
Checchi et al. Population Health Metrics            (2022) 20:4  
https://doi.org/10.1186/s12963-022-00283-6

RESEARCH

A method for small-area estimation 
of population mortality in settings affected 
by crises
Francesco Checchi* , Adrienne Testa, Amy Gimma, Emilie Koum‑Besson and Abdihamid Warsame 

Abstract 

Background: Populations affected by crises (armed conflict, food insecurity, natural disasters) are poorly covered by 
demographic surveillance. As such, crisis‑wide estimation of population mortality is extremely challenging, resulting 
in a lack of evidence to inform humanitarian response and conflict resolution.

Methods: We describe here a ‘small‑area estimation’ method to circumvent these data gaps and quantify both total 
and excess (i.e. crisis‑attributable) death rates and tolls, both overall and for granular geographic (e.g. district) and time 
(e.g. month) strata. The method is based on analysis of data previously collected by national and humanitarian actors, 
including ground survey observations of mortality, displacement‑adjusted population denominators and datasets of 
variables that may predict the death rate. We describe the six sequential steps required for the method’s implemen‑
tation and illustrate its recent application in Somalia, South Sudan and northeast Nigeria, based on a generic set of 
analysis scripts.

Results: Descriptive analysis of ground survey data reveals informative patterns, e.g. concerning the contribution 
of injuries to overall mortality, or household net migration. Despite some data sparsity, for each crisis that we have 
applied the method to thus far, available predictor data allow the specification of reasonably predictive mixed effects 
models of crude and under 5 years death rate, validated using cross‑validation. Assumptions about values of the pre‑
dictors in the absence of a crisis provide counterfactual and excess mortality estimates.

Conclusions: The method enables retrospective estimation of crisis‑attributable mortality with considerable geo‑
graphic and period stratification, and can therefore contribute to better understanding and historical memorialisation 
of the public health effects of crises. We discuss key limitations and areas for further development.
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Background
Mortality estimation in crisis‑affected populations
In populations exposed to conditions of crisis (armed 
conflict, food insecurity, natural disasters, etc.), esti-
mates of population mortality provide a basis on which 

to predicate an appropriate humanitarian response [1, 
2], and support advocacy and historical documentation 
[3, 4]. Over the past two decades, estimates of mortal-
ity have informed war crime prosecution in the former 
Yugoslavia [5], illuminated the toll of armed conflict in 
Darfur [6, 7], the Democratic Republic of Congo [8] and 
Iraq [9, 10], documented the impact of famine in Soma-
lia [11] and, most recently, demonstrated the direct and 
indirect health impacts of the SARS-CoV-2 pandemic 
[12–14].
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Crisis-attributable mortality is difficult to estimate, 
even in high-income countries [15, 16]. In low-income 
and/or insecure settings, additional challenges [4, 17] 
arise, including (i) lack of robust vital events registra-
tion; (ii) unfeasibility of representative primary data col-
lection due to insecurity, lack of authorisations, funding 
constraints or other factors; and (iii) inability to collect 
robust retrospective data due to having to elicit informa-
tion on demographic events over a long period in the past 
(e.g. > 2  years). Response bias as questionnaires probe 
farther back in time, plus survival and selection biases 
caused by households disintegrating due to high mortal-
ity or migration, challenge survey validity [17]. Establish-
ing a counterfactual (i.e. non-crisis) death rate presents 
a further challenge, particularly in very protracted crises 
(e.g. Afghanistan or the eastern Democratic Republic of 
Congo) where such a baseline has been unobservable for 
decades.

Scope of this paper
Here, we describe the design and implementation of a 
method that addresses the above challenges, and esti-
mates crisis-attributable death rates and tolls based 
on previously collected data. Applications of previous 
iterations of the method in Somalia (2010–2012) [11] 
and South Sudan (2013–2018) [18] have been published 
elsewhere. Further applications in Somalia (2014–2018), 

Nigeria and the Democratic Republic of the Congo will 
be published separately. South Sudan, Somalia and Nige-
ria examples are however used here to illustrate the 
application and constraints of the method.

General design
Why a small‑area estimation approach?
Small-area estimation was developed in the United States 
to estimate characteristics of interest, e.g. smoking preva-
lence or poverty levels, for small geographical units (e.g. 
counties) without having to conduct primary data collec-
tion within each such unit [19]. Our method is designed 
to deliver estimates for small geographical and time strata 
based solely on existing data.

General framework
Crisis-attributable mortality can be defined conceptually 
as the difference between the number (or rate) of deaths 
that has actually occurred during the crisis and the num-
ber (rate) that would have occurred in the absence of the 
crisis.

As illustrated hypothetically in Fig. 1, in a counterfac-
tual (i.e. no-crisis) scenario it is plausible that the pre-
crisis secular decline would have continued; the crisis has 
negated these improvements and effectively returned the 
population to a ‘higher’ baseline than pre-crisis; moreo-
ver, excess, crisis-attributable mortality may occur even 

Fig. 1 Illustration of actual and counterfactual mortality during and after a hypothetical crisis
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years after crisis conditions (e.g. armed conflict) resolve 
(e.g. increased tuberculosis mortality due to higher 
transmission of M. tuberculosis when people lived in dis-
placement camps years earlier, or the multi-generational 
effects of psychological stress).

