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Abstract 

Background. The association between fine particulate matter (PM2.5) and mortality widely 

differs between as well as within countries. Differences in PM2.5 composition can play a role in 

modifying the effect estimates, but there is little evidence about which components have higher 

impacts on mortality. 

Methods. We applied a two-stage analysis on data collected from 210 locations in 16 countries. 

In the first stage, we estimated location-specific relative risks (RR) for mortality associated with 

daily total PM2.5 through time series regression analysis. These estimates were then pooled in a 

meta-regression model that included city-specific logratio-transformed proportions of seven 

PM2.5 components as well as meta-predictors derived from city-specific socio-economic and 

environmental indicators.  

Results. We found significant associations between RR and several PM2.5 components. 

Increasing the ammonium (NH4
+) proportion from 1 to 20%, while keeping a relative average 

proportion of other components, increased the RR from 1.0063 (95%CI: 1.0030-1.0097) to 

1.0101 (95%CI:1.0069 -1.0133). Conversely, the same increase in nitrate (NO3
-) resulted in a 

reduced RR, from 1.0100 (95%CI: 1.0067-1.0133) to 1.0063 (95%CI: 1.0032-1.0095). 

Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk. 

Conclusions. These findings can contribute to the identification of more hazardous emission 

sources. Further work is needed to understand the health impacts of PM2.5 components and 

sources given the overlapping sources and correlations among many components.  
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Introduction   

Particulate matter (PM) is a major environmental risk factor to which the Global Burden of 

Diseases attributed between 4.1 and 5 million deaths worldwide in 2017.1 In particular, evidence 

on short-term associations between exposure to fine particulate matter (PM2.5) and total and 

cause-specific mortality are well established,2,3 although  with some heterogeneity both between4 

and within countries.5,6  

A potentially key factor explaining such geographical differences is the variation in the chemical 

composition of PM2.5, mostly related to different sources. PM2.5 is a complex chemical mixture of 

various liquid droplets and solid particles varying in size, chemical composition, and other 

factors.7,8 Some components are naturally present in the atmosphere, whereas others emanate 

from anthropogenic activities, either as direct emissions (primary components) or after chemical 

reactions in the atmosphere (secondary components). The proportions of the components vary 

substantially across locations,9 and some components may be more harmful to health than others. 

The present study focuses on a comprehensive classification of the main chemical components of 

PM2.5 that are sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), the three of them forming the 

group of secondary inorganic aerosols, as well as black carbon (BC), organic carbon (OC), 

mineral dust (DUST) and sea salt (SS).10 SO4
2- and NO3

- originate from the oxidation of sulphur 

and nitrogen oxides, whose sources include fossil fuel combustion (e.g. coil, gas, and oil) as well 

as volcanoes. The third secondary inorganic aerosol, NH4
+, originates mainly from fertilizer use 

and livestock.11 Organic components, OC and BC, are emitted by all types of combustion, the 

former being more associated with residential sources such as biofuel and wildfire,9,12 while the 

latter is often related to transportation emissions.13 DUST contains coarser particles transported 
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from deserts,14,15 as well as street, road dust and industrially emitted particles such as metals and 

cement.16,17 Finally, SS originates from sea spray and is thus more prominent in coastal areas.10  

Many of the components described above have been previously studied, either alone such as 

BC18,19 and DUST,14,15 or together as effect modifiers.20,21 Nonetheless, results widely vary 

among studies with important heterogeneity found in meta-analyses.22 This may be due in part to 

the difficulty of modelling compositions data, as well as limitations in disentangling component-

specific effects from analyses performed in single locations or countries with relatively 

homogeneous composition of PM. 

The objective of the present study is to identify and compare the all-cause mortality risks 

associated with the main chemical components of PM2.5, takindg advantage of statistical 

methodologies for compositional data analysis methods  and a large international database 

gathered within the Multi-Country Multi-City (MCC) Collaborative Research Network. 

Methods 

Data 

The data consists of city-level daily time series of all-cause mortality, measured PM2.5 

concentrations and temperature, as well as estimated annual PM2.5 composition and socio-

economic indicators from the MCC database. We selected the cities with at least one full year of 

available data, and then restricted the analysis to 1999-2017, the period with available PM2.5 

composition data (see below) and the four previous years, allowing more stable estimates for 

some countries such as the US. The final dataset includes 210 urban areas in 16 countries. Table 

1 summarizes data for each represented country. Details are provided in eAppendix A. 
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For each city, we extracted the average annual PM2.5 components mass concentration estimates 

for the period 2003-2017 from a global reconstruction model.10 We then divided each component 

by the sum of all seven components to obtain relative composition and computed the average 

composition across the whole period. Details are given in eAppendix  A. We also gathered the 

proportion of people aged 65 years and older, the gross domestic product per capita, the total 

buit-up area, the average and range of temperature as well as the greenness. Details about specific 

measures and years covered by each variable are given in eAppendix B (eTable 1). 

