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Abstract 

Although the global burden of measles has been substantially reduced since the introduction of the first 

measles vaccine in the 1960s, large outbreaks continue to affect populations in every WHO region. Even 

in countries with a high national vaccine uptake, social and spatial heterogeneity in coverage lead to 

under-immunised populations, where the importation of cases can cause large transmission clusters. 

This thesis explores how local transmission risk can be identified using different data sources: i) routinely 

collected individual-level case surveillance data, and ii) population-level factors such as vaccination 

coverage and recent outbreaks. 

In the absence of regular sub-national serological surveys, transmission trees from previous outbreaks 

can be used to identify areas repeatedly associated with transmission events. I developed the R package 

o2geosocial to reconstruct who infected whom from routinely collected surveillance data, and to 

compute the number of cases per transmission cluster, i.e. the cluster size distribution. This method 

infers the infector, infection date and importation status of each case using their onset date, location, 

age, and genotype. In the first chapter of the thesis, I outlined the methodology implemented in the 

package and applied it to simulated local outbreaks. The method was able to reconstruct the simulated 

transmission dynamics and highlighted regions repeatedly associated with secondary transmission. In 

the second chapter, I applied o2geosocial to data from the national measles database in the United 

States, which lists cases reported between 2001 and 2016. Both studies illustrated the ability of this 

method to reconstruct transmission history from widely collected epidemiological information in a 

variety of contexts and geographical scales. 

Countries become eligible for certification of World Health Organisation’s measles elimination status 

after national transmission is interrupted for three years in the presence of high national vaccine 

coverage. Recent major outbreaks in countries where measles had been declared eliminated (e.g., 

United Kingdom, Brazil, Greece) illustrate that current indicators of elimination may be imperfect 

predictors of outbreak risk. In the third and fourth chapters of this thesis, I studied the impact of recent 

levels of local incidence and vaccine uptake on the risks of importation, cross-regional and local 

transmissions by implementing a time-series model using the R package surveillance. I applied this 

model using the daily number of cases reported in France between 2009 and 2017 and discussed how 

local indicators can inform the risks of national outbreaks. 
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Outline of thesis 

Aim and objectives 

The aim of this PhD is to develop methods to improve the identification of groups and local areas most 

vulnerable to measles outbreaks using routinely collected surveillance data, and better understand their 

impact on the dynamics of measles transmission in countries with low national incidence and high 

national vaccine uptake.  

The specific objectives of the thesis are: 

Objective 1: Develop an inference method to use routinely collected epidemiological data in 

order to reconstruct who-infected-whom.  

Objective 2: Highlight the areas where importations of measles was most likely to cause 

secondary cases in the United States using the inferred transmission trees. 

Objective 3: Estimate whether recent incidence and local vaccine coverage were associated with 

a lower level of local and cross-regional transmission during the past ten years in France.  

Objective 4: Explore the impact of variation in vaccine coverage on the number of cases and the 

spatial spread of measles. 

Objective 5: Adapt currently suitable Epidemic-Endemic transmission models to daily case 

counts in order to assess the sensitivity of the results to the use of aggregated surveillance data. 

Layout 

This thesis follows a ‘research paper’ style, meaning that some of the chapters are publications in peer 

reviewed academic journals. I have published one first-author paper (Chapter 3), one other is currently 

under review (Chapter 2). Chapter 4 has been submitted to an academic journal, and Chapter 5 is not 

currently written as an independent paper. These chapters are preceded by an introduction and 

followed by a discussion. This thesis therefore contains six chapters in total: 

1. Background and introduction to the research questions  

2. o2geosocial: Reconstructing who-infected-whom from routinely collected surveillance data: This 

paper presents the R package o2geosocial, developed during this PhD, that aims to infer the 

probability of connection between cases from routinely collected surveillance data. 

3. Probabilistic reconstruction of measles transmission clusters from routinely collected surveillance 

data: This paper shows an application of o2geosocial to routinely collected surveillance data 



20 
 

collected during measles outbreaks in the United States between 2001 and 2016, and assesses 

whether the inferred transmission clusters match the contact tracing investigations. 

4. The impact of local vaccine coverage and recent incidence on measles transmission in France: This 

paper presents an estimation of the association between local vaccine coverage and the recent level 

of incidence, and the daily case counts per department in France between 2009 and 2018. This 

analysis is carried out using the Epidemic-Endemic framework, implemented in the R package 

surveillance. It also shows an evaluation of the impact of variation in coverage and incidence on 

future outbreaks. 

5. Comparison of aggregated and non-aggregated models in the Epidemic-Endemic framework: The 

aim of this chapter is to analyse the impact of aggregated data in the Epidemic-Endemic framework 

on parameter estimations and calibration of the models, using simulated outbreaks. It shows the 

added value of using non-aggregated data when available. 

6. Discussion and conclusions. 
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Chapter 1. Background 

1.1. Measles virus and the impact of measles vaccines 

1.1.1. Symptoms and case definition of measles  

Measles is an infectious viral disease spreading among humans, who are its only known reservoir [1]. It 

is caused by the measles virus, an Ribonucleic acid (RNA) virus member of the Paramyxoviridae family 

of viruses, and is transmitted via respiratory droplets. Symptoms commonly associated with measles 

include fever, cough, coryza and conjunctivitis, followed by a characteristic rash, red eyes, sensitivity to 

light, and Koplick’s spots inside the mouth. Measles complications are most common in young infants, 

adults older than 20 years, pregnant women, and immunocompromised or malnourished individuals 

[2]. The most frequent complications include ear infections, diarrhoea, and pneumonia. Despite the 

availability of a safe and highly effective vaccine, measles remains a leading cause of morbidity and 

mortality in young children, causing 140,000 deaths in 2018, mostly among children under the age of 5, 

according to the World Health Organization’s (WHO) estimations [3]. WHO’s guidelines detail the case 

definition and classification of measles cases is as follows [4]: 

• A suspected case is defined by fever and maculopapular rash, or if a health-care worker suspect 

measles. 

• A laboratory-confirmed case is a suspected case that was confirmed positive by testing in a 

WHO-accredited laboratory. Common methods for confirmation of measles infection include 

detection of measles-specific Immunoglobulin M (IgM) antibody (on blood specimen) and 

measles RNA by real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR) (throat, 

or nasopharyngeal swabs). 

• An epidemiologically linked measles case is a suspected case that was not lab-positive, but was 

geographically and temporally related to a lab-confirmed case, or another epidemiologically 

linked case. 

• A clinically compatible case is a suspected case that was not lab-confirmed, nor 

epidemiologically linked, but had fever, a maculopapular rash, and at least one of cough, coryza 

and conjunctivitis. 

This classification is illustrated in Figure 1.1.  
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Figure 1.1: Classification of suspected measles and rubella cases from [4]. 

On the other hand, the case classification used in the United States is defined by the Centers for Disease 

Control and Prevention (CDC) as follows: a clinically compatible case (no laboratory confirmation, no 

epidemiologic linkage to a confirmed case) is defined as “probable”; a laboratory-confirmed, or 

epidemiologically linked case is “confirmed” [5]. In Europe, the European Centre for Disease Prevention 

and Control (ECDC) defines a case as “possible” if they are clinically compatible, “probable” if they are 

clinically compatible and epidemiologically linked to a laboratory-confirmed case, and “confirmed” if 

they are clinically compatible and lab confirmed, and have not been recently vaccinated [6]. 

Upon exposure, the incubation period ranges from 7 to 18 days, and a rash appears after 14 days [7]. 

The immunity gained after infection or vaccination lasts for at least several decades [8].  
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Measles is highly infectious. The estimated mean number of secondary transmissions caused by an 

infected individual across the course of the disease among an otherwise completely susceptible 

population ranges from 9 to 18 individuals [1,9]. This value, defined as the basic reproduction number, 

is one of the highest amongst directly transmitted pathogens [10]. Therefore, measles virus can spread 

very quickly in populations with low immunity to the virus, and cause a large number of severe 

infections, which can ultimately lead to deaths. The Case Fatality Ratio (CFR) is context-specific, it was 

estimated to be around 1.6% in Low Income Countries (LIC) and 0.7% in Upper Middle-Income Country 

(UMIC) [11]. Before the introduction of measles containing vaccines (MCV), measles was responsible for 

more than 2 million deaths annually, mostly among children [12,13].  

1.1.2. The development of measles-containing vaccines and immunisation programs 

Prior to the development of vaccines, measles mortality declined steadily in most industrialized 

countries in the first half of the 20th Century, in part thanks to the use of antibiotics and improvements 

in living conditions [12,14,15]. Nevertheless, almost all children were still contracting measles before 

adolescence [16]. Measles became a vaccine-preventable disease in 1963, with the first introduction of 

a measles vaccine in the population [17]. Measles vaccines are commonly administered as combined 

vaccines with those for rubella (MR), mumps (MMR), or varicella (MMR-V). The MMR vaccine efficacy 

is high: two doses is roughly 97% effective at preventing measles; one dose is about 93% effective [18]. 