We wish to estimate excess mortality for the entire 
‘person-time’ at risk during the crisis, but also for specific 
sub-periods and geographic units (these could be admin-
istrative level 2 entities such as counties or districts; they 
could also however be geographical units whose bounda-
ries may correlate more closely with mortality risk, such 
as settlements for internally displaced persons (IDPs) or 
‘livelihood zones’, namely areas characterised by a domi-
nant economic activity, e.g. pastoralism or agriculture). 
Information on where and when mortality is highest may 
be useful to identify gaps in the humanitarian response 
or to better understand the dynamics of an armed con-
flict. More generally, we can write

where D is the death toll, y is the mean death rate and 
N  the population at risk; E , A and C denote excess, actual 
(i.e. what truly happened) and counterfactual (what 
would have happened in the absence of a crisis) levels; 
k is any geographic unit (e.g. a district), and t any time 
unit (e.g. a month) within the crisis period (thus, kt , the 
smallest analysis stratum, could be a district-month). 
Note that NC may differ from NA , for example because 
in a no-crisis counterfactual forced displacement would 
not have occurred. If the quantities on the right-hand 
side of Eq.  (1) are all estimated, we can sum results for 
any kt strata for different aggregations of interest or to 
compute the overall death toll. Equation (1) also applies 
for age- or cause-specific mortality (e.g. among children 
under 5  years old; due to intentional injury), provided 
these stratifications are available or can also be estimated.

Estimation steps
Our adaptation of small-area estimation consists of using 
available data to fit and validate a statistical model (spe-
cific to each crisis) that predicts the death rate ykt as a 
function of several predictor variables; and applying this 
model to project yA,kt and yC ,kt under actual (observed) 
and assumed counterfactual conditions. Separately, NA,kt 
and NC ,kt are reconstructed based on growth rates and 
displacement patterns. Excess deaths are then computed 
by applying Eq. (1).

Table 1 summarises the steps involved in the full appli-
cation of the method. Data management details are 
omitted here, but annotated on R statistical scripts (see 
Declarations and Additional file 1: pages 11–13). Step 2, 
namely reconstructing population denominators, will be 
detailed in a separate paper.

(1)DE,kt = DA,kt − DC ,kt = yA,ktNA,kt − yC ,ktNC ,kt

Defining the analysis person‑time and strata
Specifying the population and period for which estimates 
are sought, and the granularity with which these may be 
computed, determines most of the subsequent steps. In 
some scenarios, this will be straightforward (e.g. an entire 
country or a specific region is affected by armed conflict 
with a clear start and end date). In other cases, the analy-
sis may be conducted to estimate mortality up to a cer-
tain time point in the crisis.

The definition of ‘crisis’ also needs to be made explicit: 
for example, Somalia has experienced 30 years of armed 
conflict; against this backdrop, drought and flooding 
emergencies have repeatedly occurred. Our analyses to 
date in Somalia have aimed to estimate mortality attrib-
utable to exceptional food insecurity events (2010–2012, 
2017–2018) [20] triggered by drought, i.e. above and 
beyond any excess deaths caused by the protracted con-
flict alone. Accordingly, we have defined the period of 
analysis as that over which key food security indicators 
and other markers of crisis conditions were reported 
to be unusually poor. In Nigeria, we wished to estimate 
mortality attributable to the armed conflict between the 
government and Boko Haram, which affects three states 
(Borno, Yobe, Adamawa) in the northeast: this is a more 
straightforward scenario in which a relatively recent 
baseline of no conflict precedes the crisis. Refugees who 
leave the crisis-affected region should also be considered 
within the study population. However, this bears several 
complexities: for example, refugees will be exposed to 
different risk factors and may paradoxically experience 
lower mortality than if they had remained in their coun-
try of origin, implying a negative excess mortality: this 
has been documented for South Sudanese refugees in 
Uganda [21], and could plausibly apply to the large Syrian 
refugee population now living in Europe.

In practice, the person-time boundaries of the analysis 
and the smallest level of stratification ( kt ) may be con-
strained by data availability. However, if possible a ‘buffer’ 
period (e.g. 6–12 months pre-crisis) should be included 
in the analysis to allow exploration of lagged effects of 
predictors on mortality and to use ‘baseline’ observations 
to set counterfactual values for the predictors (see below, 
‘Excess mortality estimation’ section). Furthermore, 
stratification should be as granular as possible to maxim-
ise observations available for model fitting and the utility 
of estimates.

