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Abstract: 

Purpose 

The high-dimensional propensity score (HDPS) is a semi-automated procedure for confounder 

identification, prioritisation, and adjustment in large healthcare databases that requires 

investigators to specify data dimensions, prioritisation strategy, and tuning parameters. In 

practice, reporting of these decisions is inconsistent and this can undermine the 

transparency, and reproducibility of results obtained. We illustrate reporting tools, graphical 

displays, and sensitivity analyses to increase transparency and facilitate evaluation of the 

robustness of analyses involving HDPS. 

Methods 

Using a study from the UK Clinical Practice Research Datalink that implemented HDPS we 

demonstrate the application of the proposed recommendations.   

Results 

We identify 7 considerations surrounding the implementation of HDPS, such as the 

identification of data dimensions, method for code prioritisation and number of variables 

selected. Graphical diagnostic tools include assessing the balance of key confounders before 

and after adjusting for empirically-selected HDPS covariates and the identification of 

potentially influential covariates. Sensitivity analyses include varying the number of covariates 

selected and assessing the impact of covariates behaving empirically as instrumental 

variables. In our example, results were robust to both the number of covariates selected and 

the inclusion of potentially influential covariates. Furthermore, our HDPS models achieved 

good balance in key confounders.  

Conclusions 

The data-adaptive approach of HDPS and the resulting benefits have led to its popularity as a 

method for confounder adjustment in pharmacoepidemiological studies. Reporting of HDPS 

analyses in practice may be improved by the considerations and tools proposed here to 

increase the transparency and reproducibility of study results. 

 

  



1. Introduction  
 
Bias arising from confounding is a key concern for pharmacoepidemiological studies and its 

mitigation depends on the ability to identify, measure and adjust for underlying differences 

between patients receiving different therapies.1 Successful adjustment for confounding often 

hinges on capturing hard to measure concepts, such as markers of frailty, disease severity, or 

health-seeking behaviour.  

 

The high-dimensional propensity score (HDPS) algorithm2,3 is a method for variable 

identification, prioritisation, and adjustment tailored for large healthcare databases. The 

HDPS conceptualises information in these databases as proxies to key underlying constructs; 

some are likely to be strongly correlated with other measured variables, but others act as 

proxies for constructs that would otherwise be unmeasured. The procedure treats these 

features as additional covariates for adjustment with the aim of optimising confounding 

capture and control.  

 

Whilst the HDPS often incorporates several hundred additional covariates, the types of 

features included is rarely communicated leading some to label the HDPS a ‘black-box’ 

approach. Diagnostic tools can offer important insights into the properties of these features, 

enhancing our knowledge of the factors driving treatment decisions and checking for possible 

errors, e.g., the presence of certain codes in the pool of selected HDPS covariates can 

highlight possible errors relating to linkage error or the application of exclusion criteria.  

 

Despite studies highlighting the potential lack of robustness to investigator decisions (e.g., the 

number of covariates chosen)4,5, reporting of sensitivity analyses remains inconsistent and 

this can undermine the transparency and reproducibility of HDPS analyses. Recent guidelines 

surrounding the reporting of pharmacoepidemiological studies state that “high dimensional 

proxy adjustment” methods should be reported in full; guidance is needed about what this 

entails.6  

 

Building on existing guidance for propensity score (PS) analysis,7–9 we describe and illustrate 



diagnostic tools and sensitivity analyses for HDPS analyses. We also provide considerations for 

reporting relevant information. 

 

2. High-dimensional propensity scores 

 
The generic five steps of the HDPS procedure are as follows:2  

  

• Step one, investigators specify the data structure. This can involve declaring data 

dimensions capturing different aspects of care in the database under investigation.  

• Step two, pre-exposure features are generated, and a prevalence filter is typically 

applied (often selecting the top 200 most common features from each dimension). 

Features are usually in the form of codes or free-text information and grouped at a 

specific granularity level. For example, codes might be truncated to the first three 

digits if they are International Classification of Diseases, 10th edition (ICD-10) codes.  

