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A B S T R A C T   

INFORM Risk Index is a global indicator-based disaster risk assessment tool that combines hazards, exposure, 
vulnerability and lack of coping capacity indicators with the purpose to support humanitarian crisis management 
decisions considering the current climate and population. In this exploratory study, we extend the Index to 
include future climate change and population projections using RCP 8.5 climate projections of coastal flood, river 
flood and drought, and SSP3 and SSP5 population projections for the period 2036 to 2065. For the three hazards 
considered, annually 1.3 billion people (150% increase), 1.8 billion people (249% increase) and 1.5 billion 
people (197% increase) in the mid-21st century are projected to be exposed under the 2015, SSP3 and SSP5 
population estimates, respectively. Drought shows the highest exposure levels followed by river flood and then 
coastal flood, with some regional differences. The largest exposed population is projected in Asia, while the 
largest percent changes are projected in Africa and Oceania. Countries with largest current and projected risk 
including non-climatic factors are generally located in Africa, West and South Asia and Central America. An 
uncertainty analysis of the extended index shows that it is generally robust and not influenced by the method-
ological choices. The projected changes in risk and coping capacity (vulnerability) due to climate change are 
generally greater than those associated with population changes. Countries in Europe, Western and Northern 
Asia and Africa tend to show higher reduction levels in vulnerability (lack of coping capacity) required to nullify 
the adverse impacts of the projected amplified hazards and exposure. The required increase in coping capacity 
(decreased vulnerability) can inform decision-making processes on disaster risk reduction and adaptation options 
to maintain manageable risk levels at global and national scale. Overall, the extended INFORM Risk Index is a 
means to integrate Disaster Risk Reduction and Climate Change Adaptation policy agendas to create conditions 
for greater policy impact, more efficient use of resources and more effective action in protecting life, livelihoods 
and valuable assets.   

1. Introduction 

In recent years, climate-related risks have been amplified as a result 
of a changing climate, unplanned urbanization, demographic pressures, 
land-use and land-cover change, biodiversity loss and ecosystem 
degradation (European Commission, 2014, 2013; Poljansek et al., 

2017). Average annual deaths caused by such events increased from an 
average of 26,000 per year between 1995 and 2004 to 34,000 between 
2005 and 2014. Estimated annual economic losses from disasters 
amount to around 300 billion US$ globally (UNISDR, 2015a). These 
human and economic losses are likely to continue to increase as climate 
change progresses and population increases (IPCC, 2018). 
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According to the Intergovernmental Panel on Climate Change 
(IPCC), 1.5 ◦C of global warming above pre-industrial levels (Paris 
Agreement lower cap) will likely be surpassed in the late 2030s or early 
2040s without mitigation and reach the range of 2.9 to 3.4 ◦C by the end 
of the century (IPCC, 2018; UNDRR, 2019). Global temperature in-
creases lead to non-linear changes in intensity and frequency of natural 
hazards such as river flood (Alfieri et al., 2016, 2015), coastal flood 
(storm surge) (Vousdoukas et al., 2018a), drought and heatwave (IPCC, 
2014a; Mysiak et al., 2018; Naumann et al., 2018; Sylla et al., 2018). 
This increases the necessity of inclusive development and effective hu-
manitarian relief to mitigate climate change risk to mortality, food and 
water security, livelihood and consequent impacts including inequality, 
instability, violence and displacement (IFRC, 2019; UN, 2020). 

To tackle the risk of increasingly severe and frequent natural and 
anthropogenic weather and climate related disasters, greater science- 
policy based on improved knowledge, stronger evidence and a greater 
focus on transformative processes at all stages of the Disaster Risk 
Management (DRM) cycle (prevention, reduction, preparedness, 
response and recovery) are essential (FAO, 2008; Poljansek et al., 2017; 
UNDP, 2015). The UN Sendai Framework for Disaster Risk Reduction 
(UNISDR, 2015b) calls on science and policy to construct rigorous 
knowledge of disaster risk and consequent impacts and to develop 
adequate preventive policies to mitigate the risk of disasters. Qualitative 
and quantitative approaches are useful for assessing the effectiveness of 
such preventive policies. Indicator-based risk assessment frameworks 
combine hazard, exposure and vulnerability and are used both for 
analysing risks and assessing the progress made (Bakkensen et al., 2017; 
EEA, 2015). 

The World Risk Index (BEH, 2020; Welle and Birkmann, 2015), ND- 
GAIN Country Index (University of Notre Dame, 2018), Global Climate 
Risk Index (Eckstein et al., 2021) and INFORM Risk Index (De Groeve 
et al., 2015) are examples of global indicator-based assessments. Among 
these, INFORM Risk Index, developed by the Joint Research Centre 
(JRC) of the European Commission, has gained increasing popularity 
due to its comprehensive framework, use of open data and transparent 
methodology (Bornhofen et al., 2019; Casajus Valles et al., 2021; FAO, 
2018a, 2018b; GFDRR, 2015; IFRC, 2020; IOM, 2019; Messina et al., 
2019; Pigott et al., 2017; Poljansek et al., 2017, 2021; Thow et al., 2021, 
2020; WHO, 2017). It is designed as a common evidence base for global 
humanitarian risk analysis in response to recommendations by several 
international organizations including the World bank (World Bank, 
2013) and the Office for Coordination of Humanitarian Affairs (OCHA, 
2014). The index identifies “countries at risk from humanitarian emer-
gencies that could overwhelm current national response capacity, and 
therefore lead to a need for international assistance” (OCHA, 2020a). 
Although the index measures the risk of humanitarian emergencies, it is 
equally relevant for development and disaster risk reduction (DRR) ac-
tors, and for high income countries. It provides a snapshot of multi- 
hazard disaster risk encompassing each country’s exposure, vulnera-
bility and coping capacity to current natural and human-induced haz-
ards (Marin-Ferrer et al., 2017; Thow et al., 2020). 

The INFORM Risk Index has been used or adapted by many national 
and international organizations and agencies such as the European Civil 
Protection and Humanitarian Aid Operations (ECHO), OCHA, Foreign, 
Commonwealth and Development Office (FCDO), the World Food Pro-
gramme (WFP), the United Nations International Children’s Emergency 
Fund (UNICEF), World Health Organization (WHO), the US Department 
of State, and the US Agency for International Development (USAID) 
(Messina et al., 2019; Thow et al., 2021, 2020, 2017). Examples of 
INFORM Risk Index use include the development of standard operating 
procedures for El Niño events, led by OCHA and Food and Agriculture 
Organization (FAO); the support for humanitarian and development 
planning and UN Integrated Strategy for the Sahel by OCHA; and 
providing an evidence base for investments in priorities for Ebola 
outbreak mitigation and prevention by WHO (Thow et al., 2021, 2017). 
The index framework and database has been used in the United Nations 

Central Emergency Response Fund (CERF) Index of Risk and Vulnera-
bility (CIRV) (CERF, 2018, 2016), global disaster displacement risk 
model by International Displacement Monitoring Centre (IDMC, 2017), 
and JRC Global Disaster Alert and Coordination System (GDACS) (JRC, 
2021). Several impact assessment studies have also adapted the index in 
various contexts, such as for pandemics (Pigott et al., 2017), agricultural 
development (Bornhofen et al., 2019), mortality to natural hazards (Shi 
et al., 2016) and floods and landslides (Gaire et al., 2015) (See Table 
SM1). 