As detailed below, sample surveys conducted by vari-
ous humanitarian actors are the commonest source of 
mortality ground data with which to fit and validate 
models. In a Somalia study (2010–2012) [11] we con-
ducted in the aftermath of a severe famine, nearly all such 
surveys had as their sampling universe the intersection 
of regional and livelihood zone boundaries: for example, 
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within Gedo region some surveys were designed to rep-
resent communities that predominantly relied on pas-
toralism, while other surveys covered IDPs or riverine 
agriculturalists. Most of the predictors and demographic 
estimates were also collected at or could be aggregated to 
this stratification level, and by month. Our chosen kt was 
thus regional livelihood zones and months (Table 2).

In more recent work, available data have  supported 
stratification by level 2 administrative unit (counties 
and districts, respectively).

Table 1 Summary of estimation steps

Step Description Sub‑steps Data requirements Depends on

Data collection and management steps

1 Identify existing ground mortality data 
and prepare them for analysis

Identify all available estimates
Extract meta‑data for each estimate
Clean and re‑analyse datasets
Grade estimate quality
Describe data coverage and crude pat‑
terns in key demographic indicators

Raw datasets of surveys or other estima‑
tion exercises
Survey reports
Official administrative data, shape files for 
geographic boundaries

2 Reconstruct population denominators
[not presented in this paper]

Identify and curate alternative population 
datasets. Grade their robustness
Identify and curate displacement data
Make appropriate assumptions on popu‑
lation and displacement dynamics
Reconstruct population for each kt 
stratum as an average of alternative 
estimates

Population datasets
Remote sensing estimates
Internal and refugee displacement data
Explanatory accompanying documents 
and reports

3 Capture predictor variable data and 
prepare them for analysis

Identify possible sources of data based on 
a conceptual framework
Capture and curate predictor datasets
Ascertain missingness and perform any 
appropriate imputation
Convert absolute figures into population 
rates, smooth time series and create lags 
if appropriate

Predictor datasets
Explanation of variable meanings/vari‑
able dictionaries

Steps 1–2

Analysis steps

4 Fit a statistical model to predict the death 
rate as a function of the predictors

Explore correlation among predictors
Do univariate analysis
Fit alternative multivariate models and 
select the most appropriate one

Steps 1–3

5 Apply the model to estimate excess mor‑
tality while propagating known sources 
of error

Specify a set of counterfactual scenarios:
Agree on what key deviations from nor‑
mal define the crisis being analysed
Arbitrarily define alternative (e.g. most 
likely, best‑case, worst‑case) scenarios for 
what values the model predictors would 
have taken in the absence of a crisis
Construct counterfactual predictor data‑
sets accordingly
Apply counterfactual death rates and 
assumptions on displacement to recon‑
struct corresponding counterfactual 
population denominators
Set up statistical simulation that imple‑
ments Eq. (1) for each kt stratum while 
drawing from known error distributions 
of each parameter
Compute excess death toll estimates 
overall and for sub‑populations/periods 
of interest

Extensive contextual knowledge
Mortality and predictor data for periods 
as long as possible before the crisis 
(recommended)

Steps 2–4

6 Conduct sensitivity analyses of interest Explore how possible bias or uncertainty 
in key parameters affect the estimates, by 
running the analysis with alternative data 
or assumptions

Step 5
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Implementation of specific steps
Data collection and management steps
Mortality data
Ground mortality observations are required to train and 
validate a predictive model.

The Standardised Monitoring and Assessment of Relief 
and Transitions (SMART) initiative [22] has developed 
a globally applicable protocol for rapid surveys that pri-
marily aim to estimate the prevalence of acute malnutri-
tion, but often also include a questionnaire module that 
elicits information from sampled households on their 
demographic experience over a retrospective ‘recall’ 
period, typically 3–6 months long [23]. SMART surveys 
are highly standardised and conducted routinely in most 
humanitarian responses [24], typically at administra-
tive level 2 or similarly small scale. Surveys mostly rely 
on two-stage cluster sampling, though some, e.g. in IDP 
camps, are exhaustive or use systematic random selec-
tion. Sample sizes of 300–1000 households and 20–30 
clusters are typical, i.e. sampled households are only a 
small fraction of the total. Survey design and analysis are 
automated by Emergency Nutrition Assessment (ENA) 
software, reducing the potential for surveyor error [25].

We identified 205 analysis-eligible SMART surveys in 
Somalia (2010–2012), 210 in South Sudan (2013–2018), 
91 in Somalia (2014–2018) and 70 in Nigeria (2016–
2018). Despite these substantial numbers, geographic 
and period data coverage can be sparse, as illustrated in 
Fig. 2 for South Sudan.

After cleaning datasets to resolve errors (e.g. values out 
of the allowed range), the crude death rate (CDR), under 
5 years death rate (U5DR or CDR among the population 
aged under 5 years), crude birth rate, in-, out- and net 
migration rate, and, for individual questionnaire surveys 

only, cause- and gender-specific death rates may be com-
puted (Additional file 1: page 2 and Table S1). The CDR 
and U5DR in particular are widely used by humanitar-
ian actors to benchmark the severity of a crisis in health 
terms [1]. Inspection of crude patterns in survey indica-
tors may be informative: for example, in South Sudan 
many surveys indicated high injury-attributable death 
rates and relative risks of dying among males, compared 
to females (Fig. 3).