Statistical analysis 

The statistical analysis followed a two-stage design, first estimating a relative risk (RR) 

associated with a 10 𝜇𝑔/𝑚3 increase in PM2.5 at the city level, and then modeling the 

heterogeneity of these RRs in a meta-regression model. The analysis was entirely performed 

using the R software version 4.1.023 with additional packages dlnm,24 mixmeta,25 

compositions,26 and zCompositions.27 

First-stage modeling 

At the city level, we performed a time series analysis with a quasi-Poisson regression model 

consistently with a previously published study.4 Briefly, total PM2.5 mass entered the model 

linearly as a 2-day moving average to account for both same-day and one-day delayed effects. 

We accounted for confounding by mean air temperature using a cubic B-spline of its 4-day 

moving average with knots at the 10th, 75th, and 90th percentiles. Finally, the model also included 

a factor for day-of-week to account for weekly cycles in mortality and a natural spline of time 

with seven degrees of freedom per year to account for seasonal effects and long-term trends.  
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Definition of transformed components 

The compositional nature and sum-to-one constraint of the components means that they are 

necessarily correlated and cannot be used directly as predictors in a meta-regression model. We 

therefore applied a compositional data methodology based on the additive logratio (ALR) 

approach of Aitchison,28–30 which consists in transforming the compositional dataset 𝑥1, … , 𝑥𝐷 

into 𝐷 − 1 new variables: 

 𝑧𝑘 = log (
𝑥𝑘
𝑥𝐷
) (1) 

for 𝑘 = 1, … ,𝐷 − 1, using the 𝐷𝑡ℎ component as the baseline comparison. This transformation 

allows removing the sum-to-one constraint while retaining the relative information of all 

components 31. Classical statistical analyses can then be performed on the 𝑧𝑘 variables. Note that 

the final results are insensitive to the chosen baseline component 𝑥𝐷 in equation (1).32  

Second-stage modeling 

The second stage consisted of a two-level random-effects meta-regression25 of the first-stage RR 

using the ALR transformed PM2.5 components as meta-predictors: 

 

log(𝑅𝑅𝑖𝑗) = 𝛽0 +∑𝛽𝑘 log (
𝑥𝑖𝑗𝑘

𝑥𝑖𝑗7
)

6

𝑘=1

+ 𝛾1𝑃𝐶𝑖𝑗1 + 𝛾2𝑃𝐶𝑖𝑗2 +𝜔𝑗 + 𝜉𝑖𝑗 + 𝜖𝑖𝑗 (2) 

where log(𝑅𝑅𝑖𝑗) is the coefficient associated with a 10 𝜇𝑔/𝑚3 increase of PM2.5 obtained in the 

first stage of the analysis, for city 𝑖 of country 𝑗. 𝑥𝑖𝑗𝑘 represents the proportion of PM2.5 

component 𝑘 = 1,… ,7 from the average annual PM2.5 mass for city 𝑖 of country 𝑗. We accounted 

for potential confounding from the socio-economic and large-scale environmental variables given 

above by including their first two principal components (𝑃𝐶𝑖𝑗1 and 𝑃𝐶𝑖𝑗2) in the meta-regression 

model, which represented 67% of this dataset’s variance (eFigure 1 in eAppendix B). Random 
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effects were added at the country and city level (𝜔𝑗 and 𝜉𝑖𝑗 respectively), allowing to control for 

confounding due to spatial differences such as climatology or country-specific policies. Finally, 

the 𝜖𝑖𝑗 component represents city level residual error. Model (2) was fitted by restricted 

maximum likelihoog (REML). 

We reported the compositional mean of PM2.5 components for each country. We also reported the 

city and country-level best linear unbiased predictions (BLUPs) of RRs from the meta-regression 

model described above.25,33 The reported RR represent the ratio of predicted mortality for a 10 

𝜇𝑔/𝑚3 increase of PM2.5 compared to its baseline, consistently with recent investigations.2,4,34 

Finally, we also checked the residuals to ensure that there is no apparent bias, heteroscedasticity, 

or departure from normality (see eAppendix C).  