• Step three, the recurrence of features is assessed in a pre-exposure period, creating 

binary covariates based on a set of frequency-based cut-offs.2 The standard 

implementation of the HDPS defines three indicators for each patient capturing 

whether a feature was recorded: ≥ once, ≥ the median, and ≥ the 75th percentile. 

• Step four, the large pool of covariates generated in the previous step are prioritised. 

This is typically achieved using the Bross formula, which uses univariate associations 

of covariates with treatment and outcome, to identify those with the highest 

potential to bias the treatment-outcome relationship.2,3  

• Step five, a number of HDPS covariates (typically the top 200 to 500 from the 

covariate prioritisation)2,10 are selected to augment a set of pre-defined variables 

(selected by the investigators based on background knowledge) used for estimation 

of the PS model. Standard PS methods (e.g., matching or weighting)8,11 are used to 

estimate treatment effects based on both sets of covariates. The guidance presented 

subsequently should be considered additional to existing practices surrounding the 

reporting of PS methods e.g., summarising weights by exposure groups or presenting 

the proportion of patients unmatched.7,8  

 



3. Considerations for reporting  

 
We initially conducted a literature search surrounding PS diagnostics and reporting guidance, 

identifying important gaps in the current literature surrounding the reporting of HDPS 

models. Utilising the extensive experience and knowledge of HDPS analyses within the 

research team, we present considerations for reporting features of the HDPS procedure 

(summarised in Table 1). 

 

Item 1: Specify data dimensions 

Data dimensions identified should be summarised, indicating which aspects of care they 

capture and possibly note data quality and completeness metrics. These summaries should 

include a description of the features included in the data dimensions (e.g., codes, free-text 

information, laboratory test results) and any corresponding coding systems used. 

 

Item 2: Describe parameters for generating pre-exposure features 

Investigators should describe how features are generated, e.g. specifying the code granularity 

for a particular coding system (e.g., 3-digit ICD-10) or how free-text information has been 

processed.12 Furthermore, investigators may describe the number of candidate features 

available within the specified dimensions. 

 

Ongoing debate in the literature surrounds the use of marginal prevalence for prioritising 

features in Step 2 of the HDPS procedure.13 The main concern is the possible omission of 

influential features where despite a low marginal prevalence there exists strong imbalances 

within exposure groups. Investigators should indicate whether the prevalence filter is used 

and if so, state the number of features selected per dimension.  

 

Item 3: Describe feature recurrence assessment 

Whilst feature recurrence is typically assessed using the cut-offs outlined by Schneeweiss et 

al, deviations from these cut-offs exist and should be described in full.10,14 One example 

suggests explicitly considering the proximity to exposure start.10  

 

Item 4: Specify covariate prioritisation method 



Investigators should describe the method of covariate prioritisation used. Whilst ranking is 

typically based on the Bross formula, exposure-based ranking (prioritising covariates based on 

the confounder-exposure association) has been employed in settings with few outcome 

events.2,5  

 

Recent evidence indicates the potential for machine-learning methods to enhance the 

performance of HDPS, both for covariate prioritisation or by reducing the set of covariates 

prioritised by the Bross formula.15–17 

 

Item 5: Specify total number of HDPS covariates to select 

The number of HDPS covariates selected for inclusion in the PS model should be reported, in 

addition to routine reporting of the investigator identified covariates. Machine learning-based 

approaches to determine the number of codes selected should be described in full.4,5,17  

 

Item 6: Specify software 

Investigators should describe which software was used to implement the HDPS. There are 

commonly used packages available in R,18 SAS,19 or Aetion. 

 

Item 7: Describe the results of diagnostics  

Subsequent sections describe and discuss the interpretation of relevant diagnostic tools and 

sensitivity analyses that should be routinely conducted and reported.  

