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Abstract

Dengue is hyperendemic in Brazil, with outbreaks affecting all regions. Previous studies

identified geographical barriers to dengue transmission in Brazil, beyond which certain

areas, such as South Brazil and the Amazon rainforest, were relatively protected from out-

breaks. Recent data shows these barriers are being eroded. In this study, we explore the

drivers of this expansion and identify the current limits to the dengue transmission zone. We

used a spatio-temporal additive model to explore the associations between dengue out-

breaks and temperature suitability, urbanisation, and connectivity to the Brazilian urban net-

work. The model was applied to a binary outbreak indicator, assuming the official threshold

value of 300 cases per 100,000 residents, for Brazil’s municipalities between 2001 and

2020. We found a nonlinear relationship between higher levels of connectivity to the Brazil-

ian urban network and the odds of an outbreak, with lower odds in metropoles compared to

regional capitals. The number of months per year with suitable temperature conditions for

Aedes mosquitoes was positively associated with the dengue outbreak occurrence. Tem-

perature suitability explained most interannual and spatial variation in South Brazil, confirm-

ing this geographical barrier is influenced by lower seasonal temperatures. Municipalities

that had experienced an outbreak previously had double the odds of subsequent outbreaks.

We identified geographical barriers to dengue transmission in South Brazil, western Ama-

zon, and along the northern coast of Brazil. Although a southern barrier still exists, it has

shifted south, and the Amazon no longer has a clear boundary. Few areas of Brazil remain

protected from dengue outbreaks. Communities living on the edge of previous barriers are

particularly susceptible to future outbreaks as they lack immunity. Control strategies should

target regions at risk of future outbreaks as well as those currently within the dengue trans-

mission zone.

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009773 December 9, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lee SA, Economou T, de Castro Catão R,

Barcellos C, Lowe R (2021) The impact of climate

suitability, urbanisation, and connectivity on the

expansion of dengue in 21st century Brazil. PLoS

Negl Trop Dis 15(12): e0009773. https://doi.org/

10.1371/journal.pntd.0009773

Editor: Hannah E. Clapham, National University

Singapore Saw Swee Hock School of Public Health,

SINGAPORE

Received: August 27, 2021

Accepted: November 24, 2021

Published: December 9, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pntd.0009773

Copyright: © 2021 Lee et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All data used in this

study is open access and available freely on the

internet, see the methods section for more details.

https://orcid.org/0000-0002-2049-9756
https://orcid.org/0000-0001-8697-1518
https://orcid.org/0000-0003-2837-0364
https://orcid.org/0000-0002-1161-2753
https://orcid.org/0000-0003-3939-7343
https://doi.org/10.1371/journal.pntd.0009773
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009773&domain=pdf&date_stamp=2021-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009773&domain=pdf&date_stamp=2021-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009773&domain=pdf&date_stamp=2021-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009773&domain=pdf&date_stamp=2021-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009773&domain=pdf&date_stamp=2021-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009773&domain=pdf&date_stamp=2021-12-21
https://doi.org/10.1371/journal.pntd.0009773
https://doi.org/10.1371/journal.pntd.0009773
https://doi.org/10.1371/journal.pntd.0009773
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Author summary

Dengue is a mosquito-borne disease that has expanded rapidly around the world due to

increased urbanisation, global mobility and climate change. In Brazil, geographical barri-

ers to dengue transmission exist, beyond which certain areas including South Brazil and

the Amazon rainforest are relatively protected from outbreaks. However, we found that

the previous barrier in South Brazil has shifted further south as a result of increased tem-

perature suitability. The previously identified barrier protecting the western Amazon no

longer exists. This is particularly concerning as we found dengue outbreaks tend to

become established in areas after introduction. Highly influential cities with many trans-

port links had increased odds of an outbreak. However, the most influential cities had

lower odds of an outbreak than cities connected regionally. This study highlights the

importance of monitoring the expansion of dengue outbreaks and designing disease pre-

vention strategies for areas at risk of future outbreaks as well as areas in the established

dengue transmission zone.

Introduction

Dengue is considered one of the top 10 threats to global health [1], with around half the

world’s population living in areas at risk of infection [2]. Incidence rates have doubled each

decade in the past 30 years as a result of increased urbanisation, global mobility and climate

change [2–4]. All 4 dengue serotypes are endemic to Brazil, which experiences frequent out-

breaks across the country [5]. Previous studies identified geographical barriers to dengue

transmission beyond which regions were relatively protected. This included South Brazil,

where seasonal temperatures are too cold for vectors to efficiently transmit the virus, areas of

high altitude in Southeast Brazil and remote regions of the western Amazon [6]. However,

these barriers are being eroded and the dengue transmission area in Brazil has expanded over

the past decade. This expansion is thought to be linked to increased human mobility and

changes in climate [7,8].