Optimal protection is therefore reached after 2 doses of vaccine. 

Determining the optimal age of vaccination in routine immunisation programs is a matter of balancing 

various context-specific factors: In countries with active transmission, WHO recommends that the first 

dose be administered at nine months after birth in routine immunisation programs, and the second 

dose should be given at age 15-18 months, with at least four week between the two doses [19]. In these 

settings, delaying the administration of vaccine doses would lead to children risking infection prior to 

their vaccination. These vaccine doses would then fail to prevent infection, and potential severe 

symptoms, and would be given to children who had already acquired immunity through infection. On 

the other hand, in countries with lower levels of transmission, WHO recommends that the first dose 

should be administered at 12 months of age. The second dose should then be administered from two 

years of age. This is justified because the average age of infection will increase if the level of transmission 

is lower, therefore the risks of infection before vaccination should be reduced [19]. Furthermore, later 

vaccination can benefit from higher seroconversion rates in the vaccinated children, which means that 

measles antibodies in the patient are higher than the protective threshold, and that the individuals 

should therefore be protected against infection. Indeed, seroconversion rates were shown to increase 

between 4 and 11 months of age [20,21]. Earlier age at first dose may also lead to an increase in the 

number of vaccine failures after two doses [22].  
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Finally, another factor that must be accounted for in calculations of the routine vaccination schedule is 

reducing the susceptibility gap between the decay of maternal antibody and the administration of the 

first dose. Indeed, most children are born with immunity to measles thanks to maternal antibodies, due 

to previous infection or vaccination of the mother. The maternal antibodies decay over time, and can 

interfere with the ability of the vaccine to induce an immune response at younger ages. The amount of 

antibody transferred and the time of protection depend on various factors: vaccinated mothers transfer 

fewer antibodies to their infant than those who acquired immunity through infection [23,24], and in 

vaccinated mothers, the duration of protection may be inversely correlated with childbearing age [25]. 

In countries that have maintained high levels of vaccine coverage and low levels of transmission for 

decades, studies suggest that a proportion of infants could be susceptible at birth [26–28]. The 

recommendations for the age of vaccination are therefore informed by several factors and may need to 

be periodically re-evaluated. 

On top of routine vaccinations, supplementary immunisation activities (SIA), or mass vaccination 

campaigns, can be implemented to strengthen the level of protection in the population. An SIA is 

defined as the administration of a supplementary dose of vaccine to a group, that can be spatially or 

socially defined, during a short period, regardless of the recipients' previous vaccination histories. 

Countries that reach low levels of coverage with routine immunisation programs can use periodic SIAs 

to close the gaps in target coverage [29,30]. In other countries, reactive mass vaccination campaigns 

can be part of the public health response to increases in cases, especially when certain age groups or 

populations are known to be under-vaccinated [31].  

1.1.3. The impact of vaccination campaigns on measles transmission 

The development of national routine vaccination programs and SIAs around the world increased the 

coverage of MCV. This led to a substantial decrease in the burden of measles in every WHO region 

(Africa, Americas, South East Asia, Europe, Eastern Mediterranean, and Western Pacific), both in terms 

of incidence and mortality [14] (Figure 1.2). Indeed, a historic low incidence was reached in 2016, with 

18 cases per million population, down from 145 per million in 2000 [32],  and 13.8 million estimated 

deaths were prevented by measles vaccination between 2000–2012 [33]. In September 2013, all six 

WHO regions accepted the target defined by the Global Vaccine Action Plan for 2012-2020 to eliminate 

measles in every region [34]. Elimination of measles in a region is defined by three verification criteria 

[35]: 

• Documented interruption of endemic measles virus transmission for a period of at least 36 

months from the last known endemic case. 

• The presence of high quality (“verification standard”) surveillance. 
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• Genotyping evidence that supports interrupted transmission (i.e., no indigenous chains of 

transmission persisting for at least one year). Indigenous chains of transmission refer to local 

endemic transmission that does not correspond to an importation. 

  

Figure 1.2: The number of measles cases and vaccine coverage reported worldwide to WHO between 1980 and 2019, taken 
from [36] 

Thus far, the only WHO region to ever declare measles eliminated was the Americas in September 2016 

[37], following the declaration of elimination in the United States in 2000 [38]. The success of the Pan 

American Health Organization in interrupting measles transmission relied upon combined strategies 

applied uniformly across the Americas, including high vaccine coverage reached through routine 

immunisation programs, catch-up campaigns during periods of low transmission, and follow-up 

campaigns to ensure high levels of immunity at the age of school entry [39].  

Moreover, although the regional number of cases was stable, some European countries regularly 

reported outbreaks between 2012 and 2017, while 43 countries (91%) had interrupted endemic measles 

transmission for more than 12 months, including 37 (70%) that had sustained interruption for more than 

36 months [40].  

However, in 2017, the global incidence started increasing again, and major outbreaks were reported in 

countries that had not reported endemic transmission in years. The global incidence in 2018 was at its 

highest since 2011, and the number of cases in 2018 corresponded to an 167% increase compared to 

2016. At a regional level, this corresponded to increases of 246% in the African Region, 16,732% in the 
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Americas, 931% in the Eastern Mediterranean Region, 1,791% in Europe, and 26% in South East Asia 

[32].  

This recrudescence in incidence was especially acute in regions that had reached the elimination status 

or where deemed “near elimination”. In Europe, more than 80,000 cases were reported in 2018, the 

highest figure in 20 years [39,40]. Numerous countries reported endemic transmission that started in 

2017 and lasted throughout 2018 (e.g. Romania [41], Greece [42], France[43], Ukraine [44]). Large 

measles outbreaks were also reported in South America in 2018 [45]. The United States reported 375 

cases in 2018, and 1,282 in 2019, its highest figure since 1992. As a consequence of the recent increase 

of cases, the elimination status was revoked in several countries only a few years after they had reached 

it, for example in Albania, Czechia, Greece, and the United Kingdom in Europe, or Venezuela and Brazil 

in the Americas [34,46,47]. Given that the Americas and Europe were thought to be in best position to 

eliminate measles, it is key for public health organisations to understand the factors that led to the 

resurgence of measles transmission in near elimination settings. 

1.2. Measles burden in high-income high-coverage settings: the need for indicators 

1.2.1. The effect of immunity gaps on transmission risks in countries near elimination  

As measles is highly infectious, high levels of vaccine coverage are needed to control the spread of the 

virus in a population. In theory, routine vaccination programs would give immunity to every child by 

administering two doses of vaccine. In practice, because the efficacy of the vaccine is not perfect, and 

factors such as age at vaccination can impact the seroconversion rate, not every administration of a 

vaccine confers immunity. Furthermore, protection from a vaccine can wane over time [48], and not 

every individual can be vaccinated, for instance because of severe allergies or a weakened immune 

system. Failure to administer vaccines to eligible children due to vaccine hesitancy or other factors 

further increases the fraction of the population that is susceptible to measles [49]. 

Because of the high transmissibility of the measles virus, high levels of population immunity are required 

to interrupt transmission. Assuming random mixing of individuals and lifelong immunity upon infection, 

one can use the basic reproduction number 𝑅0 to compute the minimum vaccine uptake needed to 

interrupt endemic transmission and reach a “herd immunity threshold”, which refers to a population 

where the vaccine coverage is sufficient to reduce the risks of transmission among susceptible 

individuals thanks to the presence of immune individuals [50]. First estimations of this threshold have 

showed that 1 −
1

𝑅0
=  89 − 94% of the population is required to be immune to potentially achieve 

measles elimination [51]. However, this theoretical estimate ignores non-homogeneous population 

mixing, imperfect vaccine efficacy and spatial heterogeneity in vaccine coverage [52,53].   
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Since lifelong immunity is gained after infection, the level of immunity in the population also depends 

on previous levels of transmission. Therefore, the proportion of children that received two doses of 

vaccine shows an incomplete picture of the risks of future outbreaks. Given that in the absence of 

immunisation activities, almost all children would be infected by measles [16], the level of immunity in 

adults that were born before the implementation of large-scale immunisation programs is high. Upon 

implementation of the first immunisation activities (both routine vaccination programs and SIAs), the 

number of susceptibles in the population will be minimal due to all adults and teenagers having gained 

immunity through infection, and a proportion of the children being vaccinated. The transmission 

expected after the implementation of vaccine campaigns is therefore very low. This period has been 

coined as the “honeymoon period”, and was repeatedly observed both in real data and epidemiological 

models [54–56]. Individuals that were missed by vaccination campaigns, and had not been infected 

given the drop in measles transmission during this period therefore remain susceptible and accumulate 

over time. After several years, the number of susceptibles in the population can become sufficient to 

trigger new outbreaks in an older population than during the endemic phase, thus ending the so-called 

“honeymoon period”. 