4. Data for illustration 

 
4.1 Background 

 

We use a cohort study from the United Kingdom (UK) Clinical Practice Research Datalink 

(CPRD) linked with the Myocardial Ischaemia National Audit Project (MINAP).20 The CPRD is a 

database capturing information pertaining to contacts with primary care services (including 

clinical diagnoses, referrals and prescriptions) and is broadly representative of patients 

registered at general practitioners in the UK.21  

 



The study investigated whether a pharmacokinetic interaction between clopidogrel and use 

of proton pump inhibitors (PPI) could reduce clopidogrel effectiveness, leading to increased 

risk of vascular events. Results indicated an increased risk of MI associated with PPI use which 

was hypothesised to be largely due to residual confounding between treatment groups.20  

 

A reanalysis using the HDPS obtained results much closer to the hypothesised null 

association,20,22,23 suggesting an improved ability to account for between-patient 

characteristics that were important for confounding control.14  

 

4.2 Summary of HDPS analysis 

 

We defined three dimensions assessing clinical, referral, and therapy information in the year 

prior to cohort entry. We applied a prevalence filter selecting the top 200 features from each 

dimension and adjusted for the top 500 HDPS covariates (prioritised by the Bross formula).14   

 

The PS was estimated using multivariable logistic regression including both pre-defined and 

HDPS covariates. Hazard ratios (HR) for the treatment effect were obtained using Cox 

regression weighted by inverse probability of treatment weights. Standard errors for 

treatment effects were obtained using robust standard errors.14  

 

Table 2 summarises the results, including a sensitivity analysis varying the number of HDPS 

covariates selected. 

 

Analyses were conducted using Stata 15 and R.24,25 Code reproducing the figures presented is 

available at www.github.com/johntaz/HDPS-Diagnostics. 

5. Diagnostic & visualisation tools 

 
In this section we illustrate and discuss novel and established PS diagnostics for assessing 

HDPS models (summarised in Table 3).   

 



5.1 Model summaries 

We recommend simple descriptions for communicating the covariates included in HDPS 

models, e.g., highlighting the proportion of selected codes that came from each data 

dimension. Investigators may also summarise high-level clinical concepts captured by the 

covariates included in the HDPS. Our study categorised codes using British National Formulary 

(BNF) paragraph level (prescription dimension) and ICD-10 (clinical and referral dimensions). 

We exploited the hierarchy of these coding systems to investigate codes aggregated by the 

chapter level. Figure 1 shows that in the clinical and referral dimensions, the majority of 

covariates selected corresponded to codes relating to symptoms, signs and abnormal 

findings. Additionally, covariates derived from the therapy dimension corresponded most to 

prescriptions from the cardiovascular system or nutrition and blood BNF chapters.  

 

5.2 Comparison of PS distributions 

 

Inspecting the distributions of the estimated PS by treatment group is a common diagnostic 

highlighting the ability of covariates included in the PS model to predict treatment received in 

the population being studied. As with all PS analyses, investigators should verify the positivity 

assumption,9 a violation of which is lack of overlap. One common approach for handling this is 

PS trimming.26,27  

 

Whilst inspection of the estimated PS distribution is recommended when applying the HDPS, 

it is additionally informative to compare the PS distributions before and after inclusion of the 

HDPS covariates. This requires estimating the PS under models including a) only the pre-

defined covariates and b) the pre-defined and selected HDPS covariates. Figure 2 compares 

the estimated PS distributions under these models.  

 

When including only the pre-defined covariates, the estimated PS distributions appear similar 

between the treatment groups (Figure 2).28 However, when adding the HDPS covariates we 

observe a shift in the PS distributions (Figure 2), indicating that, in this example, the HDPS has 

captured extra predictors of treatment initiation. This highlights important between-patient 



differences not apparent when only including the pre-defined covariates. These differences 

would not be accounted for under the investigator-led PS analysis.  

 

5.3 Covariate balance 

 

To investigate the overall balance of HDPS covariates we can plot the prevalence of selected 

covariates between the two treatment groups (shown in Figure 2).28 Figure 3 highlights that 

for most covariates there is a similar prevalence in both groups, with slightly higher 

prevalence amongst the PPI users. There are several covariates from the prescription 

dimension (Figure 3, prevalence ratio > 2.0) with moderate to high prevalence amongst PPI 

users and a low prevalence amongst the non-users.  