For dengue to become established in a new region, the environment must be suitable to

support the propagation of the dengue vector, Aedes mosquitoes. There are two vectors present

in Brazil capable of transmitting the dengue virus: Aedes aegypti and Aedes albopictus. Cur-

rently only Aedes aegypti are considered responsible for dengue transmission in Brazil [9,10],

however a recent study identified Aedes albopictus infected by dengue virus in a rural area of

Brazil during an outbreak, which could indicate their involvement in the introduction of den-

gue to rural areas [11]. Aedes aegypti have evolved to live in urban environments close to

humans [12] but there is evidence to suggest they are becoming established in peri-urban and

rural regions of South America [13,14]. Conversely, Aedes albopictus are typically found in

peri-urban areas but have been identified in densely urbanised areas such as urban slums in

Brazil [9,15]. Aedes mosquitoes breed in pools of standing, clean water created by water storage

containers or uncollected refuse. These conditions arise when rapid urbanisation occurs with-

out adequate improvements to infrastructure, such as access to piped water and refuse collec-

tion [16,17]. There is evidence that areas lacking reliable access to piped water are more

susceptible to dengue outbreaks, particularly in highly urbanised areas following drought [18].

Prior studies have found that extremely wet conditions also increased the risk of dengue out-

breaks, thought to be linked to the creation of larval habitat in the short term [18,19]. Suitable

temperature conditions are required for the mosquitoes to breed and transmit the virus. Aedes
aegypti are unable to survive in temperatures below 10˚C or above 40˚C [20] and can only
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transmit the virus between 17.8˚C and 34.5˚C [21,22]. Aedes albopictus are more suited to cooler

temperatures and can transmit the virus between 16.2˚C and 31.4˚C [21,22]. Recent outbreaks

in temperate cities of South America have shown that epidemics are still possible in regions

that experience seasonal temperatures outside of this range due to human movement [23–25].

The expansion of Aedes aegypti and the arboviruses they transmit into rural parts of the

Amazon has been linked to connections to and within the area by air, road or boat [13,26].

Despite this, the investigation of spatial connections created by human movement is little

explored in the literature and the vast majority of spatial modelling studies of mosquito-borne

diseases assume connectivity is based on distance alone [27]. Brazilian cities are connected to

one another within a complex urban network, described within the Regions of influence of cit-

ies ("Regiões de Influência das Cidades”, REGIC) studies carried out by the Brazilian Institute

of Geography and Statistics [28,29]. People often travel great distances to reach large urban

centres as they contain important educational, business or cultural institutions. Failure to

account for long-distance movements may miss important drivers of dengue expansion, par-

ticularly in areas such as the Amazon where the average distance travelled to Manaus, the capi-

tal of Amazonas state, was 316km. Important cities can have influence over vast areas of Brazil,

for example the region of influence connected to the capital city of Brasilia corresponds to

over 20% of the country and spans 1.8 million km2 [29].

Although previous studies have shown the expansion of dengue outbreaks in Brazil [7] and

the association between the dengue transmission zone and climate [6], neither formally inves-

tigated the link between this expansion and human movement. In this study, we use the level

of influence of cities from the REGIC studies [28,29] as a proxy for human movement, and

aim to better understand how climate suitability, connectivity between cities and socioeco-

nomic factors have contributed to the recent expansion of dengue. It is hoped that by under-

standing the drivers of dengue expansion in Brazil, we can identify its spatial trends and

regions at risk from future outbreaks.

Methods

Epidemiological data

Brazil is the 6th most populous country in the world with an estimated population of over 212

million in 2020 [30]. The country can be separated into 5 distinct geo-political regions (S1

Fig), 27 federal units (26 states and a federal district containing the capital city Brasilia, S1 Fig),

and 5,570 municipalities. We obtained monthly notified dengue cases for each of Brazil’s 5,570

municipalities between January 2001 and December 2020 from Brazil’s Notifiable Diseases

Information System (SINAN), freely available via the Health Information Department, DATA-

SUS (https://datasus.saude.gov.br/informacoes-de-saude-tabnet/). Cases were aggregated by

month of first symptom and municipality of residence. Dengue cases are considered con-

firmed if they test positive in a laboratory or, more commonly, based on the Ministry of

Health’s syndromic definition Due to its passive nature, the accuracy of the dengue surveil-

lance system differs between municipalities and between periods of high and low incidence

[31]. To reduce the bias introduced by differences in case reporting and health seeking behav-

iour, we chose to model binary outbreak indicators rather than incidence rates because, as

stated by the Brazilian Observatory of Climate and Health, "there is no way to hide an epi-

demic" [6]. Between 2001 and 2020, municipality boundaries in Brazil have changed and sev-

eral new municipalities were created. To ensure data were consistent over the study period, we

aggregated data to the 5,560 municipalities that were present in 2001 by combining the new

municipalities with their parent municipalities. The data and code used to aggregate the den-

gue case data are available from https://github.com/sophie-a-lee/Dengue_expansion [32].
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Meteorological data

Monthly mean temperatures (K) were obtained from the European Centre for Medium-Range

Weather Forecasts’ (ECMRWF) ERA5-Land dataset [33] for the period January 2001—

December 2020, at a spatial resolution of 0.1˚ x 0.1˚ (~9km). The ERA5-Land database was

chosen because of its fine spatial scale, necessary when analysing small administrative units

such as municipalities. Temperatures were converted from Kelvin to degrees Celsius (˚C) by

subtracting 273.15. Mean temperature was aggregated to each municipality using the exactex-

tractr package [34] in R (version 4.0.3) by calculating the mean of the grid boxes lying within

each municipality. Grid boxes partially covered by a municipality were weighted by the per-

centage of area that lay within the municipality.

