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Population structure analysis and laboratory
monitoring of Shigella by core-genome multilocus
sequence typing
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Monique Lejay-Collin1, Laëtitia Fabre1, Rayane Rafei2, Dominique Clermont 3, Maria Pardos de la Gandara 1,

Fouad Dabboussi2, Nicholas R. Thomson 4,5 & François-Xavier Weill 1✉

The laboratory surveillance of bacillary dysentery is based on a standardised Shigella typing

scheme that classifies Shigella strains into four serogroups and more than 50 serotypes on

the basis of biochemical tests and lipopolysaccharide O-antigen serotyping. Real-time

genomic surveillance of Shigella infections has been implemented in several countries, but

without the use of a standardised typing scheme. Here, we study over 4000 reference strains

and clinical isolates of Shigella, covering all serotypes, with both the current serotyping

scheme and the standardised EnteroBase core-genome multilocus sequence typing scheme

(cgMLST). The Shigella genomes are grouped into eight phylogenetically distinct clusters,

within the E. coli species. The cgMLST hierarchical clustering (HC) analysis at different levels

of resolution (HC2000 to HC400) recognises the natural population structure of Shigella. By

contrast, the serotyping scheme is affected by horizontal gene transfer, leading to a con-

flation of genetically unrelated Shigella strains and a separation of genetically related strains.

The use of this cgMLST scheme will facilitate the transition from traditional phenotypic typing

to routine whole-genome sequencing for the laboratory surveillance of Shigella infections.
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S higella belongs to the Enterobacteriaceae family, and causes
bacillary dysentery, a common cause of diarrhoea in low-
and middle-income countries. It has been estimated that

this intracellular human pathogen, which is transmitted via the
faecal-oral route with a very low infectious dose (10–100 cells), is
responsible for over 210,000 deaths per year, mostly in children
under the age of 5 years1–3. In high-income countries, Shigella
infections also occur in travellers and in some high-risk groups,
such as men who have sex with men (MSM) and Orthodox
Jewish communities2–5. The morbidity of these infections is
currently increasing due to growing resistance to antimicrobial
drugs in these bacteria2,3,5,6. Since 2016, highly drug-resistant
(i.e., resistant to at least ciprofloxacin, azithromycin and third-
generation cephalosporins) S. sonnei isolates have been found in
the US, England and Australia3.

Laboratory surveillance of Shigella infections was initiated
several decades ago, and was facilitated by the adoption of a
standardised Shigella typing scheme in the late 1940s7. This
scheme, which is still in use today, is based on biochemical tests
and serotyping (slide agglutination with typing sera directed
against the different Shigella lipopolysaccharide O-antigens). It
splits the Shigella genus into four serogroups (originally con-
sidered to be species): Shigella dysenteriae, S. boydii, S. flexneri
and S. sonnei; these four serogroups are then subdivided into
more than 50 serotypes. However, modern population genetics
methods based on bacterial DNA sequences, such as multilocus
sequence typing (MLST) analysis (which analyses the allelic
profiles of — generally seven — housekeeping genes), and, more
recently, core-genome single-nucleotide variant (cgSNV) analysis,
have shown that shigellae form distinct lineages within the species
E. coli, from which they emerged following the acquisition of a
large virulence plasmid (VP) enabling the bacterium to invade
intestinal cells8–11. In parallel, these host-restricted pathogens
converged independently on the Shigella phenotype (non-moti-
lity, no decarboxylation of lysine, no use of citrate and malonate,
and other characteristics, as reported by Pupo and coworkers8)
through genome degradation.

More recent molecular approaches have shown that the current
standardised Shigella typing scheme does not accurately reflect
the population structure of this pathogen8. However, some
molecular data have been taken into account in an update of the
Shigella serotyping scheme. S. boydii serotype 13, for example,
was withdrawn from the classification, because it was shown to
belong to another species, Escherichia albertii, and lacked the
VP12,13.

In an increasing number of countries, the laboratory surveil-
lance of Shigella infections has now passed from conventional
serotyping to real-time genomic surveillance10,14. The genomic
methods used mostly target the O-antigen gene cluster (rfb) or
the S. flexneri serotype-converting prophages, to ensure serotype
specificity14,15. In addition, a set of 22 accessory genome genes
was recently used to reassign Shigella serotypes to eight clusters16.
Whilst these methods maintain backward compatibility between
the genomic and serotyping data, they do not fully exploit the full
resolution of genomic data. Hence, an extension of the MLST
method to cover hundreds to thousands of core-genome genes
has been developed. This high-resolution method, core-genome
MLST (cgMLST), has been successfully used in the surveillance of
many pathogens, including Listeria monocytogenes17 and Salmo-
nella enterica18. Furthermore, cgMLST data are easy to interpret
with clustering threshold methods, such as the hierarchical
clustering (HierCC)19 implemented in EnteroBase18,19. However,
until now, cgMLST has never been used for the comprehensive
description of Shigella populations, and the utility of this method
for the genomic surveillance of Shigella infections has not pre-
viously been assessed.