Minimising the number of individuals missed by routine immunisation is therefore central for bringing 

measles transmission under control. The target immunity levels per age group was first computed by 

the WHO European Region in the 1990s using age-stratified contact data to compute age-specific 

transmission rates [57]. They recommended that at least 85% of 1–4-year-olds, 90% of 5–9-year-olds 

and 95% of 10-year-olds and older possess immunity against measles to achieve elimination. Gaps in 

immunity that could result from incomplete routine programs should be closed by SIAs. Nevertheless, 

these levels were based on social contact patterns from pre-vaccination measles epidemiology in 

England and Wales. Subsequent studies, using recently observed age-stratified contact patterns, have 

shown that the target immunity level of 5-9 year olds may not be sufficient to remove endemic 

transmission, and would need to be raised to 95% [58]. 

Gaps in immunity can have long-lasting consequences, with cohorts maintaining a high proportion of 

susceptibles decades after a drop in routine vaccine uptake. A clear example was observed in the United 

Kingdom: In 1998, an article published in Lancet falsely linked the MMR vaccine to autism in children 

and gained media attention, causing a drop in the MMR vaccine coverage in the United Kingdom [59–

61]. The study was later debunked [62–64], but the vaccination uptake of the first dose at 2 years old in 

England and Wales, exceeding 90% before the controversy, dropped to below 80% in 2003. Vaccination 

rates have been increasing ever since, reaching 89.3% for the second dose at 5 years old in 2015 [65]. 

Despite this sustained annual increase and several catch-up campaigns aiming to reduce this 

susceptibility gap [66–68], individuals born in the late 1990s – early 2000s may remain the most 



28 
 

susceptible to measles virus in the country. Indeed, this cohort was linked to several large transmission 

events since 2010, where the overwhelming majority of infected teenagers had never been vaccinated 

[69,70].   

Immunisation strategies must be designed to reach high vaccine coverage homogenously in the 

population, and must be maintained consistently to avoid the emergence of gaps in immunisation. In 

Europe, the age distribution of the cases in recent outbreaks highlighted the shift in immunisation 

profile: adults older than 20 years old accounted for 30% of the cases in Europe in 2015 [71], and 37% 

in 2018 [40], whereas in 2006 and 2007, this proportion was below 20% [72]. The proportion of 

adolescents and adults infected even reached 50% in some outbreaks [73]. These cases are too old to 

be eligible for national routine immunisation programmes and can only be targeted by SIAs. 

Furthermore, the shift in the age distribution of cases also triggers changes in the routes and settings 

associated with measles transmission: recent outbreaks were reported during art and music festivals 

and other mass gatherings [70,74,75]. The large outbreaks triggered after the accumulation of 

susceptible individuals can subsequently affect infants in the period between the decay of maternal 

antibodies and the immunisation programmes [71,73].  

Gaps in immunity can also arise from spatially or socially heterogeneous vaccine coverage across the 

country, and can create pockets of susceptibles although the overall uptake is high. In these social or 

spatial subgroups with lower levels of immunity, susceptible individuals are more likely to be in contact 

with each other than would be expected if the vaccine coverage was homogeneous [76]. These 

disparities in coverage can then lead to localised outbreaks [77]. For instance, in Europe, various 

outbreaks were reported within populations with lower probability of vaccination such as: Roma 

communities in Bulgaria, Anthroposophist communities in Germany, the Netherlands and Switzerland, 

Jewish ultra-orthodox communities in Belgium, United Kingdom and orthodox Protestants in the 

Netherlands [78,79]. Spatial variations in coverage have also been identified as the main driver of 

measles outbreaks in Germany [80]. Similarly, in the United States, recent outbreaks affected under-

immunised Amish and Jewish communities [77,81]. 

Various causes have been identified to explain the struggles in many countries near elimination to reach 

a uniformly high vaccination coverage. Firstly, the role of socio-economic factors in causing variation 

and inequalities in vaccine coverage has been repeatedly highlighted. Toffoluti et al linked the adoption 

of austerity measures and local decreases in public health expenditures in Italy to drops in regional 

vaccination coverage [82], and Danis et al highlighted that in Greece, socio-economic factors explained 

under immunization better than parental beliefs and attitudes towards immunization [83]. Muscat also 

showed that lack of information and poor access to health care were major factors for explaining low 
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vaccination coverages in certain community [84]. These factors can lead to entire sub-populations 

lacking vaccination and being at highest risks of large outbreaks. Muscat identifies Roma and Sinti, 

Traveller, Anthroposophist, Ultra-orthodox Jewish communities, and recent immigrants as populations 

particularly at risk of measles outbreaks.  

Secondly, vaccine scepticism and refusal of parents to immunise their children can lead to increasingly 

large pockets of susceptibles. Certain religious beliefs have been known to influence the decision to 

vaccinate children for a long time, and under-immunised religious communities have been at risk of 

outbreaks in many low-incidence settings [85]. Furthermore, the rising influence of the antivaccine 

movement is an area of increasing concern to public health bodies, and can lead to decreases in 

vaccination coverage in many near elimination settings [86,87]. Vaccine hesitancy can be caused by 

vaccine-related controversy, such as the drop in coverage that was observed in England and Wales 

following the media attention given to the debunked study linking MMR vaccination and autism. 

Following this type of controversy, SIAs targeting the age groups affected by the decrease in vaccine 

coverage are needed to close the immunity gaps. Vaccine confidence must also be restored through 

direct discussions to address parental concerns about vaccines [88], or communication to fight the 

antivaccine misinformation. Indeed, Hotez et al identified three major elements boosting the influence 

of the antivaccine movement in the United States: a media empire comprised of hundreds of 

disinformation websites and active social media accounts, a political arm with political action 

committees in various Western states, and a predatory behaviour to target insular groups [87]. 

Strategies must be designed to counter these elements, and limit the spread of mistrust in vaccine. 

Finally, the example of Venezuela shows the impact of an unprecedented humanitarian and political 

crisis on the spread of vaccine preventable diseases: measles was re-established as endemic in the 

country, and led to importations in neighbouring countries, threatening the elimination status reached 

by the Americas in 2016 [37].  

Spatial and social immunity gaps caused by the unequal vaccination coverage in near elimination 

settings have had a clear impact on measles transmission in the WHO European region in the last ten 

years, and have been obvious during recent outbreaks in the United States. It is therefore key to 

understand how epidemiological and vaccination data can be used to solve the challenges raised by the 

current state of immunisation in countries near elimination. 

1.2.2. Identification of sub-national regions and groups with lower immunity 

The resurgence of measles observed in various countries that had previously reached elimination, or 

were approaching it, highlights the existence of previously unidentified immunity gaps. Locating and 

identifying gaps in immunity is therefore key for two reasons: 
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• Firstly, to strengthen the immunisation programs by understanding how these immunity gaps 

came to exist and make sure these groups can be reached by routine vaccination in near future, 

and design catch-up campaigns to close the immunity gaps, 

• Secondly, to locate the areas and groups that are currently most at-risk of outbreak upon 

importations of measles. Knowing the profile of the groups with low immunisation also brings 

information into the settings where large outbreaks are more likely, for instance schools, 

universities, or large gatherings.  

Nevertheless, identifying the pockets of susceptibles distributed in a country is challenging. The most 

direct way to figure out the immunity profile of the population is through serosurveys, whereby 

specimens from a defined population are collected and tested to determine the presence of antibodies 

as a measure of immunity in the population [56,89]. Therefore, serosurveys provide a measure of 

immunity that contains both vaccine-induced and infection-induced immunity. They bring a punctual 

set of evidence of how close a given population is from herd immunity, and therefore are key to 

assessing the risk of outbreaks and identifying high-risk population subgroups. Finally, routinely 

conducted serosurveys (referred to as serosurveillance) also helps monitor immunity over time, thus 

highlighting groups that could be targeted by SIAs. Nevertheless, serosurveys come with various 

limitations: they can be costly, and logistically difficult to conduct, they also require a substantial time 

commitment. Consequently, they are rarely carried out in countries where the burden of measles is 

relatively low. Therefore, little information on the state of measles susceptibility in near elimination 

settings can be drawn from recent serosurveys. 