Climate change is one of the major drivers of disaster and develop-
ment losses, affecting the security and well-being of communities 
(UNDRR, 2019). Developing tools for climate risk-informed decision- 
making and monitoring, reporting and evaluation (MRE) purposes such 
as risk indices can facilitate the global response to limiting warming to 
1.5 ◦C (IPCC, 2018; UNISDR, 2015b; Wijenayake, 2019). Direct human 
climate change risks are associated with subsequent hazards, population 
exposure and population vulnerability and capacity to prepare for and 
manage amplified risks (Byers et al., 2018). Country level risk indices at 
a global scale currently exist, but are primarily based on analyses using 
observational data and do not account for projected climate change 
impacts nor socioeconomic development (e.g., Global Climate Risk 
Index by GermanWatch and World Risk Index from Bündnis Entwick-
lung Hilft). The need for an improved understanding of the dynamics of 
climate related risk components (hazard, exposure and vulnerability) 
has been highlighted in numerous documents (e.g., Birkmann et al., 
2015; Debortoli et al., 2019; Dilling et al., 2015; Ford et al., 2018; IPCC, 
2014a; Jurgilevich et al., 2017; Rohat, 2018; Rohat et al., 2019). 

Some indices include the dynamic aspects of climate change risk in 
their exposure assessments. The Notre Dame Global Adaptation Initia-
tive (ND-GAIN), for example, measures a country’s vulnerability to 
climate disruptions for six life-supporting sectors, namely food, water, 
health, ecosystem services, human habitat and infrastructure, consid-
ering projected impacts of climate-related hazards such as extreme sea 
level, flood and heatwave (University of Notre Dame, 2018). Similar 
approaches have been employed in several local, national and regional 
risk and vulnerability studies (Debortoli et al., 2019; ESPON, 2011; 
Jurgilevich et al., 2017; KC et al., 2015; Mysiak et al., 2018; RESIN, 
2018). By making the implicit assumption that vulnerability and ca-
pacity will remain constant, these indices do not consider the evolution 
of these elements over time nor the requirements to offset changes in 
climatic drivers (Debortoli et al., 2019; Fawcett et al., 2017; Ford et al., 
2018; Magnan et al., 2016). 

Recent studies have applied Shared Socioeconomic Pathways (SSPs) 
to project vulnerability and coping capacity drivers (Andrijevic et al., 
2020; Birkmann et al., 2020; Rohat, 2018; Yang and Cui, 2019). SSPs 
include a comprehensive framework for joint consideration of socio-
economic development and climate change mitigation and adaptation 
challenges (O’Neill et al., 2017; Riahi et al., 2017; van Vuuren et al., 
2017). Socioeconomic projections with consistent 21st century narra-
tives are available for the SSPs for population (KC and Lutz, 2017), ur-
banization (Jiang and O’Neill, 2017), gross domestic product (Dellink 
et al., 2017), educational attainment and age structure dynamics 
(Crespo Cuaresma, 2017), global income inequality (national Gini co-
efficients) (Rao et al., 2019) and governance (Andrijevic et al., 2020). 

There are still substantial challenges to integrating SSP projections 
into risk assessments (IIASA, 2018; O’Neill et al., 2020). Their applica-
tion to domains beyond climate change, such as the Sustainable Devel-
opment Goals (SDGs) which shape INFORM vulnerability and coping 
capacity dimensions, are constrained (O’Neill et al., 2020). For instance, 
The World in 2050 (TWI2050) (IIASA, 2018) found no matching SSPs 
able to simultaneously cover the full range SDGs. Furthermore, com-
plexities exist in addressing global shocks such as pandemics, techno-
logical breakthroughs, economic crises and other natural or human- 
caused disruptions (O’Neill et al., 2020). Currently such disruptions 
are considered implicit possibilities within scenarios without informa-
tion on causal events (O’Neill et al., 2020). Disruptions caused by the 
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COVID-19 crisis, for example, may result in discontinuities in develop-
ment and societal pathways (Dunz et al., 2021), and subsequently the 
transformational changes may surpass the range of mitigation and 
adaptation challenges encompassed by the SSPs. O’Neill et al. (2020) 
suggest a broader research programme to explore the SSP space beyond 
the current narratives. 

Integrating climate change projections and future adaptation mea-
sures in the INFORM Risk Index would be an important contribution for 
its partners in terms of horizon scanning and global humanitarian risk 
monitoring (Messina et al., 2019). In this study, we extend the INFORM 
Risk Index to include projected future climate-change hazards and risks. 
By incorporating the dynamics of climate change on the intensity and 
frequency of climate related hazards into INFORM, we are the first to 
address humanitarian risk including climate change at a global level. 
The climate-related hazards are extended using a Representative Con-
centration Pathway (RCP) projection and the exposure dimension using 
corresponding SSPs. In assessing projected changes in hazard and 
exposure, we estimate the change in coping capacity (vulnerability) 
required to compensate for the changes. The analysis includes an un-
certainty analysis of the natural hazard and exposure component of the 
extended index using a quasi-Monte Carlo approach. 

2. Methodology and data 

2.1. INFORM Risk Index 

INFORM Risk Index is a composite country-level indicator designed 
as a tool for managing humanitarian crises (JRC, 2019; Marin-Ferrer 
et al., 2017). INFORM is a collaboration of the Inter-Agency Standing 
Committee and the European Commission, led by JRC (Thow et al., 
2020). The INFORM framework includes: i) Hazards and Exposure – 
events that could occur and exposure to them; ii) Vulnerability – sus-
ceptibility of communities to those hazards; and iii) Lack of Coping 
Capacity – lack of resources available to alleviate their impact (Fig. 1) 
(Cardona and Carreño, 2011; Marin-Ferrer et al., 2017; Oppenheimer 
et al., 2014; Wisner et al., 2005). A total of 75 indicators are used for 
INFORM Risk Index, and annual updates have been provided since 2015. 
The components are normalized to score of 1 to 10 and aggregated using 
either an arithmetic or geometric mean depending on the metric. 

Details on the index calculation methodology can be found in Marin- 
Ferrer et al. (2017) and Thow et al. (2020). 

INFORM Risk Index hazard and exposure data are based on proba-
bilistic hazards combined with the latest population estimates. Six nat-
ural hazards are included: earthquakes, tsunamis, floods, tropical 
cyclones, droughts and epidemics. These hazards are currently (prior to 
this study) considered natural in the INFORM framework even though 
humans are impacting some of them. Human hazards include conflict 
intensity or a probability of future conflict (HIIK, 2019) and the pro-
jected conflict risk within the next four years (JRC, 2017). Exposed 
population is considered in terms of both total exposed population and 
exposed population relative to the total. 