In this study, we analyse over 4000 genomes from phenoty-
pically characterised Shigella strains representative of the global
diversity of this pathogen. We aimed: (i) to resolve the population
structure of Shigella using cgMLST, (ii) to create a dictionary of
correspondence between cgMLST HC and serotyping data, (iii) to
evaluate the performance of different in silico serotype prediction
tools and (iv) to update the Shigella serotyping scheme by
describing new serotypes. We demonstrate that the combination
of cgMLST HC with rfb gene cluster analysis would enhance the
laboratory surveillance of Shigella infections, while maintaining
backward compatibility with the current serotyping scheme.

Results
Global population structure of Shigella. We assembled and
sequenced a collection of 317 Shigella strains chosen on the basis
of their representativeness of the known diversity of Shigella
populations (i.e., covering all serogroups and serotypes, and the
different lineages or phylogroups of S. sonnei and S. flexneri). The
genomic diversity of this “reference” dataset was further increased
by adding another 81 publicly available Shigella genomes (these
81 genomes representing the “reference+” dataset). The 398
genomes studied were from strains belonging to the S. flexneri
(n= 191), S. dysenteriae (n= 83), S. boydii (n= 80) and S. sonnei
(n= 44) serogroups (Supplementary Table 4). We determined the
wider phylogenetic context of these Shigella genomes by also
analysing 95 E. coli genomes, including 27 EIEC from eight dif-
ferent EIEC genomic clusters and 68 (of the 72) strains from the
ECOR collection, considered representative of the diversity of
natural populations of E. coli20. We studied these 493 genomes by
two different approaches: cgMLST and SNV-based clustering.

We used the EnteroBase Escherichia/Shigella cgMLST (2513
genes) scheme, which also assigns bacterial genomes to single-
linkage hierarchical clusters (HCs) in real-time, at 13 fixed levels
of resolution, ranging from HC0 (high-resolution clusters
consisting of identical genomes with no allelic differences) to
HC2350 (low-resolution clusters consisting of genomes with up
to 2350 allelic differences). A previous evaluation by Zhou and
coworkers19 found that in the genus Escherichia, cluster assign-
ments at the HC2350, HC2000-HC1500, and HC1100 levels
could be used to distinguish species, super-lineages and ST
complexes, respectively. Since these levels of resolution are
appropriate for routine surveillance, we predominantly used
cgMLST HC2000 to HC400 levels to define the naturally,
genetically discrete populations of Shigella (Fig. 1 and Supple-
mentary Fig. 1).

Accordingly, by cgMLST, all 493 genomes belonged to the
same HC2350 cluster (HC2350_1) defining the species Escher-
ichia coli (Supplementary Data 1). As expected, all the Shigella
and EIEC genomes contained the pathogenicity gene ipaH,
whereas the ECOR genomes did not (Supplementary Fig. 2). A
NINJA neighbour-joining (NJ) tree of core genomic allelic
distances was generated with the dataset for the 493 Shigella
and E. coli genomes (Fig. 1a). The differential contribution of the
reference and reference+ datasets to Shigella population diversity
is shown in Supplementary Fig. 2. Visual examination of the
colour-coded HC2000 tree revealed that the Shigella genomes
were grouped into eight different HC2000 clusters (Fig. 1b).
Seven of these HC2000 clusters contained exclusively Shigella
genomes. The eighth, HC2000_2, contained S. dysenteriae type 8
and E. coli (EIEC and ECOR) genomes. Four HC2000 clusters
contained Shigella genomes from a single serotype: HC2000_305
(S. sonnei), HC2000_1463 (S. dysenteriae type 1), HC2000_44944
(S. dysenteriae 10), and HC2000_45542 (S. boydii 12). These
clusters are referred to as SON, SD1, SD10 and SB12, respectively.
Three clusters comprised multiple serogroups and serotypes:
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HC2000_1465, HC2000_4118, and HC2000_192, referred to as
S1, S2 and S3, respectively (Fig. 2–4, Supplementary Notes
sections “Genomic clustering of Shigella reference strains” and
“Discrepancies with published studies”).

The HC2000 clusters could themselves be divided into five or
more HC1100 subclusters (S1a-S1e, S2a-S2f and PG1-PG7). Of
note, identical serotypes were found in different clusters and
subclusters. For example, S. boydii 11 was found in S1b and S2c, S.
dysenteriae 3 in S1a and S1b, and S. flexneri 6 in S1b and S1e