The identification of pockets of susceptibles can also be informed by using vaccine coverage data. The 

nationwide coverage information is collected by most of countries with well-performing surveillance 

data (which includes near elimination countries). Information on the national uptake of first and second 

vaccine doses among given age groups can help identify drops in vaccination following surges in levels 

of vaccine hesitancy or declining access to the routine immunisation programs. The birth years 

associated with temporal drops in immunisation can be targeted by SIAs once they are too old to be 

captured by routine immunisation programs. Coverage data provides more accurate descriptions of the 

national immunity profile in countries where the level of measles transmission has been low for years, 

since most of the immunity is achieved by coverage rather than previous infection. Nevertheless, 

distinguishing spatial sub-national heterogeneity in immunity using coverage data is much more 

challenging. Indeed, historical data on vaccine coverage at a local level are rarely available. Local 

estimations of vaccine coverage also require a reliable population denominator at the same spatial 

scale, which is often not available. Furthermore, they can be unreliable because of movements within 

the country since the population may not correspond to the local vaccine uptake twenty years before. 



31 
 

Finally, vaccine coverage does not account for the imperfect vaccine efficacy, which means that vaccine 

coverage could be an overestimation of the level of vaccine-induced immunity in the population, 

especially in countries that deliver the first dose of vaccine early. 

Routinely collected disease surveillance data can be used to identify areas with higher susceptibility. As 

argued in the previous subsection, the age distribution of cases can shed light on the intensity of 

transmission in the country, and on the existence of immunity gaps. Epidemiological investigations can 

also highlight routes of transmission and super-spreading events, hence improving the understanding 

of the transmission dynamics and improving future surveillance. Local effective reproduction numbers, 

which describe the average number of individuals infected by a case in an area, can also be computed 

from surveillance data and show regions repeatedly associated with increased transmission. However, 

this type of analysis is subject to various limitations. Firstly, regions with low incidence can report several 

consecutive years with very low numbers of cases, during which time the number of susceptibles 

increases (this phenomenon is referred to as ‘replenishment of susceptibles’). During these periods, 

surveillance data will display little information about the risk of outbreaks. The amount of information 

brought by surveillance data therefore depends on the amount of transmission in the country. Secondly, 

measles outbreaks can be widely underreported, especially among communities that are less in contact 

with public health authorities [90]. This can lead to entire transmission chains not being reported, and 

ultimately to an underestimation of the number of secondary infections per case. Finally, extensive case 

investigations are needed to assess the importation status and the clustering of cases, in order to 

identify the different concurrent transmission chains and independent importations. Indeed, the raw 

local number of cases is not sufficient to evaluate the susceptibility of a region. For instance, a region 

that repeatedly reports independent importations without secondary transmissions could be deemed 

protected against large outbreaks, whereas another region with a similar number of cases all grouped 

in the same transmission cluster would be especially at risk of large transmission events. 

Routinely collected surveillance data can be enhanced through information on genetic sequences of 

measles. Indeed, molecular surveillance of measles is defined as an essential aspect of elimination 

programs, but is hampered by measles virus’ genetic stability [91,92]. Molecular surveillance aims to 

identify whether sequenced cases come from repeated introductions (i.e. their sequences are too 

different to be linked in the same transmission cluster), or if they were caused by endemic transmission 

(i.e. their sequences are similar enough to be connected). However, measles virus shows very limited 

sequence variability both in outbreaks settings and in laboratory [93,94]. Furthermore, although WHO 

recognises 24 different measles virus genotypes, only four of these have recently been detected, with 

the B3 and D8 genotypes accounting for an overwhelming majority of the sequences reported in recent 

years [95]. Comparing whole-genome sequences would exhibit more variability between the sequences, 
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but collecting whole genomes is expensive and labour-intensive [96]. Therefore, molecular surveillance 

of measles virus is currently mostly based on 450 nucleotides of the C-terminal region of the 

nucleoprotein (N450), but the genetic variation of this sequence of nucleotides is limited in the B3 and 

D8 genotypes [95] . Novel approaches are now being designed to integrate more regions of the measles 

genetic sequences in molecular surveillance, without increasing the technical and financial cost of 

sequence collection [97,98].  

In conclusion, the identification of the areas and groups most susceptible to measles transmission can 

be informed by multiple data sources, each with its own strengths and limitations. Developing tools in 

order to be able to combine these data sources to maximise the information they provide is therefore 

crucial to assess the risks of measles outbreaks in near elimination settings.   

1.3. Mathematical modelling to identify and study heterogeneous transmission risks 

1.3.1. Introduction to mathematical modelling of measles outbreaks 

Thanks to improvements in the electronic surveillance of infectious diseases, combined with the 

development of modern methods able to study the transmission dynamics of infectious diseases, 

mathematical analysis and models are now playing a central part in public health strategies. They are 

used to propose and test theories, as well as compare, plan, implement and evaluate detection, 

prevention, and control programs [1,99,100].  

Mathematical models are limited by a balance between accuracy (ability to reflect data with correct 

predictions), transparency (clarity of the role and impact of the model and its components), and 

flexibility (ability to be adapted to new situations) [101]. Models can improve our understanding of 

infectious disease dynamics by estimating parameters quantifying the intensity of transmission. 

Model parameters can be estimated from data using a wide range of techniques and analyses. Bayesian 

statistics allows for the inclusion of external information from previous studies using the prior 

distributions. It relies on Bayes’ theorem, which is used to compute the posterior probability by 

multiplying the prior probability distribution and the likelihood function. Monte Carlo Markov Chains 

(MCMC), where proposal distributions are used to update the set of parameters depending on its 

previous values, is an efficient and commonly used method to sample from a posterior distribution 

when an analytical form of that distribution is unavailable [102,103]. One of the most popular methods 

is the Metropolis-Hastings algorithm, that simulates MCMC where an update is proposed and is then 

accepted or rejected depending on its likelihood. The efficient convergence of the MCMC chain depends 

on the movement functions implemented in the Metropolis-Hastings algorithm. 
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Characterised by its high infectiousness over a relatively short period and long-lasting immunity, 

measles has served as a model of an acute, immunising infectious disease for studies of infectious 

disease dynamics [54,104,105]. Numerous studies have focused on the pre-vaccination era and were 

used to design vaccination catch-up campaigns, or to evaluate or modify vaccination routines, notably 

in England and Wales [13,106–109]. Historically, since measles almost exclusively affected children, age-

structured compartmental models have been widely used for measles modelling, to understand 

regional transmission, or to estimate the transmission rates before the implementation of vaccination 

campaigns [110–112].  

Mathematical models have also been used to study the spread of measles in highly vaccinated areas, 

and give insight into the transmission dynamics in settings near elimination [52,113,114]. These studies 

aimed to improve the detection of potential losses in herd immunity, and the impact of future variations 

in the vaccine coverage. Models also showed the potential for local spread when national vaccine 

coverage is above the elimination threshold, highlighting the impact of super-spreading events 

[115,116]. “Super-spreading events” refer to transmission events where an unusually high number of 

secondary transmissions are linked to a single case or settings, for instance  because of a high number 

of potentially infectious contacts, and their impacts have been documented for various infectious 

diseases [117–119].  

This PhD focuses on two specific aspects of the mathematical modelling of measles outbreaks: firstly, 

the use of Bayesian statistics and MCMC to reconstruct transmission history and infer who-infected-

whom; and secondly the so-called Epidemic-Endemic framework, used to disentangle the association 

between various covariates and the incidence at a sub-national level. Both frameworks use a variety of 

data sources, one of the most informative being the regions of residency (or notification) of the cases. 

Therefore, models are needed in order to estimate the likelihood of connection between two cases 

depending on their location.  

1.3.2. Mathematical models to estimate the connectivity between regions 

The connectivity between regions in a given area of interest quantifies the movements of populations 

between the different regions. Empirical measures of movements can be generated from commuting 

data [120], mobile phones’ GPS, or social network data [121]. These data cannot directly be applied to 

infectious disease modelling, specifically measles virus, since the spatial spread of the virus often 

focuses on specific age groups with different mobility, for instance school-aged children, who do not 

commute, are less likely to have a phone, and are often excluded from movement data because of 

sensitivity. Furthermore, the behaviour of infected individuals may differ from typical movement 

behaviour, i.e., symptomatic cases may not commute to work, or control measures may change the 
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mobility. Mobility models can therefore be integrated in the modelling of the virus spread to account 

for the specificities of disease-related mobility. 