Humanitarian surveys have varying robustness [26, 
27]. While SMART survey reports do not systemati-
cally report quality issues, they should nonetheless be 
scrutinised to identify potential biases, particularly any 
restriction of the effective sampling frame to only a frac-
tion of the intended sampling universe, due for example 
to insecurity or inaccessibility. We attribute to each sur-
vey s a weight ws = wB,swQ,s , wherewB,s , a representative-
ness weight, is the approximate fraction of the sampling 
universe that was actually included in the sample, as per 
the survey’s report (for example, if a report states that 
the sampling frame excluded 3 out of 5 districts, we set 
wB,s = 0.4 ; where an unspecified number of sampling 
units are excluded from the sampling frame, we assume 
wB,s = 0.5 ); and  wQ,s is a quality weight derived from the 
dataset (see Additional file 1: page 3).

Predictor data
If the statistical objective of analysis is merely to predict 
the death rate, any set of predictor variables that does so 
accurately, whatever their causal relationship with mor-
tality, may be appropriate. However, choosing predic-
tors that are causally related to mortality, or proxies for 
mortality risk determinants, is likely to enhance predic-
tive power and help assess the model’s internal validity. 

Table 2 Geographic analysis strata, Somalia (2010–2012) [11]

Region Number of strata, by livelihood type Total strata

Pastoralist Agro‑pastoralist Riverine Urban IDP

Bakool 1 1 0 0 1 3

Banadir (Mogadishu) 0 0 0 1 1 2

Bay 1 1 0 1 1 4

Galgaduud 1 1 0 0 1 3

Gedo 1 1 1 0 1 4

Hiraan 1 1 1 0 1 4

Lower Juba 1 1 1 1 1 5

Middle Juba 1 1 1 0 1 4

Mudug 1 1 0 0 1 3

Lower Shabelle 1 1 1 1 1 5

Middle Shabelle 1 1 1 1 1 5

Totals 10 10 6 5 11 42



Page 6 of 14Checchi et al. Population Health Metrics            (2022) 20:4 

Fig. 2 Coverage of SMART mortality surveys, by state and month, South Sudan, 2013–2018. Heat colours denote the percentage of the state’s 
population that fell within the sampling frame of at least one survey

Fig. 3 Trends in selected survey‑estimated indicators, South Sudan, 2013–2018. Each dot‑line segment denotes the recall period of one survey. 
Panel A death rate due to injury trauma per 10,000 person‑days. Panel B net household migration rate per 1000 person‑years
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To this end, we have defined a generic framework of 
factors leading to crisis mortality (Additional file 1: Fig-
ure S1). At least some of the selected predictors should 
be related to plausible drivers of excess mortality risk: 
for example, in a drought-triggered food security cri-
sis these might include rainfall, food purchasing power, 
burden of malnutrition and the incidence of epidemics 
(cholera, measles); in an armed conflict, the intensity of 
violence and disruptions to public health services might 
be more relevant. Identifying such ‘crisis-specific’ pre-
dictors is critical, as the method defines no-crisis sce-
narios by specifying counterfactual values for these very 
predictors.

In armed conflict settings and humanitarian responses, 
data collection is often unsystematic and disrupted [28]. 
In our experience to date, data are available for only 
few causal factors, and negotiation with agencies and 
humanitarian coordination mechanisms holding non-
public datasets occupies a large share of analyst time. 
Such datasets generally have poor integrity; they are typi-
cally entered onto spreadsheet software without stand-
ardisation of geographical nomenclature, value cell or 
formula protections, variable dictionaries or automatic 

error checking—thus necessitating extensive curation. 
Missingness is a common problem (Additional file 1: Fig-
ures  S2 and S3). We retain potential predictor datasets 
by applying a ‘70–70–70’ rule, namely ≥ 70% complete 
for ≥ 70% of  k  and ≥ 70% of t . Remaining missing-
ness is resolved through imputation, either statistical or 
manual (i.e. based on contextual knowledge). In order to 
reduce the influence of outliers (some of which may be 
data entry errors), where appropriate we apply moder-
ate smoothing or running means to time series. Details 
of predictors considered are presented in crisis-specific 
papers; Table  3 shows predictors included in the final 
models for each of the crises studied thus far.