To interpret the results of the meta-regression model in Equation (2), we reported the relative 

excess risk (RER) as the ratio of predicted RRs35 associated with a doubling of the relative 

proportion of each component. In addition, we predicted the RR for a range of values of each 

component 𝑥𝑗. We then interpreted results for each component by comparing predicted RR at 

their lowest and largest observed values to underscore the full scale of effect modification. When 

reporting RR and RER associated to specific components, the sub-composition of other 

components is kept constant under the sum-to-one constraint. 

Effect modification assessment 

To assess how much effect modification is brought by variation in the PM2.5 components in the 

full model (2), we also performed a meta-analysis without any meta-predictors (the “null” 

model), and another one with only the PC of confounding indicators (the “PC only” model). For 

each of the three models, we computed the Cochran Q and 𝐼2 which respectively test the presence 
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of heterogeneity and quantify its proportion between locations unexplained by the second-stage 

meta-regression model.25,36 To decide whether the drop in Q and 𝐼2 between two nested models is 

significant, Wald tests were also conducted.37 These tests assessed whether the 𝛾𝑙 coefficients for 

the PC only model and the 𝛽𝑘 coefficients for the full model can be considered non-null (see 

equation 2). 

Results 

Descriptive statistics 

Table 1 reports summary statistics of the mortality and pollution data aggregated per country. A 

total of almost 15 million deaths were included in the study overall. Figure 1 shows the world 

map with all the cities included in the study and their average observed PM2.5. The highest levels 

of PM2.5 were observed in China, Chile and Mexico. On the other hand, northern countries (i.e., 

Sweden and Canada) as well as Australia showed the lowest PM2.5 levels. 

Figure 2 displays the mean PM2.5 composition in each country. Some countries show stable 

compositions through the years while others reveal widely variable distributions. The wider 

variability is observed in Australia and Mediterranean countries, widely affected by DUST, a 

component that can represent a significant part of PM2.5 in one year and be almost absent the next 

one. DUST particles are usually coarser than other components, thus representing a higher 

proportion of the total mass. Overall, the two components representing the largest fraction of 

PM2.5 are generally SO4
2- and NO3

-, both linked to the burning of fossil fuel. NO3
- is more 

represented in European countries except for Mediterranean ones, while SO4
2- is widely present 

in hotter countries. OC represents a large part of the composition in Nordic countries since it is 

linked to both wildfires and residential wood burning. BC and NH4
+ are overall lower 
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components of the PM2.5 composition. SS represents a visible part of total PM2.5 mass only in 

mostly seaside countries, notably Portugal and the UK. Note that SS is also present in coastal 

locations of many other countries such as the US, although it is not visible in Figure 2 due to the 

large number of inland locations.  

City-specific relative risks 

The RRs for each city are reported in Figure 1 and range from 0.995 in Valladolid (Spain) to 

1.021 in Sendai (Japan), corresponding to mortality changes of -0.5% and 2.1% in association 

with a 10 𝜇𝑔/𝑚3 increase of PM2.5, respectively. Predicted RRs above 1 are found for 202 cities 

among the 210 considered in the analysis. The highest RRs are found in North-America, Mexico, 

and Japan, as well as specific locations in Europe such as Greece. In contrast, lower predicted 

RRs are found in Spain and Finland. eAppendix C provides insight on the location-specific 

residuals from the second-stage meta-regression.  

Effect modification by PM2.5 composition 

Figure 3A reports the RER associated with a doubling of the relative proportion of each 

component. Specifically, we found a significantly positive effect modification of NH4
+, 

suggesting that the RR of PM2.5 increases by 0.08% as NH4
+ doubles. RRs also increase with 

SO4
2- but with important uncertainty as shown by the wide confidence interval. Conversely, an 

increase in NO3
- significantly decreases the RR associated with PM2.5 by around 0.08%. Finally, 

Figure 3A indicates no effect modification from carbonaceous components (BC and OC), and a 

slightly negative effect by SS and DUST although with important uncertainty. 

Figure 3B shows the predicted RRs for PM2.5 within observed ranges of each component, while 

keeping the relative proportions of other components constant and accounting for the sum-to-one 
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constraint. A more direct comparison of the predicted curves along with ternary representations 

are shown in eAppendix D. The logit form of reported curves stems from the ALR transformation 

applied to the components before the meta-regression model (see Equation 2) with the slope 

corresponding to the RER reported in Figure 3A. While all components are associated with 

positive mortality risks, results show substantial variations depending on their proportions.  