(Table 1). Our analysis extends a polyphyletic nature to the majority
of S. flexneri serotypes and subserotypes, found in S3 (Fig. 4). Each
of these six HC1100 subclusters of S3 contained two or more S.
flexneri serotypes, with identical serotypes found in different
subclusters (Fig. 4b and Table 1). At a higher level of resolution,
10 Shigella serotypes were grouped within specific HC400 clusters,
whereas the other serotypes remained mixed in HC400 clusters or
split between two to seven HC400 clusters (Table 1). However, with
HC1100 and HC400, we found, for S3, a correspondence between
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Fig. 1 Population structure of Shigella spp. based on the cgMLST allelic differences between 493 Shigella and E. coli reference genomes. a A NINJA
neighbour-joining (NJ) GrapeTree with tree nodes colour-coded by Shigella serogroup and E. coli pathovar. b A NINJA NJ GrapeTree with tree nodes colour-
coded by HC2000 data. HC2000 clusters with fewer than two isolates are represented by white nodes. The different Shigella cgMLST clusters are labelled.
For the SON cluster, the different genomic lineages of S. sonnei are indicated with Latin numerals. For the S. flexneri serotypes in cluster S3, the phylogenetic
groups (PG1 to PG7) identified by Connor and coworkers2 are also indicated. The scale bar indicates the number of cgMLST allelic differences. The
interactive version of the tree is publicly available from http://enterobase.warwick.ac.uk/ms_tree?tree_id=55118 and http://microreact.org/project/
kP4HJjriDvAfTS4Ed3Avx8/01568b6f.
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the clustering obtained with cgMLST and that obtained by Connor
and coworkers2, who previously subdivided S. flexneri 1–5, X, Y
into seven phylogenetic groups (PG1-PG7), based on a Bayesian
analysis of population structure (Fig. 4a, Supplementary Notes
section “Genomic clustering of Shigella reference strains”). Finally,
we confirmed that biochemically atypical S. boydii 14 (aerogenic)
and S. dysenteriae 3 (aerogenic and mannitol positive) strains21,22 –
the status of which remained a matter of debate for decades – were
genuine Shigella strains belonging to S1b (Supplementary Notes
section “Aerogenic strains of S. boydii 14 and S. dysenteriae 3”). The
atypical S. dysenteriae 3 strain was derived from a S. flexneri 6 strain
following the acquisition of the S. dysenteriae 3 rfb gene cluster (see
next section “Genomic analysis of the O-antigen gene cluster”).

We evaluated the accuracy of low-resolution cgMLST HCs for
grouping Shigella genomes into different clusters of phylogenetic
significance by employing another approach. We used the same
dataset of 493 Shigella and E. coli genomes to infer two SNV-
based ML trees: one based on 92,688 SNV sites (including
recombinant sites) and the second on 5129 recombination-free
SNVs. We compared these SNV-based clusterings (with strong
bootstrap support) to clusters inferred by cgMLST HC. We found
that the clustering of Shigella populations by HC2000 and by
HC1100 were congruent with both core-genome SNV phyloge-
nies (Fig. 5 and Supplementary Fig. 3). Even though cgMLST
allelic distances (based on allelic changes counted as single genetic
events, regardless of the number of SNVs involved) are reliable
indicators of population structure, especially for routine surveil-
lance tasks, SNVs are generally preferred for more detailed
studies including long-term evolutionary dynamics. This likely
accounts for the topological differences in the deep structures of
cgSNV and cgMLST phylogenetic trees (Figs. 1 and 5 and

Supplementary Fig. 3). Since the focus of this study was the use of
cgMLST for routine surveillance of Shigella infections, resolution
of these ancestral differences was not investigated further.

For confirmation of the robustness of the population structure
of Shigella established by cgMLST analysis of our reference
datasets, we also applied cgMLST to 3870 clinical Shigella isolates
received by the FNRC-ESS between 2017 and 2020 (the “routine”
dataset), in the framework of the French national surveillance
programme for Shigella infections (see the methods section
“Strain selection and typing”). All these isolates were charac-
terised phenotypically, on the basis of biochemical reactions and
serotyping. They belonged to S. dysenteriae (n= 53), S. boydii
(n= 101), S. flexneri (n= 1555) and S. sonnei (n= 2161). All but
one of these 3870 genomes were assigned to known serotype/
HC2000/HC1100/HC400 combinations, without inconsistencies
(Supplementary Data 1 and Supplementary Fig. 4). The exception
was an HC1100_204 (PG2) S. flexneri isolate, grouped into a new
HC400 cluster, HC400_11853. The stability of the cgMLST data
was assessed by comparing allelic differences between pairs of
Shigella isolates recovered from the same patient within months
of each other (Supplementary Table 5). The routine isolates
included 34 such pairs of isolates, each recovered from a single
patient within 90 days (mean interval of 12 days between
samplings). These pairs displayed between 0 and 5 (mean 1.5)
cgMLST differences, for the 2513 alleles tested.

Genomic analysis of the O-antigen gene cluster. The current
typing scheme is mostly based on serotyping (targeting the
variability of the O antigen, the polysaccharide part of lipopoly-
saccharide (LPS), the major bacterial surface antigen) and certain
metabolic markers (Supplementary Notes “Genomic analysis of
metabolic markers used in the current Shigella typing scheme”).