The vulnerability dimension encompasses socioeconomic vulnera-
bility and vulnerable groups. Socioeconomic vulnerability is comprised 
of development and deprivation, inequality and aid dependency. The 
vulnerable groups category refers to “the population that has specific 
characteristics which make it at a higher risk of needing humanitarian 
assistance than others or being excluded from financial and social ser-
vices”, which is sometimes defined as social vulnerability (Cutter et al., 
2003; Fekete, 2009). It encompasses uprooted people (refugees and 
displaced population) and other vulnerable groups identified based on 
health condition, age dependency and food security. The lack of coping 
capacity dimension is composed of institutional and infrastructure 
components. The institutional component evaluates government effi-
cacy in perusing DRR activities and contains DRR and governance fac-
tors. The infrastructure component is a combination of communication, 
physical infrastructure and access to healthcare (Marin-Ferrer et al., 
2017). The vulnerability and the lack of coping capacity indicators are 
both based on the latest year’s data. 

In terms of robustness of the index methodology and validation, 
some research and review articles have compared the INFORM con-
ceptual framework and database with other indicator-based assessments 
(Beccari, 2016; Fetzek and Mazo, 2014; Visser et al., 2020). Visser et al., 
2020 analyze and compare the INFORM Risk Index with other opera-
tional national-scale performance indices. They address five metadata- 
related reliability topics which are important in the context of risk in-
dicators and indices thereof: 1) vagueness in definitions; 2) presence of 
uncertainty information; 3) missing data; 4) temporal positioning; and 
5) role of aggregation and normalization procedures. Accordingly, 

Fig. 1. INFORM framework 2021. Adapted from Thow et al. (2020).  
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INFORM Risk Index shows acceptable performance among the criteria in 
comparison to the others. 

2.2. Climate change and population projections in INFORM Risk Index 

The climate-related hazards in the current index are based on United 
Nations International Strategy for Disaster Reduction (UNISDR) Global 
Risk Assessment (GAR, 2015), FAO Agricultural Stress Index (ASI) 
(Rojas, 2018) and Emergency Events Database (EM-DAT) (CRED, 2019) 
data for different hazard intensities (Table 1). In this study, three 
INFORM Risk Index hazards are adapted and used within the extended 
framework: River flood, coastal flood and drought (Table 1). 

The INFORM Risk Index hazard and exposure dimensions are 
extended using climate change and population projections based on the 
IPCC RCPs and corresponding SSPs for the mid-21st century 
(2036–2065). RCPs describe the evolution of future atmospheric 
greenhouse gas concentrations (GHGs) and associated climate impacts 
without any assumptions on mitigation actions (IPCC, 2014c; Pedde 
et al., 2019; van Vuuren et al., 2011). We apply RCP 8.5 which is the 
IPCC pathway with the largest atmospheric GHGs (8.5 W m− 2 radiative 
forcing by 2100) and typically considered a business as usual scenario. 
Kebede et al. (2018) suggest that by considering RCP 8.5 we maximize 
the sampling of uncertainty in future climate changes and provide a 
challenging yet plausible scenario context to test the robustness of 
human and natural systems and climate change adaptation measures. 

The SSPs consider different socio-economic futures, and the chal-
lenges they present for climate mitigation and adaptation as socio- 
economic factors impact the actions needed to meet climate and sus-
tainability targets (O’Neill et al., 2017, 2014). Van Vuuren et al. (2014) 
developed a scenario matrix to address the effectiveness of various RCP- 
SSP combinations in year 2100 using different integrated assessment 
models (IAMs). They determine that SSP2, SSP3 and SSP5 can be com-
bined with RCP 8.5 and show the lowest uncertainty for SSP5. In addi-
tion, Kebede et al. (2018) argue that after 2050 only SSP3 and SSP5 can 
produce the high emissions required for RCP 8.5. 

SSP3 envisages relatively low income growth; low human capital 
investments; high fertility and population growth rates in the currently 
high fertility countries and low fertility rates and low or negative pop-
ulation growth in the currently low fertility countries; low migration; 
and slow urbanization. World population is projected to increase from 
7.3 billion in 2015 to 9.8 billion in 2050 (34%) (Fig. 2; Table SM2). At 
the continental scale, the largest population increases are projected in 
Africa (96% or 1.1 billion), Asia (28% or 1.3 billion), and South America 
(28% or 0.12 billion) and the smallest in Europe (− 8.1% or − 0.06 
billion). 

SSP5 foresees a development narrative with relatively high-income 
growth; increased education and health investment; rapid de-
mographic transition; low population growth in currently high fertility 
countries; high level fertility in currently low fertility countries; 

substantial migration; and rapid and not well managed urbanization. 
Global population is projected to increase from 7.3 billion in 2015 to 8.4 
billion (15%) under SSP5 (Fig. 2; Table SM2). All continents are pro-
jected to increase in population, but the distribution of the increase is 
considerably more uniform in SSP5 compared to SSP3. The largest in-
creases are projected in Oceania (60% or 0.23 billion), Africa (46% or 
0.5 billion) and North America (29% or 0.16 billion) and the smallest in 
South America (2% or 0.01 billion) and Asia (7% or 0.3 billion). 

To encompass a wide range of impacts and to generate highly 
divergent and challenging scenario contexts across multiple scales, we 
extend the INFORM Risk Index considering mid-21st century 
(2036–2065) climate projections from RCP 8.5 coupled with population 
projections from both SSP3 and SSP5. The extended index accounting 
for climate and population change projections is performed in three 
main steps (Fig. 3). In the first step, we compute the climate risk for the 
historical period and the projected mid-21st century period according to 
RCP 8.5 with the exposed population fixed at the 2015 values from the 
Global Human Settlement Layer (GHSL, Pesaresi et al., 2016) (Fig. 3a). 
This isolates the climate change risk without accounting for projected 
changes in population. In the second step, we apply the SSP3 and SSP5 
population projections to the RCP 8.5 hazard projections to determine 
the projected exposure (Fig. 3b). This provides a combined measure of 
the risks associated with both projected climate and population change. 
In the last step, we investigate the change in vulnerability/coping ca-
pacity required to counteract the change in mid-21st century hazard and 
exposure from step 2 (Fig. 3c). To do so, we fix the current risk (i.e., 
hazard and exposure analysis based on historical climate and 2015 
population), alter the hazard and exposure using the RCP 8.5 pro-
jections, and compute the combined vulnerability/coping capacity 
component using geometric averaging. For comparison, we compute the 
percent change in the combined vulnerability/coping capacity between 
the historical and RCP 8.5 projections. The mathematical details of each 
step can be found in the Supplementary Material. 

2.2.1. River flood 
Flood hazard in the current INFORM Risk Index framework is 

assessed using GAR 2015 flood inundation levels for 25-, 50-, 100-, 200-, 
500- and 1,000-year return periods (RPs) developed at a 1-km grid 
spacing. The potential exposed population (PEP) is estimated for each of 
the RPs assuming exposure for any positive flood depth. The expected 
annual exposed population (EAEP) is estimated as the integral sum of 
the PEP for all flood frequencies (Marin-Ferrer et al., 2017). A range of 
Global flood models (GFMs) capable of providing river flood maps have 
been developed rapidly over the last decade and are typically based on a 
cascade of meteorological-hydrological-hydraulic models (e.g., CaMa- 
UT from the University of Tokyo (Yamazaki et al., 2011), the CIMA- 
UNEP model developed for the UNISDR Global Assessment Report 
2015 (GAR) (Rudari et al., 2015), the European Centre for Medium- 
Range Weather Forecasts (ECMWF) model (Pappenberger et al., 
2012), the GLObal Flood Risk with IMAGE Scenarios (GLOFRIS) model 
by Deltares (Winsemius et al., 2013), and the model developed by JRC 
(Dottori et al., 2016). These models are particularly suited to estimate 
potential inundation levels for different flood probabilities and hence 
simulate the impacts of climate change on the future flood hazard. 