The set of models most commonly used to describe connectivity between regions are the gravity 

models, where the connectivity only depends on the number of inhabitants and the distance between 

the regions [122]. In the simplest form of the gravity approach, the probability of commuting between 

two regions 𝑖 and 𝑗 is proportional to the product of the origin population size 𝑚𝑖, the destination 

population size 𝑚𝑗, and a function of the distance between 𝑖 and 𝑗: 𝑓(𝑑𝑖𝑗): 𝑝𝑖𝑗   ∝  𝑚𝑖
𝛼  𝑚𝑗

𝛽
 𝑓(𝑑𝑖𝑗 , 𝛾 ), 

with 𝛼, 𝛽, and 𝛾 adjusting for the impact of each variable. The gravity approach has been widely used 

to describe the spread of infectious diseases [110,123,124]. Various formulations have been developed, 

for instance the function of distance between the two regions has commonly been described as a 

power-law decay (𝑓(𝑑𝑖𝑗, 𝛾 ) = 𝑑𝑖𝑗
−𝛾
 ), but can also be set as an exponential decay (𝑓(𝑑𝑖𝑗 , 𝛾 ) = 𝑒

−𝛾𝑑𝑖𝑗) 

[120]. The spread of infectious diseases can also be represented as piecewise gravity models, where 

different functions are used to compute the connectivity between regions depending on the absolute 

distance between them [123]. Such framing supposes that the connectivity between nearby regions 

cannot be described by the same function and parameters as those used to describe the connectivity 

between regions that are further away from each other.  

Although the gravity models’ appeal relies on their simplicity and their flexibility, one major shortcoming 

of this framework is that the connectivity between two regions is influenced by the size of neighbouring 

regions. In other words, human movement between two urban regions 𝑖 and 𝑗 with only rural areas 

between the two regions may be different from the connectivity if another urban region is located 

between 𝑖 and 𝑗. Stouffer’s “law of intervening opportunity” posits that the connectivity between two 

regions directly depends on the number of “intervening opportunities” between the two regions [125]. 

In other words, the “distance” between 𝑖 and 𝑗 would be better quantified as the number of inhabitants 

living between 𝑖 and 𝑗, than by the absolute geographic distance. This corresponds to the Stouffer’s rank 

model [125,126]. Several alternative models describing human movements are related to Stouffer’s law, 

such as the radiation model [127], that also does not take absolute distance into account, but proposes 

an alternative reduction of connectivity due to competing regions; or Fotheringham’s competing 

destinations model [128], that integrates both absolute distance and competing populations, and allows 

for the fact that competing regions may also boost the connectivity between two regions (Figure 1.3).  
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Figure 1.3: Taken from Bjørnstad et al [129]: Spatial interaction models predict the flux of human movements between 
population centres (cities, towns, villages) as a function of the distribution of the population. In this diagram, the relative 
magnitude of the fluxes from a focal town to other population centres are represented by the widths of the arrows. In the 
widely-employed gravity models (A), interactions among cities are strictly pairwise. Thus, the addition of a new town (B) has no 
effect on the movement to other towns. In Fotheringham’s competing destinations model (C), however, competition or synergy 
among nearby communities can reduce or augment fluxes. Stouffer’s model of intervening opportunities and the radiation 
model (D) posit that movement from one city to another is diminished by the presence of opportunities in communities more 
proximal to the source city. 

Various publications aimed to compare these models and evaluate which one was best adapted to the 

reconstruction of movements between regions. Results were dependent on the data sources and the 

distance of connection. Bjørnstad et al. used weekly pre-vaccination (1944-1965) measles cases counts 

in England and Wales and highlighted that Stouffer’s rank models outperformed the gravity model, 

although this dataset may not represent modern movements between regions [129]. On the other hand, 

Lenormand et al. showed that the exponential gravity model was best able to fit commuting flows in 

different European and American countries. This result was more marked for shorter distance trips 

[120]. Therefore, different mathematical models can be used to analyse the connectivity between sub-

national regions, and applied to the spatial spread of measles. 

1.3.3. Mathematical models to reconstruct who infected whom 

A key parameter to understand and analyse the spread of a virus in a community is the effective 

reproduction number, which describes the average number of individuals infected by a case in a 

community. When the reproduction number is above 1, the number of cases increases over time, 

possibly leading to a large epidemic. To eventually stop the spread of a virus in a population, the 
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reproduction number needs to be brought below 1. The individual reproduction number can be 

computed by studying the history of individual transmissions, i.e. “who-infected-whom”.  Indeed, from 

the transmission trees, one can compute the number of secondary transmissions per reported case, and 

study the factors associated with major transmission events. However, transmission trees have a 

number of limitations: since they are dependent on the proportion of cases that get reported to the 

surveillance system, they may under-estimate the number of secondary transmissions caused by a given 

case. They also do not account for opportunities of transmission that did not happen. Therefore, there 

is no way to distinguish between individuals who did not cause further transmissions because they had 

no contact (i.e. they do not give any information on the level of immunity in the population), and those 

who had many contacts, but did not cause further transmission because all their contacts were immune 

(i.e. this hints that the immunity level in the population is high). These points are especially important 

for pathogens where subclinical cases are frequent. Nevertheless, transmission trees can be used to 

highlight areas, or individual variables, repeatedly associated with secondary transmissions within the 

reported cases. 

Transmission trees can be reconstructed through patient interviews, whereby cases are asked about 

their movements and contacts during their infectious period. This involves the identification of people 

who may have come into contact with cases, based on epidemiological data directly collected from the 

interviewed individuals (e.g. age, gender, when and where contact with a confirmed case occurred, 

onset date). This approach has been applied to recent epidemic situations, such as the 2014-16 Ebola 

virus (EBOV) outbreak in Western Africa [130] or the SARS coronavirus 2 epidemic (SARS-CoV-2) [131]. 

However, contact tracing has several limitations: it is sensitive to reporting, ascertainment or recall 

biases. It is also difficult to implement when only a subset of the cases is reported to the surveillance 

system, because of asymptomatic transmission or imperfect surveillance. Furthermore, contract tracing 

is expensive and time-consuming. Therefore, it is not always carried out as a standard measles 

surveillance procedure.  

Statistical methods have been developed to infer transmission trees using epidemiological or genetic 

data [132–134]: Wallinga and Teunis first developed a likelihood-based estimation procedure taking the 

onset date of cases as inputs to reconstruct likely transmission trees [133]. In the Wallinga-Teunis 

algorithm, the distribution of the generation time, which describes the typical number of days between 

an infector and an infectee, is used to compute the likelihood of transmission between an infector and 

an infectee. The individual reproduction number is then calculated from the probability of infection 

between each case in the dataset.  
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This method has been the bedrock of most transmission tree inference methods because it requires a 

limited amount of routinely collected information in many epidemic settings. It was modified to 

integrate the estimation of the date of infection, which provides more information on the time when a 

case was infectious using the latent period of the disease. It can also be used to estimate the probability 

of a case being an importation, meaning that the case has no plausible ancestor reported in the dataset. 

Other methods have also integrated the probability of unreported cases between connected individuals 

to account for a situation where case A infected case B, who infected case C, but only A and C were 

reported. Case A and C are therefore linked, with one missing generation, and the probability of missing 

generations between cases can be added as a parameter estimated by the model. The Wallinga-Teunis 

algorithm has been adapted as a Bayesian framework, which allows for the inclusion of priors of the 

parameters of the model [135]. The Bayesian inference methods commonly use the Metropolis–

Hastings algorithm with MCMC to sample from the posterior distribution of the parameters and 

transmission trees.  

Nevertheless, in the event of concurrent transmission chains reported in a given community, the onset 

date may not be enough to disentangle the transmission history, and the Wallinga-Teunis method has 

been supplemented with other data sources to improve the accuracy of the inference procedure. For 

instance, genetic sequences are now of special interest when identifying chains of transmission, as 

patients can be easily sampled, and genetic distance between samples can be computed. When the 

genetic distance between two samples is low, the cases are more likely to belong to the same part of a 

given transmission tree. Using sequence data alone to reconstruct the history of transmission during 

outbreaks is increasingly frequent as sampling of cases is becoming more common [136–139]. Methods 

such as the R package outbreaker2, have been developed to unify genetic distances and epidemiological 

data in the same likelihood [140–143]. The inclusion of such data can substantially increase the accuracy 

of the reconstructed transmission trees [140]. However, as described in the previous section, measles 

virus is known to evolve slowly [92]. Direct transmission links cannot be inferred using genetic 

sequences as samples from unrelated individuals can be very close genetically [96,144]. On the other 

hand, because there is little variability in measles sequences, genotypes can be used to identify 

importations, since different genotypes cannot be found in the same transmission cluster. 