Observed proportions of NH4
+ range from 0 to 22% with respective predicted RR of 1.0063 

(95%CI: 1.0030-1.0097) and 1.0102 (95%CI:1.0070-1.0135), while keeping relative average of 

other components constant. RRs also increase with SO4
2-, from 1.0066 (95%CI: 0.9992-1.0140) 

to 1.0092 (95%CI: 1.0035-1.0148) for respective proportions of 6 and 99%. Conversely, an 

increase in the proportion of NO3
- from 1 to 71% is associated with a decrease in the RRs from 

1.0100 (95%CI: 1.0067-1.0133) to 1.0037 (95%CI: 0.9998- 1.0077). The RR curve is flat for 

carbonaceous components (BC and OC), with a constant effect of PM2.5  around 1.0080 

independently of their relative proportion. Finally, a slight decrease is seen from 1.0055 (95%CI: 

0.9995-1.0115) to 1.0047 (0.9975-1.0120) for SS and from 1.0067 (95%CI: 1.0027-1.0108) to 

1.0005 (95%CI: 0.9982- 1.0119) for DUST, although with wide confidence intervals.  

Table 2 reports the assessment of the effect modification by composition. It indicates that 

including the components as meta-predictors significantly reduces residual heterogeneity in the 

meta-regression model. The 𝑄 statistics drops from 473 in the socio-economic and environment 

PC only model to 313 in the full model, with a drop in 𝐼2 from 56% to 36%. A Wald test on 

composition variable coefficients has a p-value of about 0.004, indicating that the composition 

explains part of the heterogeneity. Table 2 also shows that the PC-only model results in a 

negligible drop in residual heterogeneity compared to the null model. Even though the Wald p-
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value is close to the nominal 5%, in the PC-only and full models, the socio-economic and 

environment PCs are associated with approximately null coefficients.  

Discussion 

This study provides original evidence that the mortality risks associated with exposure to PM2.5 

varies depending on the chemical composition of the particulate matter. All the results indicate 

that the heterogeneity in risk to PM2.5 is in large part explained by its composition. While all the 

components are associated with positive relative risks for mortality, changes in their proportion 

modifies the predicted risk. Although the effect modification is illustrated by comparing RRs at 

the lowest and largest values of each component, we acknowledge such changes in the 

composition are not representative of achievable policy results.  

We found higher RR associated with PM2.5 for cities with a larger part of NH4
+ in the mix, but a 

decrease of the RR when the part of NO3
- increases. Surprisingly, we found no effect 

modification associated with carbonaceous components (BC and OC) and DUST, while there 

was important uncertainty about the role of SO4
2- and SS proportion. This uncertainty was 

probably linked to the extreme variability of the former and the rarity of the latter. 

The most interesting result is about the role of ammonium (NH4
+) in enhancing the harmful 

effects of PM2.5. This is a component that has received less attention than others such as BC, OC, 

and SO4
2-, although it is one of the three secondary inorganic aerosols. Recently published studies 

reviewed by the authors have not identified any previous evidence on potential effect 

modification of NH4
+ 20,21,38–41. However, a Canadian cohort study identified NH4

+ as the 

component with the highest coefficient in a model that included all components and total PM2.5 

concentration.42 Interestingly, this is the only previous study we are aware of that used a strategy 
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similar to the compositional data approach considered in this contribution. Few studies focusing 

on the concentration of components rather than their effect modification have reported a positive 

association between mortality and NH4
+ levels, although the analyses included many other 

components.43–46 Besides, confounding by total PM2.5 concentration is rarely accounted for in 

these studies. Some studies also linked agriculture, responsible for the largest part of NH4
+, as the 

most adverse source in Europe and parts of Asia.47   

NH4
+ shows important co-variation with the two other secondary inorganic components (see 

eFigure 8). Indeed, NH4
+ is typically found as ammonium sulfate or ammonium nitrate within 

PM2.5 and likely varies strongly with SO4
2- in some communities and NO3

- or organics in others. 

The effect modifications found for SO4
2- and NO3

-, positive for the former and negative for the 

latter, suggest that ammonium sulfate may be the most harmful one. Further investigation is 

nonetheless needed to disentangle the health effects of ammonium nitrate and ammonium sulfate. 