In this study, we extend the original INFORM Risk Index river flood 
component using results from the JRC model (Alfieri et al., 2017; Dottori 
et al., 2018, 2016), which benefits from continuous research efforts and 
operational improvements of the Copernicus Emergency Management 
Service (EMS) – Global Flood Awareness System (GloFAS) (Alfieri et al., 
2013, 2020b; Bernhofen et al., 2018). The frequency and magnitude of 
present and future flood events are taken from seven hydrological sim-
ulations run with the LISFLOOD model (van der Knijff et al., 2010) 
which span from 1971 to 2120 at a daily 1-km resolution. The atmo-
spheric forcing of the hydrological simulations is taken from seven 
CMIP5 RCP8.5 projections downscaled with EC-EARTH3-HR at the 
common resolution of 0.35◦ (~40 km at the equator) (Alfieri et al., 

Table 1 
Overview of the current and proposed coverage of hazards and risk.  

Hazards Current Climate Change Extension 

Riverine 
Floods 

Expected annual exposed 
population by GAR2015 global 
flood hazard. 

Expected annual exposed 
population based on CMIP5 JRC 
GLOFAS hazard maps (Dottori 
et al., 2016, 2018). 

Storm 
Surges 

Expected annual exposed 
population by GAR2015 storm 
surge. 

Probabilistic CMIP5 coastal flood 
projections of extreme sea level 
(combined mean sea level, tides, 
wind-waves and storm surges) ( 
Vousdoukas et al. 2018a). 

Droughts Observed probability of 
agricultural of droughts (based 
on ASI) (Rojas, 2018) and 
population affected (EMDAT). 

SPEI (Beguería et al., 2014; 
Vicente-Serrano et al., 2010) 
based on statistically downscaled 
CMIP5 precipitation and surface 
temperature projections.  
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2017). Estimates of population affected by each RP (10-, 20-, 50-, 100-, 
200- and 500-year) for each ensemble member are computed using 
population density for the year 2015 from the Global Human Settlement 
Layer (GHSL, Pesaresi et al., 2016), averaged over the 30-year time 
slices and aggregated at country level for the historical period 
(1976–2005) and future period (2036–2065). PEP and EAEP are 
computed in the same manner as is done with the original INFORM Risk 
Index for river flood (Alfieri et al., 2020a). Exposure under SSPs is here 
considered as country-based multipliers (the ratio between SSPs pro-
jected population and GHSL 2015). 

2.2.2. Coastal flood 
In the original INFORM Risk Index, the coastal flooding component is 

represented by storm surge levels obtained from GAR 2015 at a 1-km 
spacing for the 10-, 25-, 50-, 100- and 250-year RPs; instead, we 
consider extreme sea levels (ESL). ESLs result from a combination of 
factors including mean sea level, tides, wind-waves, storm surges, and 
vertical land movement. A non-exhaustive list of global models and 
datasets used in the context of coastal flooding includes GLOFRIS (Ward 
et al., 2013) and Aqueduct Global Flood Analyser (Ward et al., 2020), 
Dynamic Interactive Vulnerability Assessment (DIVA) (Brown et al., 
2016; Vafeidis et al., 2008), Global Tide and Surge Reanalysis (GTSR) 
(Muis et al., 2016), and LISFLOOD-FP (Dottori et al., 2016; Vousdoukas 
et al., 2020). In a study from Vousdoukas et al. (2016), different 

inundation modelling approaches were compared in terms of their 
applicability to coastal flood mapping. The authors conclude that 
LISFLOOD-FP showed better predictive skill for large-scale studies, 
particularly for global analysis. 

To extend the INFORM Risk Index, we use the probabilistic coastal 
flood simulations of ESL for different return periods (5-, 10-, 20-, 50-, 
200-, 500-, and 1000-year events) for RCP 8.5 for the mid-century from 
LISFLOOD-FP (Vousdoukas et al., 2018a,b). The effects of sea level rise 
(SLR) are assessed through a set of simulations using the global Delft3D- 
Flow Flexible Mesh (D-FLOW FM) setup; rising ESLs are primarily driven 
by thermal expansion (Jevrejeva et al., 2016), followed by contributions 
from ice mass-loss from glaciers and ice sheets in Greenland and 
Antarctica. Atmospheric forcing from a six-member Coupled Model 
Intercomparison Project Phase 5 (CMIP5) ensemble is used to calculate 
projections of waves and storm surges as well as their changes in relation 
to the historical period (1980–2014) (Vousdoukas et al., 2018a,b). We 
use the coastal flood projections resulting from the ensemble median of 
all ensemble members for the historical period (1980–2014) and future 
projection (2036–2065). 

We overlay the obtained inundation maps for each RP (Vousdoukas 
et al., 2018b) with the population density maps (GHSL 2015, SSP3 and 
SSP5) to compute the PEP. Afterwards, the EAEP is estimated as the 
integral sum of PEP for all flood frequencies (Alfieri et al., 2020a). It 
should be noted that the year range of historical period and the RPs 

Fig. 2. Percentage of change in population in 2050 under SSP3 and SSP5 relative to 2015.  

Fig. 3. INFORM Risk analysis stages including the components of hazard (H), exposure (E) and vulnerability/lack of coping capacity (V).  
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considered for the coastal flood simulations are somewhat inconsistent 
with those for river flood (and drought for historical period) due to data 
availability reasons. 

2.2.3. Drought 
Drought hazard in the original INFORM Risk Index is considered as a 

combination of agriculture and population affected by drought. Agri-
cultural drought, measured using the ASI, is defined as a dry period in a 
region over the cropping season in which at least 30% of the crop area is 
under stress for a duration exceeding 10 days. The average annual 
population affected by drought is based on historical events in the EM- 
DAT database for the last 25 years (CRED, 2019). Measuring the in-
tensity and impact of drought events is often more complex than for 
other natural hazards such as floods that cause immediate and structural 
damages (UNDRR, 2019). Numerous indices have been developed to 
characterize drought event intensity, frequency and duration (EC, 2019, 
2017; Svoboda and Fuchs, 2016). 