Analysis steps
Predictive model fitting
If the raw datasets of mortality surveys are mostly una-
vailable, only stratum-level regression is feasible (Addi-
tional file  1: page 9). If raw data for most mortality 
surveys are available, household-level regression may be 
undertaken. SMART surveys do not report the exact date 
of deaths within the recall period: therefore, we merge 
predictor with survey data by computing the former’s 

Table 3 Predictors included in the final models of CDR, by crisis

Domain in causal 
framework

Predictor Crisis

Somalia (2010–2012) South Sudan 
(2013–2018)

Somalia (2014–2018) Nigeria (2016–2019)

Region X X X

Exposure to armed attacks/
insecurity

Incidence of armed conflict 
incidents

X X X

Exposure to armed attacks/
insecurity

Incidence of attacks against 
aid workers

Not available X

Food insecurity and liveli‑
hoods

Most prevalent livelihood 
type

X X X

Food insecurity and liveli‑
hoods

Terms of trade X X

Food insecurity and liveli‑
hoods

Cereal staple price X

Forced displacement Proportion of the population 
that is internally displaced

Not available X

Nutritional status Rate of admissions of severe 
malnutrition cases

Not available Not available X

Burden of endemic infectious 
diseases

Health‑facility based inci‑
dence of malaria

Not available X Not available

Epidemic occurrence and 
severity

Occurrence of epidemics X (any epidemics) X (cholera) X (measles) Not available

Humanitarian service func‑
tionality

Ratio of humanitarian actors 
to population

X

Humanitarian service func‑
tionality

Presence of food sector 
humanitarian assistance

X

Humanitarian service cover‑
age

Food distributed per capita X Not available

Health service coverage Vaccination coverage Not available X Not available X
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weighted mean over the survey’s recall period. The data 
structure is partly longitudinal: for example, in Nigeria, 
five consecutive survey rounds took place during 2016–
2019. While each survey round drew an independent 
sample, most Local Government Areas (LGAs; adminis-
trative level 2 units) hosted survey clusters during each 
round. In Somalia, some surveys were only representa-
tive of IDP settlements or urban areas within districts: we 
assume simplistically that district-wide predictor values 
also apply to these populations.

We use a generalised linear model with weights ws (see 
above) and a quasi-Poisson distributional assumption to 
account for overdispersion in the death count outcome. 
The model’s formula is thus:

where di,j,k ,Tr,s
 is the number of deaths in household i 

within survey cluster j and geographic stratum k occur-
ring during the recall period Tr of survey s , where r 
means recall; x1,k ,Tr,s

, x2,k ,Tr,s
, x3,k ,Tr,s

. . . xp,k ,Tr,s
 are the 

values of predictors  x1,x2 , x3 . . . xp averaged over the 
survey’s recall period, and for stratumk ; β1 , β2 , β3 . . . βp 
etc., are the corresponding fixed-effect linear coefficients; 
uj and uk are, respectively, random effects for cluster 
j and stratum  k , assumed to follow a normal distribu-
tion with mean 0 ( uj ∼ N (0, σuj

2 ) and uk ∼ N (0, σuk
2)), 

and capturing a plausible hierarchy of data as well as the 
repeated nature of observations; log�i,j,k ,Tr,s

 is an offset 
to account for varying household person-time � at risk 
(Additional file 1: Table S1); and ǫi,j,k is the residual error 
not explained by the model. We validate candidate mod-
els for out-of-sample prediction through k-fold cross-
validation (CV; partition of data into folds is at the k ,Tr,s 
level given predictors are not specified below this level). 
We use the mean Dawid–Sebastiani score ( DSS ) [29] as 
a proper scoring rule appropriate for count outcomes to 
evaluate model fit on the training data and on CV (in the 
latter case, we take the mean DSS across all folds). After 
exploratory analysis, where possible we select between 
maintaining the continuous version of the predictor or 
categorising into bins, as well as alternative lags, based 
on the lowest DSSCV , and screen out predictors that are 
not significantly better-fitting than the null model based 
on an F-test p-value threshold. We fit each possible com-
bination of remaining predictors ( Xpredictors =  2X 
possible combinations) and shortlist candidate models 
whose DSS is within a given bottom quantile. We select 
the final set of predictors based on DSSCV , plausibility 
considerations and whether they are crisis-specific (see 
above). We test for plausible interactions and, lastly, add 
random effects, retaining the mixed model if its DSSCV 
improves on the fixed-effects alternative. In practice, a 

(2)log di,j,k ,Tr,s
= x1,k ,Tr,s

β1+x2,k ,Tr,s
β2+x3,k ,Tr,s

β3 . . .+xp,k ,Tr,s
βp+uj+uk+log�i,j,k ,Tr,s

+ǫi,j,k

mixed model may be of limited utility if most prediction 
happens for person-time with new levels of the random 
effect (e.g. in geographic strata not covered by any survey 
used to train the model on).

As an example, we provide in Table 4 model coefficients 
and performance metrics for South Sudan, all computed 
based on observations and predictions aggregated at 
the k ,Tr,s level; predictive accuracy on cross-validation 
is shown in Fig. 4. As shown, the DSS, which, like other 
prediction scores, quantifies the error between obser-
vations and predictions, increases only slightly on CV, 
indicating that the model only marginally overfits data 
and is valid when used out-of-sample. There is also little 
evidence of predictive bias. Aside from moderately good 

performance, model coefficients support model validity: 
mortality increases with insecurity and where measles 
epidemics are present, but decreases if people are living 
in Protection of Civilians camps (in South Sudan, these 
places afforded relative safety and more intense humani-
tarian services) and as purchasing power improves.