The Shigella O antigen gene cluster (rfb) is located on the
chromosome, except in S. sonnei, in which it is located on a
plasmid. The size of these rfb clusters ranges from 9 kb to 17 kb23.
Consistent with their phylogenetic relationships, the rfb clusters
of Shigella serotypes are identical, highly similar to, or adapted
from E. coli O-antigen gene clusters, accounting for the many
cross-agglutinations observed with the serotyping scheme23. We
extended this analysis to populations not previously considered
(Fig. 6) and showed that similarity between E. coli and Shigella rfb
DNA sequences was also identified in S. dysenteriae 8 and E. coli
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O38, and in S. boydii 22 (formerly S. boydii provisional (prov.)
E1621-54, see next section “Updating the Shigella typing
scheme”) and E. coli O7 (Fig. 7). For both these Shigella
serotypes, cross-agglutination with the corresponding E. coli
serotypes was previously reported by Ewing24. Finally, the rfb
from a new serotype, S. dysenteriae 16, originated from another
species of Escherichia, E. albertii (serotype O2). Our genomic
analysis also revealed very closely related rfb clusters present in
the Shigella strains belonging to polyphyletic serotypes: identities
of 13,192/13,622 (97%), gaps 3/13,622 (0%) between the S. boydii
11 S1b and S2c rfb gene clusters; and identities of 12,800/12,825
(99%) with no gap between the S. dysenteriae 3 S1a and S1b rfb
gene clusters; identities of 10,431/10,448 (99%) with no gap
between the S. flexneri 6 S1b and S1e rfb gene clusters.

Updating the Shigella typing scheme. In recent decades, several
provisional new serotypes of S. dysenteriae and S. boydii have
been suggested25,26. However, the phylogenetic relationships
between these different provisional serotypes have not been

investigated. We characterised these relationships in detail
(Supplementary Notes section “Updating the Shigella typing
scheme”). We found that these provisional serotypes all belonged
to the three main Shigella clusters, S1 to S3 (Fig. 2–4), and that
many of those reported under different names were actually
identical. After curation, the provisional serotypes found to
belong to new serotypes were named S. dysenteriae 16–18, S.
boydii 21 and S. boydii 22, and we propose to add them to the
official serotyping scheme. All new Shigella serotypes possessed
rfb clusters, similar to those found in known E. coli or E. albertii
serotypes. All the reference strains for these new serotypes are
now available from the Collection de l’ Institut Pasteur (CIP) or
the National Collection of Type Cultures (NCTC). However, for
S. dysenteriae prov. BEDP 02-5104, we propose to retain a pro-
visional status, as our analysis (Supplementary Notes section
“Updating the Shigella typing scheme”) suggests that this serotype
is probably a S. dysenteriae 2 strain that has acquired an O-
antigen-modifying plasmid from E. coli or Citrobacter, the
expression of which has replaced the expression of the
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chromosomal genes. This plasmid also carries a raffinose operon,
accounting for the use of this trisaccharide by S. dysenteriae prov.
BEDP 02-5104, a very unusual trait in S. dysenteriae26.

Performance of available in silico serotype prediction tools. In
silico serotyping tools have been developed by various groups,
and can be used to maintain links with the current Shigella

serotyping system. We assessed the performances of the three
tools currently available: the “SeroPred” tool18 (implemented in
EnteroBase), ShigaTyper14 (using a short-read mapping
approach), and ShigEiFinder16 (using either short reads or
assemblies) with our 316 reference strain genomes with known
serotype designations (Supplementary Tables 4, 6 and 7). When
all Shigella serotypes and subserotypes were considered (SeroPred
does not discriminate the serotypes and subserotypes of S. flexneri
1–5, X and Y), the rates of correct assignment were 80.1% (253/
316), 84.5% (267/316) and 83.9% (265/316) for ShigaTyper,
ShigEiFinder (short reads) and ShigEiFinder (assemblies),
respectively. ShigEiFinder gave the best serotype prediction
results, whether based on short reads or assemblies, particularly
for S. sonnei and S. boydii (Fig. 8 and Supplementary Table 6).
However, 100% of the strains belonging to S. boydii 10 and to the
new serotypes S. dysenteriae 17 and S. boydii 21, and 14–20% of
the strains from S. boydii 11, S. boydii 14 and S. dysenteriae 2 were
incorrectly assigned by ShigEiFinder. Furthermore, all the gen-
omes belonging to S. dysenteriae prov. BEDP 02-5104 were
incorrectly predicted to be S. dysenteriae 2, while 83% of the
strains from the new serotype S. dysenteriae 16 were incorrectly
predicted to be S. dysenteriae prov. 96–265, and 17% were not
assigned.

When analysing the 3861 “routine” genomes from isolates with
known serotype designations (9/3870 could not be serotyped,
Supplementary Table 4), 96.2% (3713/3861), 55.9% (2157/3861)
and 80.8% (3120/3861) of the strains were correctly assigned by
ShigaTyper, ShigEiFinder (short reads) and ShigEiFinder (assem-
blies), respectively. ShigEiFinder performed less well than
ShigaTyper with this routine dataset (Fig. 9 and Supplementary
Table 7). In particular, most of the results obtained with short
reads were “uncertain” (i.e., assignment to a Shigella cluster, but
not to a serotype). ShigEiFinder uses 22 accessory genome (non-
O antigen) genes to assign Shigella genomes to eight clusters, with
the serotype assignment based on the Shigella serotype-specific
wzx/wzy genes (and O-antigen modification genes for S. flexneri).
The inferior performance of ShigEiFinder can be explained by the
low read coverage of the AT-rich rfb gene cluster for the “routine”
genomes. Our public health sequencing platform (P2M) uses the
Nextera XT kit (Illumina, San Diego, CA, USA), according to an
in-house protocol, for library preparation, and transposase-based
library generation is known to be biased against AT-rich
sequences14.