To extend the INFORM Risk Index for climate change, we use the 
standardized precipitation evapotranspiration index (SPEI), which has 
gained recent popularity to assess meteorological droughts and can be 
computed using precipitation and surface temperature data (Beguería 
et al., 2014; Spinoni et al., 2019; Vicente-Serrano et al., 2010). SPEI is a 
multi-scalar drought index based on climatic data, namely precipitation 
and potential evapotranspiration (PET). It measures drought severity 
according to its intensity and duration and can be used to identify the 
onset and end of drought episodes. Here we use surface temperature and 
precipitation from 21 AOGCMs from the NASA Earth Exchange Global 
Daily Downscaled Projections (NEX-GDDP) dataset to compute SPEI. 
NEX-GDDP is comprised of daily precipitation and minimum and 
maximum temperature from statistically downscaled CMIP5 AOGCM 
simulations for RCP 8.5 to a 0.25◦ grid (NCCS, 2020). PET is estimated 
from the NEX-GDDP surface temperatures according to the Hargreaves 
(1994) formulation modified by Droogers and Allen (2002). For the 
scope of our analysis, we consider 12-month SPEI which captures 
medium-term water deficits and hydrological droughts likely to affect 
agriculture, but also river discharge and groundwater recharge (Farinosi 
et al., 2020; Liu and Chen, 2021; Naumann et al., 2018). SPEI is 
computed at each grid point for the historical reference period 
(1976–2005), and projected RCP 8.5 (2036–2065). Drought is then 
computed using parameters from the reference period. We consider a 
location to be in drought when SPEI less than -1.5, which is defined as 
the threshold for severe and extreme drought (Smirnov et al., 2016; 
Törnros and Menzel, 2014; UK Centre for Ecology and Hydrology, 
2020). Exposure is therefore binary for each land grid cell, i.e., either the 
total population is exposed, or no population is exposed. As a limitation, 
for very small countries (e.g., small Pacific Islands) drought is not 
computed due to their lack of representation in the driving CMIP5 
models. The same challenge has been noted in several other studies 
using global climate models (e.g., Keener et al., 2012; Smirnov et al., 
2016; The World Bank, 2016). 

2.3. Sensitivity and uncertainty analysis 

Uncertainty analyses can help determine whether the main results 
change substantially when the methodological choices vary over a 
reasonable range of possibilities (Nardo et al., 2005; OECD, 2008; Tate, 
2012). Uncertainty in the weighting and aggregation process is intro-
duced by varying the weights based on the extent to which the indicators 
compensate each other. The degree of “compensation” denotes the po-
tential tradeoffs between indicators during the aggregation process. It 
expresses to what extent lower performance in some indicators (such as 
worsening in exposure levels to climate-related hazards) can be 
compensated by higher performance in others (such as an increase in 
socioeconomic, institutional and governance performance). Using ad-
ditive aggregators with high degree of compensation (e.g., arithmetic 
mean) implies that the importance of one or more of the indicators with 

low performance may not be adequately represented in the aggregated 
index. In contrast, using aggregators with low degree of compensation 
(e.g., geometric mean) can better account for indicators with lower 
performance in the aggregated index. Aggregators with a low degree of 
compensation would provide better insight for policymakers on each 
country’s deficiencies and where to allocate resources to improve the 
imbalances (Marzi et al., 2019, 2018; OECD, 2008; Ruiz and Cabello, 
2021). As an example, combining INFORM’s natural and human hazard 
components using additive approach (high degree of compensation) 
implies that to have a high hazard and exposure score for a country both 
components should be high simultaneously. Instead, the use of a geo-
metric average (low degree of compensation) indicates that it is suffi-
cient for a country to have a high score either in the natural hazard or the 
human hazard category to have an overall high hazard and exposure 
score. 

In this study, sensitivity to the input data is determined by comparing 
the correlation ratio for each climate-related hazard both in original and 
extended INFORM Risk indices. To control the aggregation tradeoffs, we 
apply the ordered weighted average (OWA) operator introduced by 
Yager (1988) using quasi-Monte Carlo approach, which in our case re-
quires 3,000 simulations of different combinations. The OWA operator 
controls the level of compensation by using a different order of weights 
(Jin et al., 2017; Mysiak et al., 2018). A detailed explanation of OWA 
simulation and correlation ratio can be found in the Supplementary 
Material. 

3. Results and discussion 

3.1. Climate-related impacts on exposed population 

3.1.1. River flood 
The impacts of climate-related amplified hazards under RCP8.5 on 

population from the current, SSP3 and SSP5 scenarios are analysed for 
the historical and mid-21st century periods. Globally, annual exposure 
to river floods in the mid-21st century is projected to increase to 126 
million people (141%) considering fixed 2015 population, 175 million 
people (235%) under SSP3 and 139 million people (166%) under SSP5 
(Fig. 4 and Table SM4). Regionally, Asia experiences the largest pro-
jected absolute exposed population to river floods, with 103 million 
people exposed in 2050s (+193%) with 2015 population, 134 million 
people (+280%) under SSP3 and 108 million people (+206%) under 
SSP5. South America, however, faces the largest percent change with a 
295% increase with 2015 population, 428% under SSP3 and 302% 
under SSP5. Considering the total and regional population exposure, 
changes in amplified hazard show a considerably stronger effect than 
the differences in population between constant and SSPs. The largest 
projected changes primarily occur in SSP3 which has the largest total 
population growth. 

EM-DAT observations suggest similar regional flood exposure pat-
terns for historical data (UNISDR, 2015a). Flood exposure is more 
frequent in Asia and Africa than other continents, but poses an 
increasing danger also in South America where annual average affected 
people by floods between the period 2005 to 2014 increased nearly four- 
fold to 2.2 million people compared to the period 1995 to 2004 
(UNISDR, 2015a). The projected results are comparable to other global 
impact studies (Farinosi et al., 2020; Arnell et al., 2019). Farinosi et al. 
(2020) and Arnell et al. (2019) find that the greatest increase in river 
flood frequency occurs in Asia (especially south and south east Asia) and 
Africa, with the largest increase in exposure in Asia under SSP3. 

3.1.2. Coastal flood 
Coastal floods are globally projected to annually affect 64 million 

people (+15%) in the mid-21st century considering fixed 2015 popu-
lation, 72 million (+29%) under SSP3 and 70 million (+26%) under 
SSP5 (Fig. 4 and Table SM4). The largest population exposed is projected 
in Asia with 41 million people exposed (+16%) under the 2015 
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population, 43 million people (+21%) under SSP3 and 40 million people 
(+13%) under SSP5. The largest percent increase in population exposed 
is projected in Africa (27% with 2015 population, 245% under SSP3 and 
154% under SSP5) and South America (53% with 2015 population, 
158% under SSP3 and 108% under SSP5). Comparing the total and 
regional projected exposure between the 2015, SSP3 and SSP5 pop-
ulations illustrates that the general patterns tend to remain similar due 
to the strong climate change signal, but the population differences be-
tween the scenarios tend to alter the intensity of the exposure. 

