.
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For control and elimination programmes needing to make operational decisions quickly

without access to technical expertise needed to develop geostatistical models, very simple met-

rics can be applied to identify locations at high risk of transmission. While the relationship

between arithmetic mean MFI values and estimated seroprevalence is not linear, prioritising

control activities at clusters with the highest mean MFI values would likely ensure that inter-

ventions are reaching communities with the highest seroprevalence. This agrees with previous

studies showing high correlation between mean quantitative antibody levels and other infec-

tion-based metrics of NTD transmission [14,24]. As serological samples can be collected using

finger-prick blood sampling with no need for cold chains in the field, this is an operationally

attractive and cost-effective method compared to many other diagnostics. This utility is further

increased by the ability to multiplex, allowing information to be collected for multiple diseases

of public health importance [19,50]. Ideally, future studies could compare metrics obtained by

integrated serological surveys with routinely used diagnostics to enable more efficient applica-

tion for disease mapping surveys and treatment decisions.

Despite the value of this approach, this study had several important limitations. As this

study does not include adults, further validation of these methods may be required in settings

with very high historical transmission and exposure in older age groups. While serological sur-

veys of children are likely to be a better marker of recent rather than historical exposure, the

utility of this approach will vary for specific diseases and associated risk factors. For trachoma,

young children under 9 are believed to be the primary source of infection. In contrast, children

aged under 5 years have lower risks of onchocerciasis and schistosomiasis, which predomi-

nantly impact school-aged children and adults with high-risk occupational activities. This

highlights a key methodological challenge of integrated surveys targeting multiple diseases

with different risk groups and transmission mechanisms. Additionally, this analysis relied on a

single dataset collected over one time point. These diseases may additionally have differing

immune responses, antibody kinetics and infection periods and longitudinal data may be able

to more accurately identify recent infections or characterise transmission [48]. The uncertainty

identified within these models may be further reduced by inclusion of other data and surveil-

lance information and cannot be considered a reflection of the current knowledge of disease

control across this region. However, the Bayesian framework used can be easily extended to

incorporate other sources of information, such as pairing serological data with infection data

[51].

Despite these limitations, this study demonstrates how integrated serological surveillance

can characterise the spatial distribution of exposure to multiple pathogens. An adaptable

framework is provided to understand the spatial and environmental factors driving transmis-

sion in elimination settings when infection data are rare. As countries approach elimination,

this study additionally highlights the need for innovative surveillance approaches utilising pop-

ulation representative sampling to maximising efficiency by collecting data across multiple dis-

eases. Applying these techniques can provide valuable information for control programmes

needing to identify and target remaining foci of infection.
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