Discussion
We present here a broad overview of the population of Shigella.
The hierarchical clustering of cgMLST data and a cgSNV analysis
showed that Shigella strains belong to eight phylogenetically
distinct clusters within the E. coli species. Our results are con-
sistent with previous studies suggesting multiple origins of the
“Shigella” phenotype8,27. However, the higher resolution of
cgMLST and comprehensive sampling from thousands of phe-
notypically characterised isolates and reference strains covering
all serotypes – including provisional serotypes and atypical strains
– made it possible to complete, and in some cases amend, the
Shigella population structure obtained in previous studies.

The 70-year-old Shigella typing scheme, which is still in use
today, was based on biochemical characteristics, antigenic rela-
tionships, and tradition7. We show here that, unlike cgMLST, this
scheme does not reflect the natural population structure of these
bacteria. In particular, the Shigella serogroups/species are artificial
constructs developed from data for antigen and metabolic mar-
kers affected by IS element inactivation or horizontal gene
transfer. The presence and expansion of large numbers of ISs in
Shigella genomes can disrupt coding sequences or cause genome

Table 1 Distribution of the different Shigella serotypes in
clusters S1, S2, and S3 of 398 Shigella reference and
reference+ genomes according to their HC2000, HC1100,
and HC400 data.

Cluster
(HC2000)

Subcluster
(HC1100)

HC400 Serotypea

S1 (1465) S1a (4194) 4194 SD3, SD13, SD15
14,114 SD11, SD12
17,375 SD4
35,330 SD3, SD12, SD14, SD16
35,368 SD6, SD17
44,956 SD9
45,269 SD9
45,271 SD11

S1b (1465) 1465 SB2, SB4, SB11
11,126 SF6
11,341 SF6
13,048 SF6
17,342 SF6
22,378 SD3, SF6
41,808 SB14
45,451 SF6

S1c (1466) 1466 SB1, SB8, SB18, SB19,
SB20, SB21

45,284 SD5
45,300 SB6, SB10
45,420 SB3

S1d (36524) 36,524 SD7
S1e (45518) 45,518 SF6

S2 (4118) S2a (11452) 11,452 SB17
11,601 SB5

S2b (4118) 4118 SB5
11,449 SB16

S2c (11421) 11,421 SB11
S2d (4191) 4191 SD2, SD18

11,444 SB15
11,651 SD2, SD prov. BEDP 02-

5104
44,479 SD2

S2e (7057) 11,413 SB9
11,414 SB9
30,095 SB9
61,169 SB9

S2f (11401) 11,401 SB7
S3 (192) S3 (11429) 11,429 SB22

PG1 (192) 237 SF1a, SF1b, SF1c,
SF3b, SF7b

327 SF1a, SF2b, SF4a, SF4av,
SF4b, SFX, SFY

PG2 (204) 204 SF3a
544 SF3a, SF3b
41,673 SF3a

PG3 (192) 192 SF1a, SF2a, SF2b, SF5a,
SFX, SFXv, SFY, SFYv

PG4 (543) 543 SF3a, SF3b, SFX
12,646 ND
12,706 SF3b, SF4bv
13,955 SF3a
55,988 ND

PG5 (1468) 1468 SF5a, SF5b
11,593 SF5a

PG6 (11594) 11,594 SFY, SFYv
22,583 SFY
41,322 SFXv

PG7 (1530) 1530 SFY
1538 SF4a, SF4av, SFY, SFYv
13,203 SFY

aSB S. boydii, SD S. dysenteriae, SF S. flexneri, ND not determined; polyphyletic serotypes (i.e.,
present in different HC2000 or HC1100 clusters) are highlighted in bold.
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rearrangements and deletions, thereby altering the nature of both
the O-antigen and the rare phenotypic markers identified in this
bacterium with weak metabolic activity9. For example, S. boydii 6
and 20 arose in subcluster 1c following the insertion of a single IS
within the rfb cluster of S. boydii 10 and 1, respectively. Serotype
diversification, which is observed mostly in clusters S1 to S3, also
occurs via horizontal gene transfer of the O-antigen-encoding rfb
cluster from Escherichia or Shigella donors8,28. Horizontal gene
transfer outside of the rfb cluster can also alter the serotype of a