EM-DAT observations reveal that historically, lower-middle-income 
countries have been hit harder by storms between 1995 and 2015 in 
terms of lives lost compared to the previous decade. Asia is particularly 

affected by frequent storms, especially in the southern and southeastern 
regions which account for 21% of the total number of storms and more 
than 80% of storm mortality (UNISDR, 2015a). Recent global impact 
studies confirm that Asia, especially South Asia, is projected to experi-
ence the largest change and population exposed to coastal flooding 
(Arnell et al., 2019; Kirezci et al., 2020). The estimates of the population 
exposed to events exceeding a 100-year RP in the mid-21st century with 
2015 population are comparable to those of a recent study by Kirezci 
et al., 2020 (~170 million people, 17% increase). In the case of coastal 
floods, the projected changes are consistent with the population changes 
in Fig. 2 illustrating that Africa, South America and Asia experience 
higher exposure under SSP3, while Europe, North America and Oceania 

Fig. 4. Mid-21st century projected percent change in population exposed to a) river flood; b) coastal flood; c) drought; and d) multi-hazard. The left, centre and right 
columns show the population estimates for 2015, SSP3, and SSP5, respectively. 
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experience relatively higher exposure under SSP5. In Canada and 
Australia, large changes under SSP3 are caused by large population 
density changes along the coasts (Lemmen et al., 2016; Manson, 2005; 
NASA, 2010). The low migration assumption under SSP3 implies that 
the largest population growth occurs in the areas with currently high 
population densities. Therefore, the population changes in the coastal 
zones tend to be greater than the total population changes in the 
country. 

3.1.3. Drought 
Severe and extreme drought (defined as 12-month SPEI less than 

− 1.5) in the mid-21st century is globally projected to annually affect 1.1 
billion people (+169%) with the 2015 population, 1.5 billion (+280%) 
under SSP3 and 1.3 billion (+224%) under SSP5 (Fig. 4 and Table SM4). 
The largest absolute exposed population is projected in Asia, with 545 
million people exposed (+125%) under the 2015 population, 782 
million people (+222%) under SSP3 and 633 million people (+161%) 
under SSP5. The largest percent increases in population exposed are 
projected in Oceania (223% with 2015 population, 317% under SSP3 
and 501% under SSP5) and in Africa (229% with 2015 population, 
501% under SSP3 and 354% under SSP5). Consistent with coastal flood, 
the projected drought changes correspond with population changes 
between the SSP scenarios. Under SSP3 the largest increases are pro-
jected in Asia, Africa and South America aligning with the greatest 
population increases; and under SSP5 the largest increases are projected 
in Europe, North America and Oceania also aligning with the largest 
population increases. These spatial patterns are comparable to those 
from Farinosi et al. (2020) and Arnell et al. (2019) who find the largest 
absolute population exposed in Africa and Asia under SSP3. 

Increase in severe and extreme drought occurs in nearly every 
country with the greatest increase primarily in the northern subtropic 
latitudes affecting Western Asia, Southern Europe and North Africa. 
Spinoni et al. (2020) find that drought characteristics are projected to 
increase over the Mediterranean region, the Horn of Africa and Asia 
under RCP 8.5. In addition, Naumann et al. (2018) show that drought 
length is projected to increase primarily in northern, western and 
southern Africa, the Caribbean, Central America, southern Europe, and 
West Asia under 1.5 ◦C and higher warming scenarios. According to 
Farinosi et al. (2020), magnitude and frequency of droughts in mid- 
century will significantly increase in Central America, Africa, the Med-
iterranean and Central Asia. 

3.1.4. Combined hazard 
Considering the combined hazards (river flood, coastal flood and 

drought) at a global scale, annually 1.3 billion people (+150%), 1.8 
billion people (+249%) and 1.5 billion people (+197%) in the mid-21st 
century are projected to be exposed considering the 2015, SSP3 and 
SSP5, respectively (Fig. 4 and Table SM4). The largest absolute popu-
lation exposed to multi-hazard exposure is found in Asia with 689 
million people exposed (+120%) with 2015 population, 958 million 
people (+206%) under SSP3 and 781 million people (+150%) under 
SSP5. The largest relative increases in exposure occur in Africa (185% 
with 2015 population, 430% under SSP3 and 300% under SSP5) and 
Oceania (197% with 2015 population, 285% under SSP3 and 448% 
under SSP5). Very few countries show a reduction in future exposure to 
the combined climate change hazard (e.g. Norway with 2015 and SSP3 
population, Philippines with 2015 and SSP5 population and Japan 
under SSP3 population scenario). 

Amplified drought tends to have the highest humanitarian impacts 
while coastal flood tends to have the lowest, which is reflected in the 
correspondence of the multi-hazard and drought exposure spatial pat-
terns (Fig. 4c compared to Fig. 4d). Farinosi et al. (2020) find that in 
most of the regions, drought exposure is larger than floods except central 
east Africa. EM-DAT historical observations show that more than one 
billion people were affected by droughts in the period 1995–2015 which 
was more than a quarter of all people affected by all types of weather- 

related disasters worldwide. 

3.2. Extended INFORM Risk Index 

Here we calculate the extended INFORM Risk Index by accounting 
for the exposed populations to each hazard presented above coupled 
with the vulnerability/lack of coping capacity reduction required to 
keep the current risk level. As a first step, we compare the climate- 
related components (river flood, coastal flood and drought; Figure 
SM5) of the extended index for the historical climate to those from the 
original index using the Pearson correlation coefficient (De Groeve et al., 
2015; OECD, 2008). The correlations range from 0.85 for droughts and 
to 0.66 for river floods, and are all statistically significant (p < 0.001). 
These correspond to correlation strengths in the range “moderate” to 
“strong” according to the classes defined by (Akoglu, 2018; Bendanillo 
et al., 2016) suggesting that the new and original variables are statisti-
cally compatible. 

The modified climate-related components of INFORM Risk Index 
coupled with the Natural Hazard-Exposure and Risk indices (including 
earthquakes, tsunamis and epidemics) and absolute changes under 
various development scenarios (2015, SSP3 and SSP5 populations) are 
considered (Fig. 5). Countries with largest natural hazard and exposure 
are mainly located in Asia and the Americas while those with the largest 
risk are generally located in Africa, Western and Southern Asia and 
Central America. Myanmar, Vietnam, Japan, Philippines and Pakistan 
are projected to have the highest risk of floods, while Iran, Turkey, 
Afghanistan, Chile and Mexico are projected to be highly prone to 
droughts regardless of the population scenario considered. Afghanistan 
is the most vulnerable country due to underperformances in both natural 
hazard/exposure and disaster risk indices. A list of top 25 countrie-
s projected with the highest exposure to future natural hazards under 
SSP3 and SSP5 scenarios is provided in Tables SM7 and SM8, 
respectively. 

We use risk classifications with five thresholds from very low to very 
high identified using hierarchal clustering model introduced by Marin- 
Ferrer et al. (2017) (Table SM9). Risk classification in the form of a 
hierarchical scale provides a systematic and consistent way to identify 
risk. Risk classes provide a greater ability to monitor, control and even 
manage risk because root causes of risk can be better identified. The 
scope of the fixed threshold obtained from the clustering analysis is to 
provide solid perception of risk classes among users (Marin-Ferrer et al., 
2017). According to the results, shifts in risk classes are very infrequent 
among various development scenarios. This result is somewhat unex-
pected considering the large variations in hazard and exposure levels for 
various development scenarios (Table SM9). Only for a relatively small 
number of countries, the variations in hazard and exposure levels are 
projected to result in shifts in risk classes between the historical climate 
and the combined RCP 8.5 SSP scenarios (Table SM10). For these 
countries, the current adaptive capacity level is not able to counter the 
amplified hazards coupled with population growth causing a shift into a 
higher risk class. Hence, these countries would need to enhance their 
coping capacities in the future to maintain their current risk class (dis-
cussed in detail below). This can facilitate the assessment of the likeli-
hood and impact on the humanitarian situation and capacity building 
which is partially based on perception of risk classes among donors (e.g., 
OCHA, 2021; OCHA, 2020b). 