Due to its size, Brazil experiences a wide range of climate systems and ecosystems. The

northern part of the country lies on or close to the equator, meaning regions experience year-

round high temperatures. In contrast, the South and Southeast regions have clear seasonality

in temperatures with cooler winters (S2 Fig), often falling below the optimal temperature

range for dengue transmission (between 17.8˚C and 34.5˚C for Aedes aegypti and 16.2˚C and

31.4˚C for Aedes albopictus [21,22]). To understand how temperature suitability has contrib-

uted to the expansion of the dengue transmission zone in Brazil, we calculated the number of

months per year each municipality lay within the suitable temperature ranges (between 16.2˚C

and 34.5˚C). Most of Brazil experiences year-round temperature suitability except for the tem-

perate South and mountainous regions in the Southeast (S3 Fig), although the number of

months suitable has increased in these regions over the past decade (Fig 1). As Aedes aegypti is

the only vector proven to transmit dengue in Brazil, we also tested the number of months con-

sidered suitable for Aedes aegypti transmission (between 17.8˚C and 34.5˚C) within the model.

Urbanisation

We obtained the percentage of residents in each municipality living in urban areas from the

2000 and 2010 censuses via DATASUS. In 2010, just under 85% of Brazil’s population lived in

urban areas, mostly concentrated in the large cities of South and Southeast Brazil. The North

region, except for some state capitals, has a larger rural population (S4 Fig). The percentage of

residents living in urban areas was converted to the proportion to make interpretation and

comparison of model coefficients easier. Data from the 2000 census was used for the years

2001–2009 and data from 2010 was used for the years 2010–2020 to account for changes in

urbanisation over the period. Further details on the socioeconomic variables considered in

this analysis are given in S1 Text.

Hierarchical levels of influence of cities

As a proxy for human movement, we obtained the hierarchical level of influence of cities from

IBGE’s REGIC studies, carried out in 2007 and 2018 [28,29]. REGIC aims to recreate the com-

plex urban network of Brazil using information from surveys about the frequency and reasons

for the movement of people and goods around the country. Part of this study involved classify-

ing cities based on their hierarchical level of influence within this network (see S1 Text for

more details). Cities were classified into five levels:

1. Metropolis: the largest cities in Brazil, with strong connections throughout the entire coun-

try. This includes São Paulo, the capital Brasilia, and Rio de Janeiro.

2. Regional capital: large cities which are connected throughout the region in which they are

located and to metropoles. This includes state capitals that were not classified as metro-

poles, such as Rio Branco, Campo Grande and Porto Velho.
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3. Sub-regional capital: cities with a lower level of connectivity, mostly connected locally and

to the three largest metropoles.

4. Zone centre: smaller cities with influences restricted to their immediate area, often

neighbours.

5. Local centre: the smallest cities in the network which typically only serve residents of the

municipality and are not connected elsewhere.

The REGIC study aggregated data to population concentration areas (“Áreas de Concen-

tração de População”, ACPs), defined in [36]. Smaller or isolated ACPs consisted of a single

municipality, while large urban centres consisted of multiple municipalities. Levels of influ-

ence were extracted for each municipality based on the ACP they belonged to, meaning small

municipalities neighbouring large cities may have a high level of influence. The distribution of

highly connected urban centres is uneven across the country; the South and Southeast regions

are particularly well connected, while the North and Northeast contain fewer high-level centres

(Fig 2 and S1 Table). To account for any changes in connectivity over the study period, we

Fig 1. The difference between the average number of months with suitable temperatures for dengue transmission in 2001–2010 and 2011–2020.

The number of months with temperatures between 16.2˚C and 34.5˚C has increased on average (shown in pink) in parts of South and Southeast Brazil

which were previously considered ‘protected’ from dengue transmission. Maps were produced in R using the geobr package [32,35] (https://ipeagit.

github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g001
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used the levels extracted from the 2007 study for the years 2001–2010, and levels from the 2018

study for the years 2011–2020.