Excess mortality estimation
In our framework, excess mortality estimation requires 
projecting the death toll in counterfactual no-crisis  sce-
narios. These scenarios should specify counterfactual val-
ues for all crisis-specific predictors included in the final 
models, and for the population denominators. Several 
approaches to set counterfactual values may be used: (i) 
in the absence of a crisis, it may be assumed that certain 
predictors or types of displacement would have taken a 
zero value: for example, epidemics (e.g. cholera, measles) 
that are known to be associated with extreme food inse-
curity crises might not have occurred; similarly, no war-
related displacement would have happened; (ii) pre-crisis 
values of the predictors, if available, may be adopted as 
counterfactuals: for some predictors (e.g. market prices), 
we use the local average (e.g. the district median prior 
to the crisis’ start); for others (e.g. rainfall), seasonal-
ity should also be considered; (iii) if no pre-crisis data 
are available, levels from reasonably comparable regions 
within the country that are not affected by the crisis may 
instead be considered. Table 5 shows ‘most likely’ coun-
terfactual assumptions for the South Sudan analysis we 
previously conducted. To explore uncertainty in these 
assumptions, we also define reasonable best- and worst-
case scenarios.

To propagate error in the model predictions of yA,k ,t 
and yC ,k ,t into final estimates, we can set up a bootstrap 
simulation that, for a large number of iterations and each 
kt stratum, implements Eq. (1) by drawing random values 
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from the models’ normal distribution of log standard 
errors. Outputs of each iteration are then summed across 
all kt or for specific aggregations of interest (e.g. a single 
year within the crisis period), and point estimates and 
95% confidence intervals are computed as the median, 
2.5th and 97.5th percentiles of the resulting distribution 
of iteration sums. Note that if counterfactual population 
denominators are considerably different from the actu-
als (e.g. if large-scale displacement outside the region of 

interest has occurred), comparing actual and counterfac-
tual mortality is fraught due to the difference in at-risk 
populations: we therefore scale excess death rates to the 
actual population denominators.

Sensitivity analyses
While a number of sensitivity analyses may be conducted 
to explore estimate uncertainty, we focus here on two 
particularly important issues.

Table 4 Final model to predict crude death rate, South Sudan (2013–2018)

Note that the predictors and values below differ from the original model presented in the study report, as they arise from an improved fitting procedure. Random 
effects are omitted

Fixed effect Relative rate 95% CI p‑value

Intercept 0.00014 0.00008 to 0.00022  < 0.001

Region

Northeast [Ref.]

Northwest 0.54 0.41 to 0.72  < 0.001

Southern 0.80 0.51 to 1.25 0.326

Main livelihood type

Agriculturalists [Ref.]

Agro‑pastoralists 0.82 0.55 to 1.22 0.329

Pastoralists 1.24 0.69 to 2.23 0.478

Displaced to Protection of Civilians camps 0.52 0.34 to 0.81 0.004

Rate of insecurity events (per 100,000 people per month, lag = 4 months)

0 [Ref.]

0.01 to 0.99 1.16 1.02 to 1.32 0.021

 ≥ 1.00 1.32 1.08 to 1.62 0.008

Uptake of measles vaccine (doses administered per 100,000 people per month)

0 [Ref.]

0.1 to 199.9 0.83 0.69 to 0.99 0.042

200.0 to 399.9 0.76 0.60 to 0.97 0.025

 ≥ 400.0 0.56 0.43 to 0.74  < 0.001

Terms of trade purchasing power index (Kg of white wheat flour that an average goat 
can be exchanged for; 3 months running average, lag = 3 months)

0.992 0.987 to 0.996  < 0.001

Rate of violent incidents affecting humanitarian staff (per 100,000 per month, lag = 4 months)

0 [Ref.]

 ≥ 0 1.19 1.04 to 1.36 0.010

Incidence rate of confirmed or probable measles cases (per 100,000 per month)

0 [Ref.]

 ≥ 0 1.30 1.15 to 1.47  < 0.001

Model performance metric Value Notes

Dawid–Sebastiani score (internal prediction) 26.9 (observed−predicted)2

variance
+ 2× log (variance)

Dawid–Sebastiani score (out‑of‑sample prediction) 29.2 Based on tenfold cross‑validation (CV)

Relativebias (on CV)  − 0.064 predicted−observed
observed

Relative 95% precision (mean across strata on CV) 1.011 0.5×(upper95%CI−lower95%CI)
predicted

Coverage of 80% confidence intervals (on CV) 0.754 Proportion of stratum observations falling 
within the confidence interval of the predic‑
tion

Coverage of 95% confidence intervals (on CV) 0.901
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Population denominator uncertainty Most displace-
ment data in crisis settings do not arise from statisti-
cally robust estimation methods. Over-reporting of 
population figures may occur if population counts are 
perceived as registration for relief allocation [30]. Con-
versely, insecurity and lack of connectivity may result 
in undetected population movements. We thus explore 
combinations of sensitivity values for both displace-
ment and demographic estimates (as a ratio of true to 
reported values, where values < 1 indicate over-report-
ing, and vice versa), and re-run analysis accordingly.