Evidence on their toxicology is so far inconclusive,48 although secondary inorganic components 

have been linked to the hypothalamus–pituitary–adrenal (HPA) axis, increasing cardiometabolic 

risks.49 It also cannot be ruled out that the adverse effect found might be due to interaction effects 

with other most harmful components.50 Overall, NH4
+ is also the most correlated component with 

the total PM2.5 mass in our dataset (see eTable 2). It has been suggested that ammonia, the main 

precursor of NH4
+, is a major driver of PM2.5, at least in some countries.51–53  

The other important result of our analysis is the observed reduction in RRs for high proportions 

of nitrate (NO3
-) in the composition of PM2.5. Indeed, NO3

- represents a large part of the total 

concentration in northern and central European countries (Estonia, Finland, Germany, 

Switzerland, Sweden, and the UK, see Figure 2), which are areas displaying weaker associations 

between PM2.5 and mortality.4 NO3
- is a secondary product of nitrogen oxides emissions, emitted 
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by gas and oil burning, and is thus mainly related to traffic. Note that in the data used here, it 

presents an important compositional variation value with BC (see eFigure 8), meaning that when 

it increases, NO3
- tends to replace BC. Both are usually considered traffic-related components, 

NO3
- being mainly related to oil and gas combustion while BC also includes all biofuel 

combustion.9 Previous research of sources indicates that traffic is the source most consistently 

associated with health impacts7,54 and with the highest toxicological evidence.55 Since our results 

indicate lower risks associated with NO3
- compared to BC, further work is needed to explore the 

implications of mitigation strategies focusing more heavily on BC emissions compared to NO3
- 

precursors. 

The strengths of the study lie in both the data used, with a large number of cities across multiple 

countries, and the methods applied. It takes advantage of a large international database from the 

MCC network to evaluate how PM2.5 composition affects its association with all-cause mortality. 

A wide heterogeneity in the composition is observed between locations, allowing the comparison 

of different compositional patterns. The study uses state-of-the-art statistical methods, including 

the recently proposed mixed-effects meta-analysis two-stage framework25 and compositional data 

analysis. The mixed-effect framework allows considering several levels of heterogeneity to the 

meta-analysis, which in our study are country and city level. This allows capturing heterogeneity 

at both levels, such as related to differential country-wide and city-specific characteristics, as well 

as climatic or environmental conditions that may modify the association between PM2.5 and all-

cause mortality. Compositional data analysis provides a rigorous framework to analyze the role 

of different constituents of PM2.5. Such data structures are prone to spurious results and 

misinterpretations if not analyzed properly, as already observed by Pearson.56 In the present case, 
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compositional data analysis seems successful in reducing confounding by total PM2.5 mass as 

illustrated by the low correlation on the relative scale shown in eTable 2.  

Although the wide range of locations available is a strength of the study, it has also limitations 

regarding spatial representativeness. Available data were more heavily weighted to high-income 

countries (North America, Europe, and Japan), which means that some types of compositions 

might not be well represented. Further work should focus on gathering and analysing data from 

lower-income countries. A second limitation is related to the measurement of total PM2.5 that 

differs across locations. A part of this uncertainty is nonetheless captured by the country-level 

random effects added to the model. The composition data we used are derived from remote 

sensing rather than station measurements, providing a consistent measure of the compositions 

across locations. However, this also means that this dataset is estimated rather than measured, 

meaning that some level of error and uncertainty in the reconstruction is expected. The difference 

between estimates and actual composition may vary by region and components due to complex 

interactions between diverse emission sources as well as uncertainties in the models generating 

the data.10 Important uncertainty is associated to DUST which also contains industrial metals. 

The other shortcoming of the considered dataset is the lack of data on specific components such 

as metals that have been previously linked to adverse mortality outcomes.22 

The analysis performed here relies on the underlying assumption that the composition of PM2.5 

and its association with mortality have stayed roughly constant during the past 20 years. This 

assumption allows extending city-specific time series for more stable first-stage risk estimation, 

and consider only a limited number of meta-predictor in the second-stage. Besides, Figure 2 

suggests that it is a reasonable assumption with few exceptions (UK and Greece). However, if 

PM2.5 chemical composition impacts the health, the effects of PM2.5 over time are likely to 
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change due to changes in chemical composition; thus this issue warrants further research. The 

first stage analysis also assumes linearity of the dose-response relationship between PM2.5 and 

mortality, although some studies suggest it might be slightly supralinear.4 A potential extension 

of our approach would be to account for temporal differences, both as a long-term trend and as a 

seasonal pattern by using monthly data, as well as to account for potentially nonlinear first-stage 

associations. However, these would require longer time-series than what is available for many 

countries in the MCC dataset, and it poses non-trivial methodological problems. These extensions 

can be the topic of future research.  