Modelling approach

To understand how the dengue transmission zone has expanded between 2001 and 2020, we

aggregated dengue cases by year and created a binary outbreak indicator. We used an outbreak

threshold of more than 300 cases per 100,000 residents, defined as ‘high risk’ by the Brazilian

Ministry of Health [37]. We also tested a ‘medium risk’ indicator, defined as more than 100

cases per 100,000 residents, and a threshold defined as the 75th percentile of the dengue inci-

dence rate between 2001–2020 for each municipality to ensure our analyses were robust to this

outbreak definition. The annual dengue incidence rate was calculated using estimates of the

annual population for each municipality obtained from the Brazilian Institute of Statistics and

Geography (IBGE) via DATASUS (http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/

poptbr.def). Further details about the dengue surveillance system in Brazil and outbreak defi-

nitions are given in S1 Text. We formulated a binomial spatio-temporal generalised additive

model (GAM) using the binary outbreak indicator as the response variable. We included the

number of months per year with temperature suitable for Aedes mosquitoes to transmit den-

gue, the level of influence from REGIC, the proportion of residents living in urban areas, and a

‘prior outbreak’ indicator which took the value 0 until the year of the first outbreak in a munic-

ipality and 1 in every year after as covariates. We also considered the number of extremely wet

Fig 2. The level of influence of cities within the Brazilian urban network from REGIC 2018. The Amazon region is far less connected to the urban

network than the rest of the country. As there is only one metropolis in North Brazil (Manaus), people often travel great distances, far greater than in

other regions, to reach cities. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g002
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months as a covariate, but we found this did not improve the model (further details can be

found in S1 Text). To account for spatial and temporal patterns in the data, smooth functions

of the year and the coordinates of the centroids of municipalities were included in the model

(see S1 Text for further details). Inference was performed using an empirical Bayesian

approach with estimates calculated using restricted maximum likelihood (REML) as part of

the mgcv package in R [38].

Model fit was assessed using a receiver operating characteristic (ROC) curve which plots the

true positive rate against the true negative rate at different thresholds to test the predictive ability

of the model. The area under the ROC curve was calculated as this gives a measure of predictive

ability compared to chance, which would return a value of 0.5. The closer the area under the

ROC curve is to 1, the better the model fits the data. The predictive ability of models were also

compared using the Brier score [39]. The Brier score is the mean squared difference between the

observed and expected outcomes; a lower Brier score represents a better fitting model.

To assess the relative contribution of the covariates, we compared the spatio-temporal

structured residual terms between the final model and a baseline model, containing only the

spatio-temporal smooth terms. If the covariates explained variation in the data, the smooth

functions would shrink towards zero in the final model and the difference between the abso-

lute estimates of these functions would be negative. To assess the contribution of the covariates

over the entire period, we took the median difference for each municipality. The contribution

of each individual covariate was also assessed by taking the difference between the structured

residuals from the baseline model and models with each covariate added in turn.

To understand how the risk of outbreaks have changed between 2001 and 2020, we drew

1000 simulations from the posterior distribution of the response and estimated the probability

of an outbreak for each municipality per year. These estimates were aggregated to the first

(2001–2010) and second (2011–2020) decades by taking the mean probability for each munici-

pality per decade to observe how the dengue transmission zone had changed after the large-

scale outbreak of the 21st century in 2010. The estimated probabilities were then used to deter-

mine the current dengue transmission barriers by identifying regions where the average proba-

bility of an outbreak lay below 10%, other barrier thresholds were also considered.

Results

There were 13,860,348 cases of dengue notified between January 2001 and December 2020 in

Brazil. The dengue incidence rate has increased across all regions of the country (Fig 3) partic-

ularly in the Centre-West and Southeast. Outbreaks were more widespread since 2010 with

around 80% of all municipalities in the Centre-West now regularly experiencing outbreaks (S5

Fig). Although the South had the highest incidence in 2020, this was still concentrated in a

small number of municipalities in Paraná, around the fringe area of the previously identified

geographical barrier. The previous barriers to dengue transmission have been eroded over the

past decade. This is particularly noticeable in the western Amazon where there are now very

few municipalities yet to experience an outbreak. The erosion of the barrier in the South was

particularly noticeable in 2020 when it had the highest incidence rate of any region (Fig 3),

and many municipalities close to the previous barrier experienced outbreaks for the first time

(Fig 4). We observed that once dengue was introduced to municipalities, the virus became

established and future outbreaks were likely to occur (Fig 5).

Model results

We found municipalities that were highly urbanised, highly connected, and had temperatures

suitable for dengue transmission year-round had a significantly increased odds of an outbreak
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(Table 1 and Fig 6). Municipalities that had previously experienced outbreaks had around dou-

ble the odds of experiencing another compared to municipalities that were still protected

(adjusted odds ratio (aOR): 2.03, 95% credible interval (CI): 1.93, 2.15). This could indicate

that the virus becomes established following its introduction, however the increased incidence

may be a result of increased surveillance following an outbreak or due to the increased proba-

bility of severe cases following the introduction of new serotypes [40]. Municipalities with

Fig 3. Monthly incidence rate per 100,000 residents in regions of Brazil 2001–2020. Incidence rates have increased in every region of the country

between 2001–2020. The first regional outbreak occurred in 2010, outbreaks have occurred more frequently and in more regions since then. Maps were

produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g003

Fig 4. The first year each municipality experienced an outbreak for the first time in the period 2001–2010 and 2001–2020. The year each

municipality first recorded over 300 cases per 100,000 residents. Recent data shows the previous barriers to dengue outbreaks in the Amazon and South

are being eroded. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g004
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Fig 5. The number of years each municipality experienced an outbreak between 2001 and 2020. Municipalities that experienced outbreaks earlier in

the 21st century continued to experience outbreaks throughout the period. This suggests that once dengue is introduced to a region, it becomes

established. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g005

Table 1. Posterior mean and 95% credible interval (CI) estimates for linear effect parameters, shown on the

adjusted odds ratio (aOR) scale.