Under‑estimation of  mortality in  surveys In previous 
South Sudan work, possible under-estimation of deaths 
among children under 5 years has been noted, as indi-
cated by a low ratio of under 5 years to all-age deaths and 
low proportion of infant deaths (Table  6). Similar con-
cerns have been raised in Yemen [31]. Under-reporting of 
infant and particularly neonatal deaths is plausible, due to 
stigma and/or emotional trauma associated with losing a 
young child or insufficient probing during questionnaire 
administration. We thus re-run analysis after augmenting 
the model training data (number of deaths and person-
time within surveyed households) based on a varying 
assumed proportion of all deaths that are unobserved 
(Additional file 1: page 10).

Discussion
Advantages of the method
The approach we have described can efficiently recon-
struct the evolution of mortality across long retrospec-
tive periods and large areas, including where ground data 
collection would be unfeasible due to inaccessibility or 
the difficulty of asking households to recall events over 
a long recall period; in South Sudan, a setting with vir-
tually no vital events registration, our application of the 
method generated evidence supporting a large excess 
death toll (about 380,000, half attributable to intentional 
injuries) attributable to 5  years of war, that might oth-
erwise have evaded historical documentation forever. 
Somalia estimates (2010–2012) documented the impact 
of one of the worst famines in the past decades. Predic-
tive models underlying the estimates have quantifiable 
external validity. While predictive power is ultimately 
their most important attribute, observing the direction-
ality of coefficients can help to appraise internal validity, 
particularly if dose–response associations are noted. To 
our knowledge, no other studies have developed statis-
tical models that predict with reasonable accuracy the 
crude or under 5 years death rate among some of the 
world’s most vulnerable populations. A known challenge 
of crisis-attributable mortality estimation is defining an 
appropriate counter-factual: our method achieves this 
by generating non-crisis death tolls through the same 
statistical processes that result in the estimate of actual 

Fig. 4 Predicted versus observed numbers of deaths per stratum (county), South Sudan, 2013–2018, based on ten‑fold cross‑validation. The red line 
indicates perfect fit
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mortality, yielding meaningful confidence intervals. It 

explicitly links the definition of the crisis with the choice 
of counterfactual predictors and values, drawing upon a 
causal framework of how excess mortality comes about 
and contextual understanding of the crisis itself. Lastly, 
the method does not require any primary data collection.

Known limitations
The method’s main limitations reflect sources of 
unknown error in input data: (i) error in the predic-
tor data, for example arising from differences in the way 
predictors are measured over time or in different loca-
tions; random error would result in underestimation 
of associations between predictors and mortality, or 
‘regression dilution’ in predictive terms; bias could cause 
over- or underestimation; (ii) bias in mortality data, e.g. 
due to problems with under-ascertainment of deaths (see 
above), which survey quality weights may reduce but 
not eliminate; (iii) nonparametric uncertainty around 

population and displacement estimates; (iv) demographic 

projections based on inaccurate assumed growth rates 
(both (iii) and (iv) will be discussed in a separate paper); 
(v) inappropriate assumptions on counterfactual condi-
tions; and (vi) omission of excess mortality among people 
who migrate out of the affected region (e.g. refugees), or 
due to long-term impacts of the crisis beyond its reso-
lution. These limitations imply that estimates should be 
interpreted with caution, with reference to confidence 
intervals and after thorough exploration of uncertainty 
through alternative counterfactual scenarios and sensi-
tivity analyses.

Perhaps the most important limitation among the 
above concerns how counterfactual conditions are speci-
fied. Varying predictor values to represent no-crisis 
conditions presents analogies with both interrupted 
time series [32] and growth models [33]. However, 
our approach quantifies the effects of multi-factorial 
and dynamic crises rather than a single public health 

Table 5 Most likely scenario counterfactual assumptions, South Sudan (2013–2018)

Variable Counterfactual assumptions Notes

Proportion of IDPs The proportion of IDPs in each county would have 
been equal to the mean total across South Sudan in 
Jan 2012–Nov 2013, multiplied by the county’s mean 
percent share of total IDPs during Dec 2013–Apr 
2018

Assume that the relative scale of internal displacement 
during the war reflects each county’s general potential 
for displacement
Accordingly, in the counterfactual denominator IDPs 
are ‘returned’ to their counties of origin pro rata to the 
assumption

Same number of IDPs in Pibor county as mean of 
2012–2013

Assume conflict in Pibor County would have contin‑
ued, as it pre‑dated the current civil war

Incidence of armed conflict events Mean of 2012–2013 level within each county, or 
actual level, whichever is lower

Pre‑crisis baseline

Incidence of attacks against aid workers Mean of 2012–2013 level within each county, or 
actual level, whichever is lower

Pre‑crisis baseline

Terms of trade purchasing power index Mean of 2012–2013 levels per state Pre‑crisis baseline