 

Measures of covariate balance (e.g., absolute standardised differences) are commonly used 

when assessing PS models to check for imbalances. In the HDPS setting, investigators should 

check the balance in the HDPS covariates before and after adjustment. Figure 4 indicates 

some covariates with large imbalances (substantially > 10%) in the unweighted population but 

all achieve good balance in the HDPS weighted population.  

 

There is a concern that adjusting for many additional HDPS confounders can make achieving 

balance in pre-defined confounders more difficult, as the PS model tries to simultaneously 

balance many more variables. If the HDPS variables are weak confounders or even not true 

confounders, addition of these variables can result in unnecessarily increased bias and 

variance.29,30 Achieving balance is more important in strong confounders compared to weak 

confounders.31 Therefore, we recommend assessing the balance on selected key confounders 

before and after inclusion of all selected HDPS covariates.32  

 

For illustrative purposes, we assume that all pre-defined covariates are important 

confounders and Figure 5 presents the balance of these covariates under models additionally 

including 250, 500 and 750 HDPS covariates. We observe that even after adjusting for 750 

HDPS covariates, we achieve good balance in the pre-defined covariates, indicating the 

suitability of any of these models for preserving balance in the pre-defined covariates.  



 

Another approach investigates the covariate balance in both the pre-defined and a set of key 

HDPS confounders (Figure 6); we additionally assume all key HDPS confounders are in the top 

250. Figure 6 highlights that in the pre-defined weighted population, a number of the top-

ranked HDPS covariates remain imbalanced. However, when weighting by our primary HDPS 

model we achieve good balance in both the pre-defined and top 250 covariates.  

 

In Table 4 we present mean absolute standardised differences to measure overall covariate 

balance. For the pre-defined covariates, we observe an increase in imbalance when 

additionally accounting for the HDPS covariates and this is similar under all HDPS models. 

Furthermore, we observe that when considering all key confounders (pre-defined and HDPS) 

the HDPS models perform similarly and achieve better balance than the pre-defined model. In 

this study, there is little difference in overall balance between the HDPS models, however 

other studies might see a deterioration in overall balance when including more HDPS 

covariates. Overall summaries of imbalance could be modified to put more weight on 

imbalance in covariates thought to be stronger confounders (in which imbalance is more 

likely to result in confounding bias); Table 4 presents one method for achieving this.  

 
 
The HDPS aims to optimise confounder adjustment but there is a potential trade-off between 

better adjustment for a broader array of potential confounders versus tighter balance on key 

confounders. How much imbalance we are willing to permit in key confounders is primarily 

driven by how strongly these confounders are associated with the outcome. Therefore, a lack 

of imbalance in pre-defined and HDPS covariates does not necessarily mean all confounding 

has been removed and key unmeasured confounders may still exist.  

 

5.4 Identification of potentially influential covariates 

 

Whilst the full list of covariates selected is sometimes provided,2 this is not easily digestible 

when interrogating several hundred HDPS covariates. However, manually inspecting the top 

covariates included can identify groups of codes relating to previously overlooked concepts 

that are important for minimising confounding bias.33  



 

An initial step is to investigate the distribution of Bross-derived bias values; Figure 7 shows 

the ranking score for the top 500 covariates.4 The colour coding indicates which dimension 

the covariates originated from and highlights that the majority of covariates were from the 

prescription dimension. Furthermore, this plot allows investigators to observe highly ranked 

covariates which might have a large amount of influence in the PS model.  

 

The data-driven nature of the HDPS approach does not preclude adjustment for certain 

variables, such as instrumental variables (IVs) and colliders, which are typically excluded from 

PS models.29,30,34,35 Whilst Step 4 of the HDPS often attempts to down-weight covariates with 

these properties (e.g. prioritisation by the Bross formula down-weights IVs), these variables 

could inadvertently be included, especially if the total number of covariates available is small 

relative to the proportion selected. However, the potential reduction in confounding bias 

from the inclusion of these covariates will often outweigh any increase in bias and variance 

induced.30,34,36 Whilst there are no statistical tests for classifying these types of variables, we 

can attempt to identify covariates which behave empirically like IVs. For this purpose, we 

define a likely IV or near-IV as a variable which is strongly associated with exposure but has a 

weak association with the outcome.26 Figure 8 describes the relationship between the 

covariate-exposure and covariate-outcome associations; covariates in the top-left quadrant 

represent those behaving empirically as IVs. The following empirical cut offs have been 

proposed to identify covariates behaving like IVs: |log(RRCE)| > 1.5  and  |log(RRCD)|  <