Coefficient aOR (95% CI)

Urbanisation 3.26 (2.85, 3.72)

REGIC level: metropolis 1.39 (1.22, 1.59)

REGIC level: regional capital 1.52 (1.38, 1.66)

REGIC level: sub-regional centre 1.23 (1.14, 1.33)

REGIC level: zone centre 1.23 (1.15, 1.31)

Prior outbreak: yes 2.03 (1.93, 2.15)

Months with suitable temperature 1.42 (1.30, 1.55)

Posterior mean and credible interval estimated taking the 50th, 2.5th and 97.5th quantiles from the simulated

posterior distribution. The response variable is a dengue outbreak, defined as over 300 cases per 100,000 residents.

Urbanisation is the proportion of residents living in urban areas. REGIC covariates are in comparison to the

reference group, local centre. A suitable temperature is defined as between 16.2˚C and 34.5˚C (suitable for both

Aedes aegypti and Aedes albopictus).

https://doi.org/10.1371/journal.pntd.0009773.t001
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year-round temperature suitability had increased risk of outbreaks, whether we consider suit-

ability for both species of Aedes mosquitoes (Table 1) or just Aedes aegypti (S2 Table). On aver-

age, the odds of an outbreak increased by 42% (aOR: 1.42, 95% CI: 1.30, 1.55) for every

additional month of suitable temperature per year.

Although higher levels of connectivity had significantly higher odds of an outbreak than

local centres, this difference was highest on average for regional centres (aOR: 1.52, 95% CI:

1.38, 1.66) despite being considered less connected to the urban network than metropoles

(aOR: 1.39, 95% CI: 1.22, 1.59). This is potentially due to the structure of the urban network

which connects smaller cities to larger centres until they converge to metropoles, meaning that

regional capitals are important intermediate urban centres, that influences wide hinterland

areas [29]. Alternatively, despite the regional capitals having similar levels of access to basic

services as metropoles when aggregated to the municipality level (S6 Fig), metropoles have

larger economies and greater access to healthcare than regional capitals [29] which may mean

improved infrastructure which is not reflected by census variables on this scale.

Fig 6. The mean and 95% credible interval of the posterior distribution for each model covariate. Results show that municipalities with a

higher proportion of residents living in urban areas, in cities with a higher connectivity than local centres, with a higher number of month per

year suitable for dengue transmission, which had previously experienced an outbreak have significantly higher odds of an outbreak.

https://doi.org/10.1371/journal.pntd.0009773.g006

PLOS NEGLECTED TROPICAL DISEASES Climate, connectivity, and dengue expansion in Brazil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009773 December 9, 2021 10 / 21

https://doi.org/10.1371/journal.pntd.0009773.g006
https://doi.org/10.1371/journal.pntd.0009773


The area under the ROC curve for the final model was 0.86 (95% confidence interval: 0.856,

0.861, S7 Fig), indicating that the model fit the data well. We found the conclusions drawn

from the models using alternative outbreak definitions remained consistent, however the coef-

ficient values differed (S8 Fig and S2 Table). In particular, the model based on the 75th percen-

tile produced lower coefficient estimates than the fixed threshold models, and the model using

a threshold of over 100 cases per 100,000 residents estimated an increased odds following a

previous outbreak compared to the primary analysis (S8 Fig and S2 Table). We found that the

fixed threshold models outperformed the 75th percentile according to the ROC curve (S7 Fig)

and Brier score (S3 Table). The temporal smooth function showed increasing odds of an out-

break over the period not explained by the model covariates (Fig 7). The spatial smooth field

showed that the risk around Rio Branco in Acre, the Centre-West region, and in Rio Grande

do Norte in Northeast Brazil were higher on average than explained by the model covariates

(Fig 7). In contrast, areas in South Brazil, along the northern Brazilian coast, and in parts of

the Amazon had lower risk of dengue outbreak occurrence than expected given the covariates.

The structured residuals for the full model were closer to zero on average for the vast major-

ity of the country than the baseline model (92.33% of municipalities, Fig 8), indicating that the

covariates are indeed explaining spatio-temporal variation in the data. The inclusion of tem-

perature suitability into the baseline model shrank the structured residuals towards zero for

91.16% of municipalities. This was particularly noticeable in South Brazil (Fig 9), supporting

the hypothesis that the dengue transmission barrier here was a result of lower temperatures.

The inclusion of the prior outbreak indicator also shrank the structured residuals towards zero

across Brazil (in 94.28% of municipalities, Fig 9) showing its relative importance in this model.