3.3. Vulnerability and coping capacity changes 

As a final step of the extended INFORM Risk Index analysis, we 
determine the change in vulnerability/lack of coping capacity required 
to return to the original level of risk associated with the historical 
climate and 2015 population (Fig. 6). In computing the requirements to 
overcome the adverse effects of climate and population change, vul-
nerabilities not associated with climate and population change, such as 
uprooted people, food security and access to health systems, are 
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considered fixed between the scenarios. To classify the countries, four 
classes (no, low, medium and high reduction) have been identified using 
agglomerative hierarchical clustering procedure based on Ward’s min-
imum variance criterion (Marin-Ferrer et al., 2017). 

Most countries must enhance their future coping capacities to nullify 
the adverse impacts of the projected mid-21st century amplified hazards 
and exposure. The countries that require the highest reduction are 
currently ranked as very low and low risk countries since they have the 
highest potential to shift to a higher risk category as a result of climate 
change and/or population change (Table SM11). For example, Namibia 
shifts from low to medium in both SSPs resulting in a large change. In 
contrast, in countries with very high current risk levels (mainly non- 
industrialized countries), an increase in climate change hazard does 

not result in a risk class change and subsequent vulnerability (lack of 
coping capacity) reduction since their current risk is already at or near 
the highest level. For example, South Sudan is currently in the very high 
risk class and therefore cannot increase its risk even with increased 
exposure to climate change hazards. 

This highlights the importance of the international disaster risk 
community to enhance integration of and coherence between DRR and 
climate change adaptation (CCA) to maintain manageable risk levels. 
Aligning both DRR and CCA policy agendas create conditions for greater 
policy impact, more efficient use of resources and more effective action 
in protecting life, livelihoods and valuable assets. Lack of integration 
leads to insufficient protection and wasteful use of resources. Sound 
understanding of vulnerabilities, risk determinants and people’s 

Fig. 5. Historical INFORM Natural Hazard and Exposure (top row) and Risk indices and absolute changes projected for the mid-21st century under various 
development scenarios indicated in the panel title. 
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mindsets are equally important for both. Although DRR and CCA are 
different in many respects, both of these transformative processes 
emphasize the deeply rooted determinates of vulnerability and the role 
of citizens and organisations as agents of individual and social change. 

The required reduction in vulnerability/lack of coping capacity is 
mainly driven by increases in hazard rather than population (Fig. 6). 
Only for a relatively small number of countries, the variations in pop-
ulation levels are projected to result in shifts in vulnerability/lack of 
coping capacity classes between the combined RCP 8.5 SSP3 and SSP5 
scenarios (Table SM12). The primary reason for the shifts is due to 
population growth patterns under different the SSPs. High-income 
countries (e.g., Denmark and South Korea) show greater population 
growth under SSP5 while low-medium income countries (e.g., Cuba and 
Tajikistan) show greater growth under SSP3. Accordingly, it can be 
inferred that climate change amplified hazards play the primary role in 
future vulnerability/lack of coping capacity variability rather than 
population scenarios. 

To quantify the impact of amplified hazards and population growth 
on vulnerability/lack of coping capacity reductions, we compare the SSP 
and 2015 population vulnerability/lack of coping capacity reduction 
percentages. To do so, we compute percent change in the vulnerability/ 
lack of coping capacity between each population scenario with fixed 
standardized climatic and non-climatic risk factors (baseline INFORM 
Risk). We then calculate the percent change of the sum of the stan-
dardized scores (scale of 1 to 10) between the baseline and the pro-
jections. Globally, the sum of the vulnerability/lack of coping capacity 
standardized scores increases by 10% with 2015 population, 13% under 
SSP3 and 12% under SSP5. This suggests that on average at a global 
scale the interaction between climate change and population growth 
explains 3% in SSP3 and 2% in SSP5 of the total change, reflecting the 
fact that the climate change has larger effect on the increase of INFORM 
vulnerability/lack of coping capacity dimension in our analysis. This 
disparity would be reduced slightly under a mitigation scenario, how-
ever, RCP 8.5 best matches the current GHG trajectory (Fuss et al., 
2014), and the difference between the RCPs in the mid-21st century is 
relatively small (IPCC, 2013). Furthermore, SSP3 population growth 
(34% globally) only plays a slightly more important role than that of 
SSP5 (15% globally) despite the large difference. 

Recent studies confirm similar tradeoffs between climate forcing and 
population changes (e.g., Byers et al., 2018; Farinosi et al., 2020; Har-
rington and Otto, 2018; Smirnov et al., 2016). For instance, Byers et al. 
(2018) show that global mean temperature rise has a considerably 
stronger effect than the differences in population between the SSPs. 
Arnell et al. (2019) find that highest impact on droughts and floods 
occurs under the SSP3 scenario where population increases are greatest. 
According to IPCC 2018 special report on global warming of 1.5◦ C, at 

higher risk thresholds (RCP 8.5), the world’s poorest populations are 
expected to be disproportionately impacted, particularly in cases of 
great inequality in Africa and southern Asia such as SSP3 (Hoegh- 
Guldberg et al., 2018). 

The Paris Agreement established a global adaptation goal for 
enhancing adaptive capacity and reducing vulnerability to climate 
change. It seeks to contribute to sustainable development and ensure an 
adequate adaptation response in the context of the 1.5◦ temperature 
goal (UNISDR, 2015b). The United Nations Framework Convention on 
Climate Change (UNFCCC) Least Developed Countries Expert Group 
developed technical guidelines to reduce climate change vulnerability 
by adaptive capacity building and to facilitate CCA integration into new 
and existing policies, programmes and activities, in particular devel-
opment planning processes and strategies (UNFCCC, 2012). In our 
study, we designed an MRE framework by which the policymakers can 
quantitatively measure the level of enhanced adaptive capacity and 
vulnerability reduction required to tackle the adverse climate change 
impacts. Our results and methodology provide a solid base for planning 
relevant policies in efforts to ensure adequate adaptation responses. The 
proposed framework also facilitates the policy integrations between 
DRR and CCA as suggested by UNDRR (2019). 

In summary, we find that under RCP8.5, many countries will expe-
rience a significant change in the climate-related hazard and exposure 
by mid-century regardless of the SSP scenario. Such changes increase the 
disaster risk and may lead to severe future humanitarian crises across 
the globe. To alleviate the impacts of amplified risk, countries should 
significantly increase their coping capacity (reduce their vulnerability) 
to disaster risk. We caution that the modelling projections presented 
here potentially contain large uncertainties. Nevertheless, DRR and CCA 
should be the main policy response to mitigate the adverse effects of 
climate-related amplified hazard and risk. Moreover, climate change has 
a considerably larger effect on the future increase of INFORM risk and 
vulnerability reduction than changes in population growth within the 
socio-economic development scenarios. 