 0.5  and, more restrictively, |log(RRCE)| > 1.1  and  |log(RRCD)| < 0.5; where RRCE and RRCD 

are the risk ratios for the covariate-exposure and covariate-outcome respectively.16  

 

We explore the sensitivity of results to the inclusion of potentially influential covariates in 

Section 6.2.  

6. Sensitivity analyses 

 
6.1 Varying number of covariates selected 

 



A key decision when applying the HDPS surrounds how many covariates to adjust for. Whilst 

investigators typically choose 200 or 500 variables to augment the pre-defined covariates, 

this is largely a result of convention. Simulation studies in moderate to large samples by 

Rassen et al suggest that adjusting for approximately 300 HDPS variables is likely to be 

sufficient.5  

 

In practice, precisely how many HDPS variables to adjust for is likely to be dependent on the 

question of interest, rarity of outcome and the richness of data available in the database 

under investigation. Furthermore, previous studies indicate that in settings with few outcome 

events results can vary greatly depending on the number of covariates selected.4,17  

 

Machine learning approaches have been proposed to determine the number of covariates 

selected for adjustment, but these have not yet been widely adopted.15–17,28 Investigators are 

usually agnostic about how many covariates to select and therefore should assess the 

sensitivity of results to this decision.  

 

Figure 9 presents two options for varying the number of covariates selected. The first 

specifies a discrete number of scenarios, for example, a study selecting 500 covariates in the 

primary analysis might investigate the results obtained from selecting 100, 250 and 750 

covariates. Figure 9A presents these results next to the primary HDPS analysis, crude model 

and pre-defined covariates model. Compared to the crude and investigator analysis, varying 

the number of HDPS covariates selected resulted in consistent, but not monotonic, shifts in 

our point estimate towards the expected null association.  

 

Another approach investigates the impact of incrementally adjusting for the empirically 

selected variables (Figure 9B).4 Figure 9B indicates stabilised results with the inclusion of 

between 250 and 600 covariates. Where results do not stabilise, investigators should try to 

understand the driving factors and avoid undue focus on a specific HDPS analysis. Instead, it 

may be more suitable to report a range of effect estimates.  

 

6.2 Quantifying impact of potentially influential covariates 

 



In this section we quantify the impact of potentially influential covariates on results obtained 

in our primary analysis.  

 

The distribution of Bross values (Figure 7) highlights that the top 3 ranked HDPS covariates 

are modestly higher than the rest. To understand the extent to which these covariates explain 

changes in the point estimates after inclusion of HDPS covariates, we conducted a sensitivity 

analysis adjusting for the predefined covariates plus only the top 3 ranked covariates (Table 

5). We obtained a HR of 1.12 (95% CI: 0.93 to 1.34), indicating some residual confounding 

remained compared to adjustment for the full set of 500 HDPS covariates (HR 1.00; 95% CI: 

0.78 to 1.28).  

 

In Section 5.3 we identified covariates that behave empirically like IVs. To test the sensitivity 

of results to their inclusion, we conducted analyses based on Figure 8 (removing 7 near-IVs) 

and the two cut-offs previously described. Removing empirically identified IVs altered results 

in the 2nd decimal point only, indicating no change in the overall interpretation (Table 5). 

Furthermore, removal the empirical near-IV variables resulted in reduced variance around the 

treatment effect estimate compared to the primary HDPS analysis (Table 5).    

7. Discussion 

 
The HDPS approach has become a popular and scalable method for augmenting confounder 

adjustment in a given data source.10 However, as with PS analyses more generally, use of 

diagnostics and reporting of the details of the implementation is suboptimal.37,38 Using data 

from the UK CPRD 14,20 we highlighted diagnostic tools for assessing HDPS models and 

proposed considerations for reporting key features.   