strain, as illustrated particularly clearly by the S3 cluster. All the S.
flexneri strains in this cluster share the same O-antigen backbone
structure, and their serotypes are determined by glucosylation
and/or O-acetylation modifications to the O-antigen tetra-
saccharide repeat, conferred by prophage-encoded gtr and/or oac
genes, respectively15. Plasmid-mediated serotype conversion by
the O-antigen phosphoethanolamine transferase gene (opt) has
also been reported in S. flexneri15. Each of the seven S. flexneri
phylogenetic groups (PGs) described by Connor and coworkers2,
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Fig. 5 Population structure of 493 Shigella and E. coli reference genomes based on core-genome SNVs. This maximum-likelihood phylogenetic tree
genomes are based on 92,688 core-genome single-nucleotide variants (SNVs). Nodes supported by bootstrap values ≥95% are indicated by red dots.
Phylogenetic clades containing Shigella genomes are labelled with the same nomenclature (S1-S3, SON, SD1, SD8, SD10, and SB12) as in Fig. 1. All the
Shigella genomes are also labelled on the right with cgMLST HC2000 and HC1100 data. The scale bar indicates the number of nucleotide substitutions per
variable sites (SNVs).
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based on a cgSNV analysis, contained two or more of these ser-
otypes. This serotyping method does not reflect the genetic
relatedness between Shigella isolates, and has a number of other
disadvantages, including being time-consuming, having intra-
and interspecies cross-reactivity, not allowing for typing of rough
strains and new serotypes14,25. Therefore, modern laboratory
surveillance of Shigella infections should now be based on phy-
logenetically relevant methods rather than simply on molecular
or in silico serotyping10,14–16.

The cgMLST HC analysis provides, in a single step, a wide
range of fixed clustering levels, from HC0 (no allelic differences
allowed) to HC2350 (maximum of 2350 allelic differences
allowed), with a standard and stable nomenclature. In our study,
cgMLST HC analysis at low levels of resolution (HC2000 to

HC400) provided sufficient resolution to monitor the trends in
globally circulating Shigella types. The different clusters of Shi-
gella can be identified with HC2000. Using HC1100 and, in
certain instances HC400, can provide added detail needed to
reveal additional subclusters. This is particularly interesting for
S3, which contains the S. flexneri 1–5, X, and Y serotypes gen-
erated via horizontal gene transfer rather than by vertical descent.
We therefore recommend integrating the seven phylogenetic
groups (PG1-PG7) described for S. flexneri into routine genomic
surveillance for S. flexneri. These PGs can be easily inferred from
cgMLST HC1000/HC400; it is even possible to obtain up to eight
groups (after subdividing PG1 into PG1a and PG1b).

High-resolution subtyping (at strain level) is needed for the
most frequent — and often genetically homogeneous — Shigella
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serotypes, such as S. sonnei and S. flexneri 2a, for the identifica-
tion of a single-source outbreak or to follow up an epidemic
strain. Such studies have traditionally employed cgSNV
analysis4,6. The high-resolution levels of EnteroBase cgMLST,
HC5 and HC10, have been used to detect foodborne outbreaks
caused by Salmonella18,29,30 and enterohaemorragic E. coli31. Our
study aimed to assess the EnteroBase cgMLST tool as a replace-
ment for the current serotyping scheme. However, this study did

not set out to assess the performance of HC5 and HC10 for the
high-resolution subtyping of prevalent Shigella populations. For
these purposes, a robust and practical hierarchical SNV-based
genotyping scheme developed for S. sonnei by Hawkey and
coworkers3 provided more resolution than even the high-
resolution levels of EnteroBase cgMLST. For example, unlike
the hierarchical SNV-based genotyping scheme, HC5 (and even
HC10) could not easily identify the internationally recognised S.
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sonnei epidemic strains, such as those resistant or highly resistant
to multiple drugs that have recently spread among MSM globally.
These epidemic strains were split into multiple HC5 and HC10
clusters with non-informative numbers, in contrast to the find-
ings with the SNV-based genotyping scheme (which indicates the
lineage, clade, subclade, and, when necessary, higher-resolution
genotypes and strains of epidemiological interest, with a human-
readable alias; e.g., 3.6.1.1.2 (CipR.MSM5)). Despite the utility of
our proposed EnteroBase cgMLST-based approach in routine
surveillance, it has clear limitations for the global surveillance of
S. sonnei infections.

Despite the aforementioned limitations in select circumstances,
the use of such standardised cgMLST HC data makes it possible
to query EnteroBase, which contains over 160,000 E. coli/Shigella
genomes, to identify strains with similar HC types at any level of
resolution. This can facilitate the investigation of unusual types of
Shigella (e.g., our analysis of the provisional serotypes) or out-
breaks with an international dimension32.

Importantly, the use of cgMLST HC data in surveillance should
be paired with in silico serotyping to achieve backward compat-
ibility with the current serotyping scheme. This is crucial for the
maintenance of international surveillance with laboratories that
cannot currently afford genomic surveillance and to prevent
disjunction with the seven decades of serotyping data accumu-
lated worldwide. To this end, we found that ShigaTyper14 and
ShigEiFinder16 were promising tools. However, both require

optimisation in the choice of molecular targets for certain ser-
otypes. The complete set of rfb sequences provided by our study
would be helpful for improving them. ShigEiFinder also requires
optimisation of the read mapping thresholds used to determine
the presence or absence of the O-antigen genes.

In conclusion, by studying >4000 serotyped reference strains
and routine isolates covering the overall diversity of Shigella, we
were able to demonstrate that cgMLST is a robust and portable
genomic method revealing natural populations for this pathovar
of E. coli. The cgMLST method has substantial added value in the
framework of the laboratory monitoring of Shigella, as it prevents
genetically unrelated strains from being conflated, and genetically
related strains from being separated. However, we strongly
recommend combining cgMLST with in silico serotyping to
maintain backward compatibility with the current Shigella ser-
otyping scheme.