Although the model assessments suggest that the results reported above are robust to 

confounding by either socio-economic indicators or specific regional effects, and the residual 

analysis does not show obvious patterns that may have been missed by the model either, some 

residual confounding is still possible. Humidity is not addressed in the first stage because of the 

lack of data in many MCC locations. Removing it from every location allows more consistency 

in the first stage estimates, increasing the power of the second stage meta-regression. The city-

specific socio-economic and large-scale environmental indicators that have been introduced in 

the second stage model only represent a fraction of city-specific characteristics that may affect 

vulnerability to PM2.5, and are limited to a few years. Additional work, is needed to gather a 

larger list of standardized city-specific characteristics in order to better explore socio-economic 

indicators in more detail than the variables used here. 

The main message of the present paper is that PM2.5 composition plays a significant role in the 

observed heterogeneity of mortality risk linked to air pollution and that it necessitates appropriate 

analytical methods. We found that the most harmful component may be ammonium, while we did 

not identify changes in the health impacts of PM2.5 total mass based on the widely studied black 
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carbon and organic carbon components. At the same time, a significant decrease in the health risk 

was associated with higher proportions of nitrates. These results may suggest that specific action 

aimed at ammonia emissions, including the agricultural sector, as well as decreasing the part of 

BC compared to nitrates precursors in traffic-related emissions may prove effective in reducing 

the health impacts of air pollution. These results also suggest the need for studies of ammonium 

nitrate and ammonium sulfate to disentangle the effects of these components. 
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Tables 

Table 1: Description of first-stage data aggregated per country 

Country Cities Data period* Total mortality 
Mean PM2.5 (10 – 90 

percentiles) in μg/m3 

Australia 3 2000-2009 388 122 7.0 (3.2 – 11.9) 

Canada 19 1999-2015 1 824 857 8.0 (2.7 – 15.0) 

Chile 4 2008-2014 293 477 32.1 (8.8 – 59.7) 

China 3 2013-2015 248 716 61.2 (19.9 – 120.4) 

Estonia 1 2008-2015 8 226 9.6 (2.1 – 19.4) 

Finland 1 1999-2014 117 610 16.8 (4.8 – 34.4) 

Germany 11 2004-2015 1 303 058 14.3 (5.4 - 25.4) 

Greece 1 2007-2010 118 034 21.9 (11.5 – 34.0) 

Japan 36 2011-2015 1 292 348 14.3 (5.5 – 25.5) 

Mexico 3 2003-2012 1 148 573 27.0 (14.0 – 41.3) 

Portugal 1 2004-2017 315 615 12.5 (4.9 – 23.2) 

Spain 15 2004-2014 410 043 13.2 (5.0 - 24.0) 

Sweden 1 2001-2010 90 670 8.2 (3.6 - 14.4) 

Switzerland 4 1999-2013 128 779 19.3 (6.7 - 35.8) 

UK 25 1999-2016 1 589 098 12.3 (4.8 - 23.4) 

USA 82 1999-2006 5 494 039 13.0 (5.0 - 23.4) 

* For the first stage only. It may slightly vary within countries because of missing values. 

 

Table 2: Measures of residual heterogeneity for second-stage meta-analysis specification.  

 Cochran Q I2 (%) Wald statistic* p-value* 

Full model 312.6 36.0 19.0 0.0041 

PC only 472.6 56.4 6.8 0.0337 

Null model 500.9 58.5 - - 

* Wald statistic and associated p-value test nested hypotheses compared to the model on the line 

below. 
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Figure Legends 

Figure 1: Locations used in the study with their mean PM2.5 concentration and best linear 

unbiased predictions (BLUPs) of relative risks (RRs) per 10 𝝁𝒈/𝒎𝟑 increase in PM2.5. 

 

Figure 2: Annual geometrical mean of the PM2.5 composition in each country. 

 

Figure 3: Effect modification from each PM2.5 component. A: relative excess risk (RER) 

associated to doubling the relative proportion of each component with 95% confidence interval. 

B: predicted relative risks (RRs) for different values of each component while keeping the other 

constituents constant. The predicted RR is associated with an increase of 10μg/m3 in PM2.5. Thick 

lines indicate the range of observed values for each component, while thin dashed lines indicate 

extrapolations. Coloured bands represent 95% confidence regions.  
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