 

Drawing on established PS methodology, we described the importance of inspecting the 

estimated PS distributions before and after inclusion of the HDPS covariates. We 

recommended assessing covariate balance on important key confounders before and after 

inclusion of the HDPS covariates to investigate the potential impact of adjusting for many 

covariates on a set of strong confounders. Additionally, we described diagnostic tools more 



specific to the HDPS setting, e.g., for identifying instrumental-like variables and informing 

sensitivity analyses surrounding influential covariates.  

 

We recommend that thorough sensitivity analyses should be conducted and reported when 

applying the HDPS. A key issue surrounds the number of covariates selected for inclusion in 

the PS model,4,17 especially since the optimal number in a given setting is often unknown. 

Where inconsistencies are found, efforts should be made using the tools described to 

understand the drivers of variability.  

 

HDPS covariate prioritisation is often based on univariable associations (e.g., via the Bross 

 

 formula) and this can potentially lead to the inclusion of covariates which conditionally are 

not confounders. This has motivated recent developments focussing on the refinement of 

covariate prioritisation and selection within the HDPS procedure , especially using machine 

learning methods.15,17,28,39 Whilst such developments can potentially improve HDPS analyses, 

no single approach is always optimal and applying the diagnostic tools described here is 

important to better understand the differences between these approaches.  

 

We hope reporting of these analyses may be improved through more widespread use of the 

considerations and tools presented here.  
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Tables 
Table 1:  Reporting considerations for key features and decisions of the high-dimensional 
propensity score approach 

Item Description Aspect(s) to report 

1 Specify data dimensions • Dimensions identified and which aspect of the 

healthcare system they characterise 

2 Describe parameters for 

generating pre-exposure features 

• Describe how features are generated 

• Number of codes selected per dimension in 

prevalence filter 

3 Describe feature recurrence 

assessment  

• Whether and how recurrence was considered 

• Whether and how proximity to exposure start 

was considered  

4 Specify covariate prioritisation 

method  

• Ranking based on: 

o Exposure-outcome prediction based 

(Bross) 

o ML-supported exposure-outcome 

prediction 

o Exposure prediction only  

5 Specify total number of covariates 

to select 

• Number of HDPS covariates selected 

• Justification for number of HDPS covariates 

selected, e.g. use of simulation-based 

approaches.  

• Routine reporting of the investigator identified 

covariates 

6 Specify software • Describe which software package was used to 

implement the HDPS procedure 

7 Describe the results of diagnostics 

and sensitivity analyses 

• Describe diagnostic tools used and highlight 

key insights gained.  

• Describe the results of sensitivity analyses and 



discuss the possible implications for 

interpreting the findings from the primary 

analysis. 

 
  



Table 2: Summary of Clinical Research Practice Datalink study used for illustration investigating 
the association between proton pump inhibitor use and risk of myocardial infarction in a 
population of clopidogrel and aspirin users. 
 

 
  

Analysis Number of covariates Hazard ratio (95% CI) 

Crude 0 1.23 (1.06 to 1.42) 
Pre-defined only* 10 1.17 (1.00 to 1.35) 
Primary HDPS 10 + 500 1.00 (0.78 to 1.28) 

Sensitivity 
10 + 100 1.07 (0.87 to 1.32) 
10 + 250 1.02 (0.81 to 1.27) 
10 + 750 1.03 (0.79 to 1.28) 

*Pre-defined covariates: age, sex, smoking status, alcohol status, categorised BMI, alcohol status, history of 
PVD, CHD, stroke, cancer. 



 
Table 3: Summary of established and proposed diagnostic tools for high-dimensional propensity 
score models 
 

Diagnostic description Section 

discussed 

Conventional 

propensity score 

High-dimensional 

propensity score 

Propensity score distribution by 

treatment group 

5.2 ✓ 
 

✓ 
 

Prevalence of selected covariates by 

treatment group 

5.3 - ✓ 
 

Absolute standardised differences 5.3 ✓ 
 

✓ 
 

Bross-derived prioritisation 

distribution 

5.4 - ✓ 
 

Relationship between confounder-

exposure and confounder-outcome 

associations 

5.4 - ✓ 
 

 



Table 4:  Comparison of the mean absolute standardised differences in the unweighted, pre-
defined and pre-defined and HDPS weighted populations.  
 