Methods
Strain selection and typing. In total, 4187 Shigella reference strains and clinical
isolates were studied (Supplementary Data 1). Two datasets were used. The first
dataset – the “reference” dataset – consisted of 317 Shigella reference strains
covering all the known serotypes – including provisional serotypes – from various
geographic locations (53 countries on four continents) and time periods (1913 to
2019). These strains originated from the French National Reference Centre for E.
coli, Shigella, and Salmonella (FNRC-ESS), Institut Pasteur, Paris, except for
11 strains belonging to provisional serotypes and provided by the Public Health
Agency of Canada, Winnipeg, Canada; the Centers for Disease Control and
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Prevention, Atlanta, USA; the Tokyo Metropolitan Research Laboratory of Public
Health, Tokyo, Japan; and the International Centre for Diarrhoeal Disease
Research, Bangladesh, Dhaka. This “reference” dataset included 44 S. sonnei from
four different lineages33, 16 S. dysenteriae type 1 (ref. 34) and 98 S. flexneri ser-
otypes 1–5, X and Y belonging to the seven phylogenetic groups (PGs) described
previously2,5.

The second dataset – the “routine” dataset – consisted of 3870 clinical isolates
received and sequenced by the FNRC-ESS between 2017 and 2020 in the
framework of the French national surveillance programme for Shigella infections.
This programme is based on a voluntary laboratory-based network consisting of
~1000 clinical laboratories located in mainland France and its overseas territories
in South America, the Caribbean and Indian Ocean, which send ~1000–1200
Shigella isolates to the FNRC-ESS each year (only 600 in 2020, due to the COVID
pandemic). This surveillance system has been estimated to detect 50–60% of
laboratory-confirmed Shigella infections in France35. Between 2017 and 2020, 3942
clinical isolates were received and sequenced at the FNRC-ESS, and we included
the 3870 genomes that passed the quality control criteria of EnteroBase. All these
strains and isolates were thoroughly characterised with a panel of biochemical tests
and serotyped by slide agglutination assays according to standard protocols, as
previously described36. Additional typing sera against KIVI 162 and SH-105 were
provided by the International Centre for Diarrhoeal Disease Research, and the
Public Health Agency of Canada, respectively.

DNA extraction and sequencing. Total DNA was extracted with the Wizard
Genomic DNA Kit (Promega, Madison, WI, USA), the Maxwell 16-cell DNA pur-
ification kit (Promega) or the MagNA Pure DNA isolation kit (Roche Molecular
Systems, Indianapolis, IN, USA), in accordance with the manufacturer’s recom-
mendations. The 4187 strains and isolates were sequenced with different Illumina
platforms. FqCleanER version 3.0 (https://gitlab.pasteur.fr/GIPhy/fqCleanER) was
used to eliminate adaptor sequences37, correct sequencing errors38 and discard low-
quality reads. Assemblies were generated with SPAdes39 version 3.15.

Other studied genomes. With the aim of capturing the broadest possible diversity
of Shigella populations, we searched the E. coli/Shigella database in EnteroBase18, and
selected 81 additional Shigella genomes (“reference+” dataset) not originating from
the Institut Pasteur (Supplementary Methods section “Other studied genomes”). We
included 27 enteroinvasive E. coli (EIEC) and 68 E. coli strains from the E. coli
reference (ECOR) collection (Supplementary Methods section “Other studied gen-
omes”), to place our Shigella genomes in the phylogenetic context of the broader
diversity of E. coli. We also used the closed PacBio sequences available for all Shigella
serotypes and described by Kim and coworkers40, to study the genetic organisation of
the rfb gene cluster or various operons described in the “Gene analyses” section.
However, these closed genomes were not included in the cgMLST analysis, as they
were not edited with short reads and the numerous indels in the homopolymers
therefore altered the allelic distances (Supplementary Table 1).

Characterisation of the O-antigen gene clusters. The Shigella O-antigen bio-
synthetic gene (rfb) cluster was analysed after extraction of the region between the
housekeeping genes galF (encoding UTP-glucose-1-phosphate uridylyltransferase)
and gnd (encoding 6-phosphogluconate dehydrogenase), which are known to flank
the rfb cluster28. Newly identified rfb clusters were annotated on the basis of a
previously annotated closely matched E. coli cluster in the NCBI BLASTn nucleotide
collection (nr/nt) database (100% coverage and at least 99% identity) or with ORF-
finder (https://www.ncbi.nlm.nih.gov/orffinder/) when no matching cluster was found
in the NCBI BLAST database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The GenBank
accession codes of all the Shigella rfb clusters are listed in Supplementary Table 2. We
also used three tools for in silico serotyping: SeroPred, the serotype prediction tool
implemented in EnteroBase18, ShigaTyper14 (using short reads), and ShigEiFinder16

(using both short reads and assemblies).