The age of the cases, combined with social contact data, can also bring information on the chances of a 

connection between two reported cases. Indeed, mixing between different age groups is not 

homogenous, and incorporating the risks of infectious contacts between age groups in methods to 

reconstruct transmission trees can improve their accuracy. For instance, Edmunds et al. highlighted the 

uneven distribution of infectious contacts in measles and meningococcal outbreaks [145]. Data on social 

mixing patterns are usually collected using prospective surveys where participants complete regular 
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diary entries listing the number of people they have been in contact with. Mixing matrices can be 

computed using demographic information on the age of the participants and their contacts. Assuming 

that infectious contacts are analogous to social contacts, especially for respiratory viruses, one can use 

these mixing matrices to describe the spread of viruses among and between different age groups [146]. 

The Polymod contact survey carried out in 2006 in eight European countries further demonstrated the 

higher contact rate within age groups compared to between age groups [147]. The survey highlighted 

that the number of contacts was highest among schoolchildren, whereas adults over the age of 65 had 

the lowest number. The data collected during the Polymod survey has since been used as a reference 

for age mixing in mathematical models. 

The onset date, age-group and location of cases are part of the variables routinely collected during 

measles outbreaks in most countries near elimination. Therefore, it is crucial to develop methods that 

combine these variables to maximise the information that routine surveillance can bring to the 

reconstruction of measles transmission trees, and identify the settings where epidemiological 

investigations or further variables are needed to disentangle the history of transmission. The 

transmission clusters and importation status inferred from these reconstruction methods can then yield 

insight into the regions where importations of cases led to large transmission clusters, or the features 

associated with the cases involved in large transmission events.  

1.3.4. Mathematical models to analyse heterogeneous transmission risks 

One of the challenges caused by the heterogeneity in the level of immunity within countries near 

elimination is to identify the local surveillance or coverage data that can be indicative of higher risks of 

outbreak. Indeed, as explained in the second section, local values of coverage can be scarce, or may not 

accurately describe the current level of vaccination in a given area. Moreover, WHO uses the level of 

incidence in the past three years to assess the eligibility of a country for the elimination status [35], but 

periods of low incidence can be associated with the replenishment of susceptible individuals, which 

would increase the risks of imminent outbreaks in a population. Therefore, there is a need to design 

models able to evaluate the association between local covariates and levels of incidence. 

The Epidemic-Endemic modelling framework corresponds to a class of models developed to analyse 

sub-national case count data and disentangle the separate impact of various covariates on the number 

of local and cross-regional transmissions, and importations. It was first developed by Held et al., and has 

since been adapted to various settings and pathogens [80,148–150]. This framework is implemented as 

part of the R package surveillance¸ and is often referred to as the hhh4 class of models. 

In the Epidemic-Endemic framework, the expected number of cases (𝜇𝑖,𝑡) reported in the region 𝑖 at 

time 𝑡 depends on three sources of transmission (called “components”):  
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i. The autoregressive component (𝜆𝑖,𝑡) represents the impact of 𝑌𝑖,𝑡−1, the number of cases in 𝑖 at 

the previous time step, on the number of cases in 𝑖 at 𝑡. The predictor 𝜆𝑖,𝑡 indicates the average 

number of new cases expected at in 𝑖 at 𝑡 per case in 𝑖 at 𝑡 − 1.  

ii. The neighbourhood component (𝜙𝑖,𝑡) represents the impact of 𝑌𝑗,𝑡−1, the number of cases 

reported for each region 𝑗 around 𝑖 at the previous time step, on the number of cases in 𝑖 at 𝑡. 

The exact impact of cases in these regions on cases in 𝑖 is determined by a distance matrix 𝜔 

which quantifies the connectivity between the different regions. If 𝜙𝑖,𝑡 is high, cases in regions 

around 𝑖 are more likely to cause new cases in 𝑖, whereas a low value of 𝜙𝑖,𝑡 indicates that cross 

regional transmissions towards 𝑖 are less likely. 

iii. The endemic component (𝜈𝑖,𝑡) represents the background number of new cases occurring in 

region 𝑖, regardless of the current number of cases in 𝑖, or in the regions around 𝑖. If 𝜈𝑖,𝑡 is high, 

new cases in 𝑖 are common, regardless of the number of cases in or around 𝑖 at the previous 

time step. Since the endemic component does not depend on 𝑌𝑡−1, it represents the 

background importations that cannot be linked to the other two components. Therefore, these 

cases either correspond to importations from outside the modelled area, or cases that are not 

otherwise predicted by the other two components.  

The neighbouring and autoregressive component represent the ‘Epidemic’ part of the hhh4 model, i.e. 

the section that depends on current levels of transmission in the dataset. The number of observed cases 

at 𝑡 in 𝑖 𝑌𝑖,𝑡,  usually follows a negative binomial distribution to allow for overdispersion [151],  with the 

overdispersion parameter 𝜓 being estimated by the model. The hhh4 model can also be parametrised 

as a Poisson regression. The full equation for the mean number of cases in region 𝑖 at time 𝑡 is: 

𝜇𝑖,𝑡 = 𝜈𝑖,𝑡 + 𝜆𝑖,𝑡 ∗ 𝑌𝑖,𝑡−1 + ϕi,t ∗  ∑ (𝜔𝑗𝑖 ∗ 𝑌𝑗,𝑡−1)𝑗≠𝑖    (1) 

The predictors 𝜆𝑖,𝑡, 𝜙𝑖,𝑡 and 𝜈𝑖,𝑡 can be independently impacted by different covariates, e.g. a covariate 

may be associated with a reduction in the number of importations, but have little impact on the spread 

of the virus within the region. Each predictor is estimated using log-linear regressions, containing the 

following: i) The intercept 𝛼 (identical across spatial units), and ii) the vector of coefficients 𝛽 associated 

with 𝑧𝑖,𝑡, the vector of covariates at 𝑡 in 𝑖 included in each component. 

𝑙𝑜𝑔(𝜆𝑖,𝑡) = 𝛼
(𝜆) + 𝛽(𝜆) ∗ 𝑧𝑖𝑡

(𝜆)
     (2) 

𝑙𝑜𝑔(𝜙𝑖,𝑡) = 𝛼
(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡

(𝜙)
     (3) 

𝑙𝑜𝑔(𝜈𝑖,𝑡) = 𝛼
(𝜈) + 𝛽(𝜈) ∗ 𝑧𝑖𝑡

(𝜈)
     (4) 
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In recent years, the Epidemic-Endemic model has been applied to a variety of settings, and has been 

extended to provide additional features. For instance, spatial random effects can be added to the log-

linear regressions (equations 2, 3, and 4) to account for spatial heterogeneity in the incidence that would 

not be explained by the covariates included in the model. The random effects assigned to each region 

are constant through time [149]. Recent developments allowed for the Epidemic components to 

account for the impact of cases reported several time steps before 𝑡 on the current incidence [150]. 

Indeed, using only the number of cases at the previous time step can exclude transmission events with 

longer generation times, or unreported generations. The R package surveillance also integrates 

functions that evaluate the calibration of the model by generating one step ahead forecasts, i.e. by 

fitting the model at each time step of a “calibration period”, which usually corresponds to the last 𝑛 

measures, and comparing the prediction of the model at the next time step to what was reported in the 

data.  

Therefore, the Epidemic-Endemic framework provides a flexible type of model that can estimate the 

association between a variety of covariates and the number of local cases in each region. For instance, 

Herzog et al. applied this framework to aggregated measles data in Germany, and showed that they 

were able to capture the incidence in all states using the proportion unvaccinated as a covariate in the 

autoregressive component [80].  

Using the number of cases reported in the past three years as a covariate of the model, one could 

estimate whether regions eligible for the elimination status (i.e. those that reported low levels of 

incidence in the past three years) were associated with lower chances of onwards transmission. In other 

words, whether the values of the three predictors are lower when fewer cases were reported in the 

past three years. So far, the Epidemic-Endemic has only been applied to temporally aggregated case 

counts, but using daily case counts may bring more granularity and accuracy to the estimation 

procedure. The Epidemic section would then have to be modified. Indeed, using only the number of 

cases on the previous day to compute the current number of cases would lead to bias, since it would 

imply that direct transmission happens between cases reported on successive dates.  

1.4. Summary 

The resurgence of measles observed in many countries near elimination since 2017 highlights the 

importance of developing tools to identify areas with low immunity to the virus, and to evaluate 

indicators of vulnerability. Programs of routine measles surveillance and vaccination have been 

implemented for several decades. Therefore, there is a need to assess how these widely available data 

can be used to gain insights into the dynamics of measles transmission in countries with relatively low 

national incidence and high vaccine uptake. In this thesis, I aim to introduce methods combining 
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routinely collected data to describe the sub-national heterogeneity in vulnerability to measles 

outbreaks, and highlight the association between various indicators and the risks of measles 

transmission.  
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2.1. Abstract 

Reconstructing the history of individual transmission events between cases is key to understanding what 

factors facilitate the spread of an infectious disease. Since conducting extended contact-tracing 

investigations can be logistically challenging and costly, statistical inference methods have been 

developed to reconstruct transmission trees from onset dates and genetic sequences. However, these 

methods are not as effective if the mutation rate of the virus is very slow, or if sequencing data is sparse. 