The relative importance of urbanisation and REGIC levels of influence were less clear; despite

the model finding both these variables significantly associated with increased odds of an out-

break, there were fewer municipalities in which the structured residuals had shrank towards

(57.5% for urbanisation, Fig 9, and 45.08% for REGIC levels of influence, Fig 9). One potential

reason for this is that both variables are only measured once per decade and therefore do not

Fig 7. Temporal (a) and spatial (b) smooth functions from the final model transformed to show the change in odds. The

odds of an outbreak has increased over the period due to unexplained factors not included in the model. The spatial random field

highlights that more information is needed in the model to understand the explosive outbreaks that have taken place in Rio

Branco, Acre and the Centre-West region as these hotspots are not fully explained by the model covariates. Pink (green) regions

of the map represent areas where the odds of an outbreak was higher (lower) on average than estimated by the covariates. Maps

were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g007
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differ annually; there may be changes in municipalities that contribute to dengue transmission

but are not captured by these stationary variables. Another potential reason is that these vari-

ables are not able to account for within-city variation at this spatial resolution that may con-

tribute to outbreaks of dengue.

The probability of an outbreak increased across most of Brazil since the first decade of the

21st century except for the 2 most southern states and some areas of the Northeast (Fig 10).

The largest increases in risk were seen in the Centre-West, which has been the epicentre of the

explosive outbreaks taking place since 2010. In the regions previously protected from out-

breaks (the western Amazon and the South (Fig 10)), the erosion of the geographic barriers

can clearly be seen. Although a southern border still exists, it has shifted south, and the Ama-

zon no longer has a clear boundary.

Current barriers to dengue transmission

To determine the current dengue transmission barriers, we identified regions where the aver-

age probability of an outbreak lay below 10% (Fig 11). We chose the threshold 10% as this gave

Fig 8. The median difference between absolute values of the smooth function estimates calculated from the full model and from a baseline model.

A reduction in the absolute smooth functions (shown in green) indicates that the estimates have shrunk towards zero when the covariates were added to

the model and these covariates are explaining some of the variability in the data. Maps were produced in R using the geobr package [32,35] (https://

ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g008
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barriers comparable to those identified in a previous study [6] (S10 Fig). The number of

municipalities considered protected declined from 2689 in 2001–2010 to 1599 in 2011–2020.

Between 2011 and 2020 there were no municipalities in the Centre-West region that were con-

sidered protected, compared to 92 in 2001–2010. Northeast Brazil was the only region that had

more protected municipalities in 2011–2020 than 2001–2020 (366 compared to 315). The

southern barrier to dengue transmission now begins in the southern part of Paraná and

extends through the west of Rio Grande do Sul and Santa Catarina. Areas of high altitude in

Southeast Brazil, mostly found in Minas Gerais, are still considered protected. There are still

areas of the Amazon protected from dengue outbreaks, but this barrier is no longer clearly

defined. In addition to the previously identified barriers in the South region and Amazon rain-

forest, we found that there was a protected region along the north coast of Brazil in northern

Pará and Maranhão. This barrier was not explained by the covariates in our model indicated

by the low values of the spatial smooth function (Fig 7). This area is predominantly warm and

humid climate, with higher precipitation during winter (‘Am’ type in Köppen climate classifi-

cation) [41]. Although temperature and humidity are relatively stable along seasons in this

area, the interaction between these variables and increased precipitation may inhibit the mos-

quito populations [42].

Fig 9. The median difference between absolute values of the smooth function estimates calculated from the baseline model

and models with a) the climate suitability covariate added, b) the prior outbreak indicator added, c) the proportion of

urbanisation added, and d) the level of connectivity covariate added. A reduction in the absolute estimates of the smooth

functions (shown in green here) indicates that the functions have shrunk towards zero and the covariate has explained variation

in the data. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g009
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Discussion

We found that the expansion of the dengue transmission zone is associated with temperature

suitability, connectivity within the Brazilian urban network and urbanisation, and that the

odds of future outbreaks significantly increase after both the vector and the virus have been

introduced. This study builds on previous literature that showed the expansion of dengue

across Brazil [6,7,17,26,43] and has updated the geographical barriers to transmission. The

most recent epidemiological bulletins have shown that this expansion has continued in 2021

into previously unaffected parts of Acre, Amazonas, and further south into Paraná and Santa

Catarina [44], highlighting the importance of monitoring the erosion of these barriers. To our

knowledge, this is the first epidemiological modelling study to use the REGIC’s levels of influ-

ence and show that there is an increased odds of dengue outbreaks in cities that are highly con-

nected within the Brazilian urban network. However, this increase is not linear; regional

capitals are considered less connected than metropoles but we found that the increase in odds

were higher in these cities. Further investigation is needed to understand whether this is

Fig 10. The average probability of an outbreak 2001–2010 and 2011–2020 in a) Brazil, b) Acre and Amazonas, and

c) South Brazil. The probability of an outbreak estimated using simulations from the posterior distribution of the

response from the final model, averaged over the first and second decade of the time period. The probability of an

outbreak has increased across most of Brazil. The Amazonian barrier has almost completely been eroded and the

South Brazil border has moved further south. Maps were produced in R using the geobr package [32,35] (https://

ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g010
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related to human movement, as people more often travel to regional capitals from smaller cit-

ies than metropoles [29], or differences in socioeconomic factors and health-seeking behaviour

that we were unable to detect at the municipality level.