Phylogenetic analyses. We used the Escherichia/Shigella cgMLST scheme
(“cgMLST V1”) implemented in EnteroBase18 to study our genomic datasets. This
scheme is based on 2513 single-copy orthologous genes found in the soft-core
genome of a representative set of Escherichia and Shigella genomes18. The cgMLST
sequence types (cgSTs) consist of a combination of up to 2513 integers, each
representing a sequence variant (allele) of a gene, accounting for missing data (gene
missing, allele not called due to short-read misassemblies). Genetic distances
between genomes were calculated from the number of shared cgMLST alleles. The
cgMLST trees were inferred with the NINJA neighbour-joining algorithm, present
in the “cgMLST V1+HierCC V1” scheme of EnteroBase. We visualised the
cgMLST data with GrapeTree41.

These bacterial genomes were also assigned to clusters at multiple levels of
resolution, by a single-linkage hierarchical clustering pipeline (pHierCC),
implemented in the “cgMLST V1+HierCC V1” scheme, and described in detail by
Zhou and coworkers19. Each genome was assigned to 13 clusters – one for each
level of resolution (HC0, HC2, HC5, HC10, HC20, HC50, HC100, HC200, HC400,
HC1100, HC1500, HC2000 and HC2350) – with stable numbers. In EnteroBase,
genomes equidistant from multiple clusters were assigned to the oldest cluster (i.e.,
with the smallest HC number) in order to ensure the long-term stability of the

nomenclature. Genomes with >3% of missing data were also processed separately
by pHierCC to minimise the impact of missing data on clustering19.

We also performed cgSNV analysis to assess the phylogenetic relationships of
398 Shigella (317 from the “reference” dataset and 81 from the “reference+”
dataset) and 95 E. coli (68 ECOR and 27 EIEC) strains. An Escherichia fergusonii
genome (RHB19-C05, GenBank accession no. GCF_013892435.1) was used as an
outgroup for the cgSNV analysis. The paired-end reads and simulated paired-end
reads were mapped onto the reference genome of E. coli K12-MG1655 (GenBank
accession no. NC_000913.3) with Snippy version 4.6 (https://github.com/
tseemann/snippy). We used Snippy default settings, except–mincov 4–minfrac
0.75, to ensure consistency with previous work34. Gubbins42 version 2.4.1 (default
settings, except -f 30) was used to identify regions of recombination within the core
genome alignment. Two alignments were used for phylogenetic inference, one of
92,688 SNVs (including recombinant sites) and a second alignment of 5129 SNVs
(recombination removed). We generated maximum-likelihood (ML) phylogenetic
trees with RAxML-NG43 version 1.0.1 using the general time-reversible (GTR)
model of nucleotide substitution with a gamma model of between-site
heterogeneity rate (GTR+G) and 100 bootstrap iterations. The best-scoring ML
tree of the 20 replicates was midpoint-rooted and visualised with interactive tree of
life (iTOL)44 version 6 (https://itol.embl.de).

A phylogenetic tree of rfb sequences was constructed with the sequences from
43 Shigella (Supplementary Table 2) and 196 E. coli strains from DebRoy and
coworkers28. The Shigella rfb sequences were trimmed to ensure the same start and
end points as for the E. coli rfb sequences from DebRoy and coworkers28. A
sequence alignment was generated with MEGA X45 version 10.2.1, using ClustalW
with default settings. A ML phylogeny was created with RAxML-NG43 version
1.0.1, using the GTR+G model and 100 bootstrap replicates. The ML tree with the
best score of the 20 replicates was midpoint-rooted and visualised with iTOL44

version 6 (https://itol.embl.de).

Gene analyses. The presence of the ipaH gene, a multicopy gene unique to Shigella
and EIEC46, the presence and structure of the mannitol (mtl)47, raffinose (raf)48,
and tryptophanase (tna) operons49 and the type of the O-antigen gene cluster (rfb)
were determined using SPAdes assemblies with NCBI BLASTn version 2.10.1
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). The target sequences are described in
Supplementary Table 3.

Data collection. The data were entered into an Excel (Microsoft) version
15.41 spreadsheet (Supplementary Data 1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Short-read sequence data were submitted to EnteroBase (https://enterobase.warwick.ac.uk/)
and to the European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena/) under study
numbers PRJEB44801, PRJEB2846, and PRJEB2128. Other whole-genome sequences
analysed during the study are available from ENA (https://www.ebi.ac.uk/ena/), NCBI
RefSeq (https://www.ncbi.nlm.nih.gov/refseq/), DDBJ (https://www.ddbj.nig.ac.jp/index-
e.html), and GenBank (https://www.ncbi.nlm.nih.gov/genbank/). All the accession numbers
of the genomes used in this study are listed in Supplementary Data 1. The GrapeTree of 493
Shigella and E. coli reference genomes is publicly available from EnteroBase (http://
enterobase.warwick.ac.uk/ms_tree?tree_id=55118) and from Microreact (https://
microreact.org/project/kP4HJjriDvAfTS4Ed3Avx8/01568b6f). The nucleotide sequences of
the Shigella rfb clusters were submitted to GenBank (https://www.ncbi.nlm.nih.gov/
genbank/) under accession numbers MZ286364-MZ286394, MZ303046, MF322747-
MF322752, and MF322754. The accession numbers for the individual rfb sequences are
given in Supplementary Table 2.

Code availability
All custom scripts can be found at https://github.com/imanyass/
Shigella_population_2021.
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