We developed the package o2geosocial to combine variables from routinely collected surveillance data 

with a simple transmission process model. The model reconstructs transmission trees when full genetic 

sequences are unavailable, or uninformative. Our model incorporates the reported age-group, onset 

date, location and genotype of infected cases to infer probabilistic transmission trees. The package also 

includes functions to summarise and visualise the inferred cluster size distribution. 

The results generated by o2geosocial can highlight regions where importations repeatedly caused large 

outbreaks, which may indicate a higher regional susceptibility to infections. It can also be used to 

generate the individual number of secondary transmissions, and show the features associated with 

individuals involved in high transmission events. 

The package is available for download from the Comprehensive R Archive Network (CRAN) and GitHub. 

2.2. Introduction 

The identification of transmission trees and transmission events during infectious disease outbreaks can 

lead to identifying factors and settings associated with subsequent transmissions [1–4], describing 

super-spreading events [5,6], or populations and areas more vulnerable to importations and 

transmission [7–10], and quantifying the impact of control measures [11,12]. The most straightforward 

approach to reconstructing who-infected-whom is to carry out patient interviews and establish the 

previous contacts to connect the reported cases. However, contact-tracing investigations are costly and 

can be challenging to implement. Statistical methods have therefore been developed to infer 

transmission trees from routinely collected epidemiological data [12–17]. 

The Wallinga-Teunis method was first developed to infer probabilistic transmission trees from onset 

dates and generation times in a maximum likelihood framework [12]. Genetic sequencing of pathogens 

have since become more common, and new tools such as the R package outbreaker2 were created to 

combine the timing of infection and the genetic sequences in order to improve the accuracy of inferred 

transmission trees [13,14,18–20]. Nevertheless, the accuracy of these reconstruction methods relies on 

the proportion of sequenced cases, the quality of the sequences, and the characteristics of the pathogen 
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[21]. For instance, the measles virus evolves very slowly, and sequences from unrelated cases can be 

very similar, which makes these methods ineffective for measles outbreaks [22,23]. 

The package o2geosocial was designed to study outbreaks where sequences are uninformative, either 

because too few cases were sequenced or because the virus evolves too slowly. Building upon the 

framework presented in outbreaker2, o2geosocial was developed to infer who-infected-whom from 

variables routinely collected by surveillance systems, such as the onset date, age, location, and genotype 

of the cases [7]. Cases from different genotypes cannot be part of a similar transmission chain since 

differences in genotype illustrate major variations in their genetic sequences [24]. Using age-stratified 

contact matrices and mobility models, we combined the different variables into a likelihood of 

connection between cases. In this paper, we first describe the structure of the package. From a use case 

based on simulated data, we then show how to run the model, evaluate the output, visualise the results 

of the inference, and customise the input functions to implement different mobility models. 

2.3. Methods 

2.3.1. Operation 

o2geosocial is implemented as an open-source R (version ≥ 3.5.0) package and can be run on all 

platforms (Windows, Mac, Linux). It incorporates C++ functions into a R framework using Rcpp [25]. 

Package dependencies and system requirements are documented in the o2geosocial CRAN repository. 

A stable version was released on Windows, Mac and Linux operating systems via a CRAN repository. The 

source code is available through Zenodo [26] and the latest development version is available through a 

Github repository. 

# install from CRAN 
install.packages("o2geosocial") 
 
# install from Github 
install.packages("devtools") 
devtools::install_github("alxsrobert/o2geosocial") 

The main function of the package, called outbreaker(), uses Monte Carlo Markov Chains (MCMC) 

to sample from the posterior distribution of the underlying model [27] . For each case, it infers the 

infection date, the infector, and the number of missing generations between the case and their infector. 

It takes five lists as inputs: i) moves, ii) likelihoods, iii) priors, iv) data, and v) config. These 

five lists can be generated and modified using the functions custom_moves(), 

custom_likelihoods(), custom_priors(), create_config() and 

outbreaker_data(). 



59 
 

2.3.2. Implementation 

The general implementation of o2geosocial follows the structure of outbreaker2 and builds upon it by 

adding the effect of the location and the age-stratified contact data to the reconstruction of 

transmission clusters. However, unlike outbreaker2, o2geosocial does not take genetic sequences as 

input. It uses genetic groups ( e.g. genotype) to exclude connections between cases, i.e. two cases 

cannot be from the same cluster if they belong to different genetic groups [28] . Therefore, o2geosocial 

is adapted to reconstructing transmission clusters from large datasets where genetic sequences are not 

informative, either because the mutation rate of the virus is slow, or because sequencing is scarce. 

In o2geosocial, the number of independent clusters in the dataset is inferred using two different 

processes (Figure 2.1). Firstly, the pre-clustering step aims to group cases before the MCMC runs 

following three criteria: Only cases reported in a radius of 𝛾 km, less than 𝛿 days before case 𝑖, and from 

similar or unreported genotype can be classified as potential infectors of 𝑖. Cases with overlapping 

potential infectors, and their potential infectors, are grouped together, and cases from different groups 

cannot be linked during the MCMC runs. The parameters 𝛾 and 𝛿 are defined as inputs of the function 

create_config(). Since surveillance datasets can include cases from unrelated outbreaks, the pre-

clustering function was developed to remove impossible connections and speed up the MCMC runs. 

Secondly, as cases classified in the same group after the pre-clustering step may come from different 

clusters, we defined a likelihood threshold 𝜆 to spot and discard unlikely connections after the MCMC 

runs: if the likelihood of connection from case 𝑗 to case 𝑖 is lower than 𝜆, the connection is discarded 

and 𝑖 is an import unrelated to 𝑗. In o2geosocial, the variable 𝜆 can either be an absolute (the log-

likelihood threshold will be log (𝜆)) or a relative value (a quantile of the likelihood of all connections in 

all samples), and is defined by the variables outlier_threshold and outlier_relative in 

create_config(). 

Finally, unlikely connections between cases can alter the inferred infection dates of cases and bias the 

transmission trees sampled from the MCMC runs. Therefore, we first run a short MCMC to remove these 

unlikely connections. From this run we compute 𝑛, the minimum number of connections with a 

likelihood lower than 𝜆 per sampled tree. We then add 𝑛 imports to the starting tree and run a longer 

MCMC. Lastly, we remove the connections with likelihood lower than 𝜆 in the final samples and return 

the infector, infection date and probability of being an import for each case (Figure 2.1). 
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Figure 2.1: Illustration of the process to estimate the cluster size distribution and the import status of 13 cases. In the first step, 
cases are split in two groups that do not have overlapping potential infectors (i.e. they were reported in different places, or 
different times). In step 2, we estimate the minimum number of unlikely transmissions (n) in the samples (right panel). In step 3, 
we remove n transmissions from the initial tree, and generate samples. Finally, we remove the unlikely connections in each 
sample of Step 3 and compute the inferred cluster size distribution. 

2.3.3. Likelihoods and priors 

The functions custom_likelihoods() and custom_priors() can be used to edit each 

component of the likelihood and priors. By default, there are five components in the likelihood: 

Genotype component: There can be a maximum of one genotype reported per transmission tree. The 

genotype of a tree 𝜏 is the genotype reported for at least one of the cases belonging to 𝜏. For each 

genotyped case 𝑖𝑔𝑒𝑛 and at every iteration, only cases from trees with the same genotype as 𝑖𝑔𝑒𝑛, or 

without reported genotype can be listed as potential infectors. 

Therefore, the genetic component of the likelihood that a case 𝑖 of genotype 𝑔𝑖 was infected by a case 

𝑗 belonging to the tree 𝜏𝑗 is defined as a binary value: 
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𝐺(𝑔𝑖 , 𝑔𝜏𝑗) =

{
 

 
1 if 𝑔𝑖 unknown
1 if 𝑔𝜏𝑗  unknown 

1 if 𝑔𝑖 and 𝑔𝜏𝑗  both known and 𝑔𝑖 = 𝑔𝜏𝑗
0 otherwise

 

Conditional report ratio: As in the package outbreaker2, we allow for missing cases in transmission 

chains. The number of generations between cases 𝑖 and 𝑗, denoted 𝜅𝑗𝑖, is equal to 1 if 𝑗 infected 𝑖. We 

define Π as the conditional report ratio of the trees, which differs from the overall report ratio of an 

outbreak as only unreported cases within transmission chains impact the conditional report ratio. 