Although this study focuses on Brazil, there is evidence that similar patterns are emerging

in other parts of South America. In Argentina, previously protected cities in temperate regions

are experiencing regular outbreaks, partially related to increasing temperatures but also as a

result of human movement importing cases from other parts of the continent [23,24]. Rural

parts of the Amazon, which were previously isolated from infected hosts and vectors, are also

experiencing outbreaks, thought to be associated with increased connectivity between rural

areas and larger cities [13,17]. The introduction of dengue into Acre in the Brazilian Amazon

has been linked to increased connectivity across the state following the construction of a high-

way between the two largest cities, Rio Branco and Cruzeiro do Sul [26]. The impact of this

connection can be observed in the data as the outbreak appears to jump from Rio Branco in

the south of Acre to Cruzeiro do Sul in the north in 2014 rather than spreading to neighbour-

ing regions which appears to be the case in the South (Fig 5). The introduction of dengue into

the Amazon is particularly worrying as it is the ideal environment for the virus to thrive: lower

than average access to basic services such piped water and refuse collection, and the ideal cli-

mate conditions for large epidemics [17,45].

Although this study extends our understanding of the expansion of the dengue transmis-

sion zone in Brazil, there are several limitations. Dengue case data used in this study was taken

from Brazil’s passive surveillance system, which has been found to differ in accuracy between

regions, and between epidemic and non-epidemic periods [31]. To reduce the impact of

reporting bias in our model, we used an outbreak indicator rather than case data as a response

variable. The outbreak indicator used was chosen as it reflects the Brazilian Ministry of

Health’s definition [37]. However, the threshold of an outbreak is likely to differ across the

country. In regions that historically experienced little or no transmission, even a small number

of cases may be viewed as an outbreak. The choice of such a high threshold is likely to produce

more conservative estimates of the transmission zone. When our results were compared to a

lower outbreak threshold of 100 cases per 100,000 residents, we found the model conclusions

Fig 11. Geographical barriers to dengue transmission in a) 2001–2010 and b) 2011–2020. Maps showing areas where the probability of an outbreak

was less than 10% on average in each decade of the 21st century. Between 2011–2020, only the 2 most southern states and the northern coast were fully

protected from dengue transmission. Maps were produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

https://doi.org/10.1371/journal.pntd.0009773.g011
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were consistent with the higher threshold. We found that both models using a fixed threshold

outperformed the model based on the 75th percentile based on the area under the ROC curve

(S7 Fig) and the Brier score. The model failed to pick up some of the temporal trends in the

data, which may be a result of using stationary indicators of urbanisation and connectivity

measured every 10 years. Information collected at a finer temporal scale may provide more

insights into the impact of sudden expansions such as the effect of improved infrastructure in

the Amazon [26].

Our model used the level of influence extracted from the REGIC studies [28,29] to account

for the level of connectivity between cities within Brazil as a proxy for human movement.

However, this indicator may simplify the process and miss important patterns. The hierarchi-

cal model assumed by REGIC assumes each small city is linked to a higher-level urban centre,

such as the regional capitals and metropoles. It is evident that large and warm cities may prop-

agate epidemic waves and maintain dengue transmission in their hinterland, while temperate

metropoles in the South (Porto Alegre, Curitiba and São Paulo) do not play a relevant role in

dengue diffusion in their region. Previous studies have found that imported cases driven by

human movement are responsible for dengue outbreaks in temperate cities [24,25]. The choice

of spatial connectivity assumption and data can lead to very different results and the use of the

REGIC levels of influence as a spatial covariate rather than including the direct links may miss

some important patterns [27]. Future work will aim to incorporate the complex urban network

from the REGIC studies into a statistical framework to account for direct and indirect links

between metropoles and regional capitals, and smaller urban centres in their hinterland.

Despite these limitations, we have shown that the expansion of the dengue transmission

zone has continued into the 21st century, driven by increased temperature suitability in the

South, a network of highly connected cities, and high levels of urbanisation. The introduction

of dengue outbreaks into an area more than doubles the odds of future outbreaks, which is par-

ticularly concerning given the expansion has continued into 2021. Given the dynamic nature

of the growing dengue burden, the barriers identified here will be outdated very quickly. We

have highlighted the importance of focusing control strategies in areas at risk of future out-

breaks as well as those within the established dengue transmission zone.
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used in this study and results of sensitivity analyses.
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S1 Alternative Language Abstract. Translation of the Abstract into Portuguese by Rafael

de Castro Catão.
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S1 Fig. The organisation of Brazil into a) 5 geo-political regions, and b) 27 federal units.