  

Set of 

covariates 

Accounting for 

relative 

importance of 

HDPS 

covariates+ 

Mean absolute standardised differences 

Unweighted 

Pre-defined 

only 

weighted 

Top 250 

HDPS 

weighted  

Top 500 

HDPS 

weighted 

Top 750 

HDPS 

weighted 

Pre-defined 

only 
- 7.74 0.11 1.56 1.51 1.68 

Top 250 HDPS 

only 
No 10.91 8.15 1.14 1.42 1.51 

 Yes 6.73 5.11 0.62 0.77 0.88 

Pre-defined No 10.79 7.84 1.14 1.43 1.51 

and top 250 

HDPS 
Yes* 6.77 4.92 0.64 0.80 0.83 

+Given a ranked (e.g., Bross-formula ranking) set of HDPS covariates of size N, importance weights are defined 

as ((N+1)-rank)/N 

*Predefined covariates are assigned an importance weight of 1 



 
 
Table 5: Sensitivity analyses exploring the impact of identified potentially influential  
covariates. 

  

Sensitivity Type Sensitivity conditions 

Number of 

covariates 

removed 

Total 

number of 

HDPS 

covariates 

Hazard ratio 

(95% CI) 

Confidence 

limit ratio 

Demographics & 

predefined only 
- - - 1.17 (1.00 to 1.35) 

1.35 

Primary HDPS - - 500 1.00 (0.78 to 1.28) 1.64 

Empirical 

Pick the top 3 Bross 

ranked 
497 3 1.12 (0.93 to 1.34) 

1.44 

|log(RRCE)| > 1.5 & 

|log(RRCD)| < 0.5 
4 496 1.06 (0.87 to 1.30) 

1.49 

|log(RRCE)| > 1.1 & 

|log(RRCD)| < 0.5 
9 491 1.06 (0.89 to 1.26) 

1.42 

Graphically Assess Figure 8 7 493 1.06 (0.86 to 1.30) 1.51 



Figures 
Figure 1. Summary of high-level concepts captured in the top 750 bross-prioritised HDPS pre-
exposure covariates separated and colour-coded by data dimension. 

  



Figure 2: Overlap plot comparing the propensity score distributions including only 10 pre-
defined pre-exposure covariates and additionally including the 500 top-ranked HDPS covariates  

 
 
 
  



Figure 3: Prevalence of the top 500 Bross-prioritised HDPS pre-exposure covariates by 
treatment group and by data dimension. The diagonal line indicates equal prevalence in both 
groups and the dashed lines show prevalence ratios (PR) of 0.5 and 2.0. The colour coding 
highlights which dimension the covariate was derived from.  
 



Figure 4: Comparison of absolute standardised differences (ASDs) between unweighted and 
HDPS weighted sample under the primary analysis, selecting the top 500 HDPS covariates. 
Dashed lines indicate absolute standardised differences of 10%.  
 
  



Figure 5: Comparison of absolute standardised differences in a set of key covariates between 
unweighted, pre-defined covariate weighted, and pre-defined and HDPS covariate weighted 
samples. 
  



 
Figure 6: Comparison of absolute standardised differences in the pre-defined and top 250 HDPS 
covariates between unweighted, pre-defined and HDPS (+500 covariates) weighted samples  

 
 
  



Figure 7: Distribution of absolute log Bross bias values for each of the top 500 HDPS pre-
exposure covariates. 
 

 
 
  



Figure 8: Comparison of the covariate-exposure and covariate-outcome associations for the top 
500 bias-based HDPS pre-exposure covariates. The values represent the strength of association, 
defined as the absolute value of the unvariable association minus 1. Larger values indicate a 
strong association in either direction and a value of zero indicates no association. 

 
   



Figure 9. Sensitivity analyses assessing the impact of the number of HDPS covariates selected 
on the log effect estimate. Propensity scores were estimated using logistic regression and 
treatment effects were estimated using an inverse probability of treatment weighted Cox 
model. 
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