3.4. Sensitivity and uncertainty analysis 

The correlation ratios for each climate-related hazard both in the 
original INFORM Risk Index and the climate change extended index for 
the historical climate and 2015 population are analysed (Table 2). The 
results show that the correlation ratios of the original and new variables 
in the composite index are all in the range of 0.5 to 0.6. Their similarity 
suggests that the final aggregated INFORM in both cases may maintain 
similar importance levels among the variables. 

Scores for the uncertainty analysis range from 1 to 10 where low 
(high) scores implies low (high) risk levels (Fig. 7). The 5th and 95th 

Fig. 6. Percentage of reduction in vulnerability/lack of coping capacity for SSP3 (left) and SSP5 (right) required to maintain the current risk considering exposure to 
amplified hazards. 
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percentiles of the simulations are considered to eliminate the extreme 
cases of compensation (full and non– compensatory tradeoffs) (Lafor-
tune et al., 2018; Saisana and Saltelli, 2008). The higher the uncertainty, 
the greater caution that should be taken on any conclusions. Moving 
toward a higher degree of compensation tends to result in a lower 
INFORM risk score, while moving toward a lower degree of compensa-
tion results in larger risk score. For high-risk countries (e.g., 
Philippines), underperformance among the indicators leads to higher 
risk scores with a low degree of compensation. Contrarily, the under-
performance is relaxed when shifting toward the higher level of 
compensation and yields lower risk scores. 

In order to understand better the level of confidence of the INFORM 
natural hazard and exposure dimension scores, we follow the method-
ology proposed by Poljansek et al. (2020) and Saisana and Saltelli 
(2008). To do so, we calculate the percentage of the OWA simulations 
that fall in the five INFORM natural hazard and exposure classes. We 
then calculate the percentage of the match with the extended INFORM 
natural hazard and exposure final scores for SSP3 and SSP5 (Table SM15 
and SM16). The numbers represent the frequency a country remains in 
the same natural hazard and exposure risk classes. For more than 70% of 
the countries, the SSP3 and SSP5 risk classes are matched with the 
classes with highest probabilities suggesting that the index in these 
countries is robust and not strongly influenced by the final aggregation 
and weighting choice. Saisana and Saltelli (2008) suggest that a greater 
than 50% match is acceptable when using a Monte Carlo approach for 
assessing composite index uncertainties as is done here. The index in the 
remaining 30% of the countries fluctuates between risk classes (e.g., 
Austria and Bahamas) and any conclusion on the performance of these 
countries should be drawn with some caution. The results depend also 
on the theoretical framework and data used but are for the majority of 
simulations independent of the methodological choices (weighting and 
aggregation). The dominant source of the deviations arises from the 
degree of compensation among the indicators. Hence, the tradeoffs 
should be made explicit for choosing aggregators that reflect the 
intended degree of compensation. 

4. Conclusions 

Extreme weather and climate related events are increasingly causing 
fatalities and economic losses throughout the globe. This has prompted 
an increased effort in many countries to adopt DRR and CCA policies and 
mitigation measures, often supported by evidence-based decision-mak-
ing tools such as indicator-based assessments. The INFORM Risk Index is 
a multi-hazard humanitarian disaster risk index depicting the exposure 
and vulnerability of countries to current natural and anthropogenic 
hazards and risks. In this exploratory study, we extend the INFORM Risk 
Index to also encompass projected future climate change risks (hazard) 
and population changes (exposure). We consider population from 2015 
and two socio-economic scenarios (SSP3 and SSP5) and climate from a 
scenario that encompasses a wide range of impacts (RCP8.5) for the mid- 
21st century. The climate-related hazards considered are river flood, 
coastal flood and drought. 

For the three hazards considered, the exposure results show that 
globally by the mid-21st century 1.3 billion people will be exposed to the 
amplified climate-related hazards with 2015 population, 1.8 billion 
people under SSP3 and 1.5 billion people under SSP5. Amplified drought 
has the highest humanitarian impact, river flood the second highest and 

coastal flood the lowest. Regionally, the largest population exposed to 
amplified hazards is projected in Asia and Africa, and the smallest 
exposure is projected in Oceania and South America. The exposure 
under SSP5 tends to be more uniform across the continents compared to 
SSP3 due largely to lower population growth rates in non-industrialized 
nations and higher growth rates in industrialized nations. Among the top 
20 countries with current largest population, Vietnam and Egypt have 
the largest per capita exposed population to flood and drought. 

Despite the considerable variations in hazard and exposure levels for 
various development scenarios, the risk magnitude changes generally 
within defined risk classes that range from very low risk to very high 
risk. An assessment of future vulnerability/lack of coping capacity 
suggests that several countries especially in Europe, western and 
northern Asia and Africa will need higher reduction levels to maintain 
the current disaster risk. Most of these countries are currently ranked as 
very low and low risk countries since they have the highest potential to 
shift to a higher risk category as a result of climate change and/or 
population change. 

Investigating the interactions between climate change hazard and 
population scenarios, we find that the sum of the vulnerability/lack of 
coping capacity standardized scores increases by 10% with 2015 pop-
ulation, 13% under SSP3 and 12% under SSP5. This suggests that 
climate change has a considerably larger effect on the increase of 
INFORM vulnerability/lack of coping capacity dimension than changes 
in population. It is important to note that only three climate change 
hazards are considered in this initial study; adding additional hazards 
would likely increase the climate change impacts on the INFORM Risk 
Index. 

An uncertainty analysis using a quasi Monte-Carlo approach vali-
dates the stability of natural hazard and exposure classes of the extended 
index. For more than 70% of the countries, the SSP3 and SSP5 risk 
classes are matched with the classes with highest probabilities over all of 
the simulations. The dominant source of the deviations arises from the 
degree of compensation among the indicators. Hence, the tradeoffs 
should be made explicit when choosing methodologies that reflect the 
intended degree of compensation. 

Our analysis provides a means to quantify the magnitude of how 
changes are to be made on vulnerability/lack of coping capacity to 
disaster risk. Moreover, when considered within an operational frame-
work, it allows for objective measurement and comparison of perfor-
mance/impact of policy actions on the aforementioned changes at a 
global level. INFORM Risk provides new insights into policymaking 
especially in the context of policy coherence for sustainable develop-
ment (PCSD). In line with the Sustainable Development Agenda (United 
Nations, 2021), it helps to move the focus from the symptoms only to 
addressing the underlying causes of economic, social, environmental 
and governance challenges. 

The methods and analysis presented here could be further extended 
in several ways. As literature suggests, different global climate models 
(GCMs) yield different results under same climate scenarios; the pattern 
of change on the hazard component of the extended INFORM Risk can be 
included by considering an ensemble study of different GCM projections. 
In this context, the uncertainty of not only the hazard component, but 
also of the exposure and the vulnerability components of risk under 
future scenarios should be assessed. Moreover, high divergence of 
forcing from the different RCPs occur mainly beyond mid-century. 
Extending to the end of the century should include a larger suite of 
climate change scenarios ranging from the 1.5 ◦C Paris scenario to RCP 
8.5. With the larger suite climate change scenarios, other SSP scenarios 
should also be considered. Furthermore, other climate-related hazards 
with large humanitarian impacts such as heatwaves, urban flood and 
extreme winds should also be considered. 
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