Abbreviations: AC = Acre, AL = Alagoas, AP = Amapá, AM = Amazonas, BA = Bahia,

CE = Ceará, DF = Distrito Federal, ES = Espı́rito Santo, GO = Goiás, MA = Maranhão,

MT = Mato Grosso, MS = Mato Grosso do Sul, MG = Minas Gerais, PA = Pará, PB = Paraı́ba,

PR = Paraná, PR = Pernambuco, PI = Piauı́, RJ = Rio de Janeiro, RN = Rio Grande do Norte,

RS = Rio Grande do Sul, RO = Rondônia, RR = Roraima, SC = Santa Catarina, SP = São Paulo,

SE = Sergipe, TO = Tocantins. Maps were produced in R using the geobr package [32,35]

(https://ipeagit.github.io/geobr/).
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S2 Fig. Average monthly mean temperature (˚C) in each Brazilian state January 2001—

December 2020.

(TIF)

S3 Fig. The average number of months suitable for dengue transmission per year a) 2001–

2010, and b) 2011–2020. The average number of months with mean temperature between

16.2˚C and 34.5˚C aggregated to the two decades of data. Most of Brazil experiences suitable

temperatures year-round apart from areas of South Brazil and areas of high altitude in the

Southeast which experience cool winters. Maps were produced in R using the geobr package

[32,35] (https://ipeagit.github.io/geobr/).

(TIF)

S4 Fig. The percentage of residents living in urban areas of each municipality from the

2000 (a) and 2010 (b) censuses. Levels of urbanisation differ greatly across Brazil, with the

majority of Southeast and South Brazil living in urban areas in comparison to the North and

Northeast which has a larger rural population. Maps were produced in R using the geobr pack-

age [32,35] (https://ipeagit.github.io/geobr/).

(TIF)

S5 Fig. The proportion of municipalities in each region of Brazil experiencing an outbreak

per year 2001–2020. The proportion of municipalities affected by outbreak has increased

since 2010 in every region of the country, although outbreaks in South Brazil are still focused

on a small part of the region. Maps were produced in R using the geobr package [32,35]

(https://ipeagit.github.io/geobr/).

(TIF)

S6 Fig. Raincloud plots exploring the relationship between REGIC level of influence and a)

urbanisation, b) access to piped water, and c) refuse collection. Metropoles and regional

capitals have higher levels of urbanisation and access to basic services than municipalities that

had lower levels of connectivity within the urban network. Local centres were more varied in

terms of basic services and urban levels than the other levels and covered a wide range of city

types.

(TIF)

S7 Fig. Receiver operating characteristic (ROC) curve for the final model (solid black line),

the model using an outbreak threshold of over 100 cases per 100,000 residents (red dashed

line), and the model using an outbreak threshold of over the 75th percentile (blue dashed

line), compared to chance (black dashed line). The closer to the top-left corner, the better the

predictive ability of a model. As the ROC curve lies above the dashed reference line, this model

performs better than chance.

(TIF)

S8 Fig. The mean and 95% credible interval of the posterior distribution for each model

covariate under different outbreak threshold definitions. Coefficient estimates using the

outbreak indicator based on the 75th percentile were noticeably smaller than the fixed thresh-

old alternatives. The fixed threshold models (where outbreaks were defined as a dengue inci-

dence rate of over 100 or 300) produced similar estimates, however the odds of an outbreak in

municipalities after a previous outbreak was higher for the DIR = 100 model.

(TIF)

S9 Fig. The probability of an outbreak estimated from the model for each year 2001–2020.

The mean probability of an outbreak estimated by taking 1000 simulations from the posterior
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distribution of the response and transforming the outcome using a probit function. Maps were

produced in R using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

(TIF)

S10 Fig. Comparison of different risk thresholds to define current geographical barriers to

dengue outbreaks. Municipalities were considered ’protected’ if the probability of an outbreak

was less than or equal to the threshold a) 0%, b) 5%, c) 10% or d) 15%. The threshold of 10%

was chosen as it was the most comparable with previous studies. Maps were produced in R

using the geobr package [32,35] (https://ipeagit.github.io/geobr/).

(TIF)

S1 Table. Distribution of municipalities at each level of influence in the urban network,

2007 [28] and 2018 [29]. The number of municipalities classified as metropoles (largest cities

in Brazil, connected throughout the entire country), regional capitals (large cities connected

regionally and to metropoles), sub-regional capitals (cities connected locally and to the three

largest metropoles), zone centres (smaller cities generally connected only to their neighbours),

and local centres (smallest cities typically disconnected from the urban network).

(DOCX)

S2 Table. Posterior mean and 95% credible interval (CI) estimates for linear effect parame-

ters, shown on the adjusted odds ratio (aOR) scale, for alternative model formulations.

Coefficient estimates for models assuming an outbreak threshold of over 100 cases per 100,000

(medium risk model), an outbreak threshold of over the 75th percentile of incidence rates, and

using temperature suitability for Aedes aegypti only.

(DOCX)

S3 Table. Model comparison statistics. Area under the receiver operator curve and Brier

scores for models assuming an outbreak threshold of over 300 cases per 100,000 residents

(high risk model), over 100 cases per 100,000 (medium risk model), over the 75th percentile of

incidence rates, and a model including the number of months considered extremely wet.
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