Uptake of measles routine vaccination On an annual basis, no lower than the mean of 
2012–2013 levels per county

Assumption preserves any improvements in vaccina‑
tion coverage observed during the crisis period in any 
county

Measles incidence Mean of 2012–2013 level within each county, or 
actual level, whichever is lower

Pre‑crisis baseline

Table 6 Average survey‑estimated crude death rate per 10,000 person‑days, under 5 years death rate per 10,000 person‑days and 
percentage of infant deaths among all deaths below 5 years of age, by country

Numbers are the median of point estimates among available surveys, and, in parenthesis, the range of point estimates and number of surveys the statistics are based 
on

Characteristic Nigeria (2016–2018) Somalia (2014–2018) South Sudan (2012–2018)

Eligible surveys (N) 70 97 181

Crude death rate 0.55 (0.17 to 1.58, 70) 0.43 (0.00 to 1.61, 97) 0.67 (0.04 to 4.22, 181)

Under 5 years death rate 1.14 (0.23 to 4.46, 70) 0.66 (0.00 to 2.48, 97) 0.72 (0.00 to 3.94, 181)

Percentage of < 5 years old deaths that were 
among infants < 1 year old

35% (0% to 100%, 70) 43% (0% to 100%, 59) 33% (0% to 100%, 145)
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intervention implemented in a fairly stable setting: as 
such, our estimates rely heavily on a few model predictors 
faithfully representing a more complex system; moreover, 
counterfactual values for many predictors (e.g. food secu-
rity, vaccination coverage) are not simply zero, as in the 
case of a counterfactually absent intervention, but rather 
some quantity relative to the actual levels.

Data requirements
The method’s applicability is limited by the following 
data requirements: (i) at least some ground mortality 
information arising from a population-based method of 
recognised validity, e.g. a survey or prospective surveil-
lance system. Such data should be granular in nature, i.e. 
representative of small geographic units and time periods 
(alternatively, one could use large-area surveys as long 
as the location of surveyed communities is reported in 
the dataset). Some documentation (e.g. survey reports) 
should be available to scrutinise methods; (ii) data cov-
ering the entirety or most of the person-time of interest 
for at least a few variables that may plausibly be expected 
to predict mortality. The system for measuring these pre-
dictors should have remained consistent over time. The 
pattern of data missingness should be mostly random: 
missingness clustered in specific areas or periods (par-
ticularly at the start or end of the time series, or where 
mortality data are also least available) makes imputa-
tion harder and more bias-prone; (iii) reasonable demo-
graphic estimates based on a census or similarly robust 
data collection exercise, performed no more than a few 
years prior to the analysis; in addition, data on displace-
ment (including both the geographic unit of origin and 
that of arrival) covering most or all of the person-time 
should be available, or composable from existing reports 
and databases.

Minimal data requirements, e.g. how many ground 
surveys or predictor variables are needed, are difficult to 
establish a priori: the predictive power of the model is a 
function not just of the amount of data, but also of the 
extent to which these data capture population variabil-
ity and the local strength of correlation between predic-
tors and mortality. As such, an additional limitation of 
the method is that the precision, and thus interpretabil-
ity, of estimates arising from it may only become clear a 
posteriori.

Computational implementation
With the exception of step 2 (population denominator 
reconstruction), for which only crisis-specific analysis 
methods appear feasible, we have developed generic R 
analysis scripts that implement estimation steps for any 
crisis setting and generate output datasets, tables and 
graphs (see Additional file  1: pages 10–13 and https:// 

github. com/ franc escoc hecchi/ morta lity_ small_ area_ 
estim ation). The analyst interacts with these scripts 
through Microsoft Excel spreadsheets containing input 
datasets and various parameters to control the analysis.

Conclusions
We are currently testing an extension of the method 
for forecasting mortality over short time horizons of 
3–6 months: this could provide an efficient means to do 
real-time estimation across the crisis-affected region, 
thereby generating information for decision-makers 
tasked with allocating humanitarian resources. Key 
requirements for such an application would be imme-
diate predictor data sharing and standing capacity to 
implement analysis.

Other improvements to the method are worth explor-
ing. As instances of its use accumulate, a Bayesian esti-
mation framework specifying informative priors for 
key predictor coefficients (e.g. armed conflict intensity) 
may be attractive. Improvements to model fitting could 
include machine learning techniques or Bayesian model 
averaging; due to limited resources, we have not system-
atically compared our generalised linear model with any 
of these alternatives. Indeed, these further developments 
will require dedicated scientific resources and buy-in 
from humanitarian stakeholders who hold access to key 
input data.

Disclaimer Geographical names and boundaries pre-
sented in this paper  are used solely for the purpose of 
producing scientific estimates, and do not necessarily 
represent the views or official positions of the authors, 
the London School of Hygiene and Tropical Medicine, 
any of the agencies that have supplied data for this analy-
sis, or the donors. The authors are solely responsible for 
the analyses presented here, and acknowledgment of data 
sources does not imply that the agencies or individuals 
providing data endorse the results of the analysis.
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