Entirely unreported clusters, or unreported cases infected earlier than the ancestor of a tree do not 

change the value of Π. By default, the probability of observing 𝜅𝑗𝑖 i missing generation between 𝑖 and 𝑗 

from the conditional report ratio 𝑝(𝜅𝑗𝑖|Π) follows a geometric distribution with mean (1 − 𝛱)/ 𝛱.  

The conditional report ratio is estimated during the MCMC runs using a beta distribution prior. By 

default, the prior distribution is parametrised as Beta(10,1), which is an informative prior of mean 0.9 

and standard deviation 0.08.The two parameters of the beta prior can be changed using the variable 

prior_pi in create_config().  

Time component: The probability of 𝑡𝑖 being the infection date of the case 𝑖, given their reported onset 

date 𝑇𝑖,depends on the distribution of the incubation period 𝑓. The incubation period is defined by the 

variable f_dens in the function outbreaker_data(). 

The probability that i was infected by j given their respective inferred dates of infection 𝑡𝑖 and 𝑡𝑗 is 

defined by the generation time of the disease 𝑤𝜅𝑗𝑖(𝑡𝑖 − 𝑡𝑗) (variable w_dens in 

outbreaker_data()), and the number of generations 𝜅𝑗𝑖 between 𝑖 and 𝑗. The function 𝑤𝜅𝑗𝑖  was 

defined as 𝑤𝜅𝑗𝑖 = 𝑤 ∗ 𝑤 ∗ … ∗ 𝑤, where ∗ is the convolution operator applied 𝜅𝑗𝑖 times. 

This component of the likelihood follows the framework developed in the Wallinga-Teunis method, and 

in outbreaker2. 

Spatial component: The probability of connection between two regions 𝑘 and 𝑙 depends on the 

population sizes 𝑚𝑘 and 𝑚𝑙, and the distance between regions 𝑑𝑘𝑙 . Given spatial parameters 𝑎 and 𝑏, 

𝑠(𝑘, 𝑙) is the probability that a case in the region 𝑙 was infected by a case reported in 𝑘, and is defined 

using 𝑝𝑘𝑙, the connectivity between regions 𝑘 and 𝑙: 

𝑠(𝑘, 𝑙) =
𝑝𝑘𝑙
𝛴ℎ𝑝ℎ𝑙

=
𝐹(𝑑𝑘𝑙 , 𝑏) ∗ 𝑚𝑘

𝑎 ∗ 𝑚𝑙
𝑐

𝛴ℎ(𝐹(𝑑ℎ𝑙 , 𝑏) ∗ 𝑚ℎ
𝑎 ∗ 𝑚𝑙

𝑐)
=

𝐹(𝑑𝑘𝑙 , 𝑏) ∗ 𝑚𝑘
𝑎

𝛴ℎ(𝐹(𝑑ℎ𝑙 , 𝑏) ∗ 𝑚ℎ
𝑎)
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The package comes with a built-in exponential gravity model: 𝐹(𝑑𝑘𝑙 , 𝑎) = 𝑒
−𝑏∗𝑑𝑘𝑙; or a power-law 

gravity model : 𝐹(𝑑𝑘𝑙 , 𝑎) = (
1

𝑑𝑘𝑙
)𝑏. The exponential gravity model has been shown to be a better 

representation of short-distance mobility patterns [29]; it is therefore the default option since 

o2geosocial aims at reconstructing transmission in a community or a region. The type of gravity model 

can be changed by setting the parameter spatial_method to “power-law”: 

create_config(spatial_method = "power_law"). Other mobility models can be 

implemented by developing modules. In the use case, we give an example on how to replace the 

exponential gravity by Stouffer’s rank model [30] . 

The parameters 𝑎 and 𝑏 are estimated during the MCMC run via posterior sampling. This requires re-

computing the matrix of spatial connectivity between regions at each iteration and is time-consuming. 

Therefore, if either 𝑎 or 𝑏 is estimated, we allow for a maximum of one missing generation between 

cases (max (𝜅𝑗𝑖) = 2) and only compute 𝑠1(𝑘, 𝑙) and 𝑠2(𝑘, 𝑙) for regions that could potentially be 

connected. By default, the prior distribution of 𝑎 and 𝑏 are uniform. 

Age component : Given the age group of each case 𝛼(1,..,𝑁) and the age-stratified social contact matrix, 

we introduced 𝑎𝜅𝑗𝑖(𝛼𝑖, 𝛼𝑗), the probability that a case aged 𝛼𝑗 infected a case aged 𝛼𝑖. This corresponds 

to the proportion of contacts to 𝛼𝑖 that came from individuals of age 𝛼𝑗 . Social contact matrices 

provided by large scale quantitative investigations such as the POLYMOD study quantify the probability 

of contact between infectors and infectees of different age groups [31] , and are imported using the R 

package socialmixr [32] . The contact matrix used in the MCMC run is defined by the variable a_dens in 

outbreaker_data(). 

Overall likelihood : The overall likelihood that a case 𝑖 was infected by the case 𝑗 is equal to 

𝐿𝑖(𝑡𝑖, 𝑗, 𝑡𝑗, 𝜃) = 𝑙𝑜𝑔(𝑓(𝑡𝑖 − 𝑇𝑖)) + 𝐿𝑗𝑖(𝑡𝑖, 𝑡𝑗, 𝜃) where 𝜃 is the parameter set, 𝑓(𝑡𝑖 − 𝑇𝑖) is the likelihood 

that a case with an onset date 𝑇𝑖 was infected on 𝑡𝑖 , and 𝐿𝑗𝑖(𝑡𝑖, 𝑡𝑗, 𝜃) is the log-likelihood of connection 

between 𝑖 and 𝑗 defined as: 

𝐿𝑗𝑖(𝑡𝑖, 𝑡𝑗, 𝜃) = 𝑙𝑜𝑔(𝑝(𝜅𝑗𝑖|Π) ∗ 𝑤
(𝜅𝑗𝑖)(𝑡𝑖 − 𝑡𝑗) ∗ 𝑎

(𝜅𝑗𝑖)(𝛼𝑖, 𝛼𝑗) ∗ 𝐺(𝑔𝑖, 𝑔𝜏𝑗
) ∗ 𝑠(𝜅𝑗𝑖)(𝑟𝑖, 𝑟𝑗|𝑎, 𝑏)) 

2.3.4. Tree proposals 

At every iteration of the MCMC, a set of movements is used to propose an update of the transmission 

trees. This update is then accepted or rejected depending on the posterior density of the proposed 

trees. By default, eight movements are tested at each iteration. Three of them were already part of 

outbreaker2 and were not modified (cpp_move_t_inf() changes the infection date of the cases; 

cpp_move_pi() changes the conditional report ratio; cpp_move_kappa() changes the number 
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of generations between cases). Two movements were edited to scan each transmission tree in order to 

prevent different genotypes from being in the same tree: (cpp_move_alpha() changes the infector; 

cpp_move_swap_cases() swaps infector and infectee). The remaining three are new movements: 

• cpp_move_a() and cpp_move_b() change the spatial parameters a and b and update the 

probability of connection between regions. 

• cpp_move_ancestor() changes the ancestor of the tree. An ancestor is defined as the first 

case of a transmission tree. For each ancestor 𝑖, an index case is drawn from the pool of 

potential infectors, while another link is randomly picked and deleted. 

2.4. Use case 

2.4.1. Description of the simulated data 

Two simulated datasets are included in o2geosocial: toy_outbreak_short and 

toy_outbreak_long. Both are lists describing simulated outbreaks and include three elements: i) 

cases: a data.table with the ID, location, onset date, genotype, age group, import status, cluster, 

generation and infector of each case; ii) dt_regions: a data table with the ID, population, longitude 

and latitude of each region; iii) age_contact: a numeric matrix of the proportion of contact between 

age groups. Both simulations were run using distributions of the generation time and the latent period 

typically associated with measles outbreaks: the incubation period followed a gamma distribution of 

mean 11.5 days (standard deviation 2.24 days) [33] ; the generation time followed a normal distribution 

truncated at 0 of mean 11.7 days (standard deviation 2.0 days) [34] .  

In order to assess whether the method was able to reconstruct the transmission links between cases, 

we needed to simulate the transmission trees. Population-level compartmental models cannot be used 

to generate who-infected-whom. Therefore, we generated the dataset at an individual level, by 

simulating different transmission trees in the area of interest. The transmission trees were generated 

using the following process: 

1. We created an imported case, with random onset date, region of origin, and age group. 

2. We drew the number of secondary cases stemming from this case. 

3.  If the number of secondary cases was greater than 0, the characteristics of the new cases were 

drawn using the distributions of the generation time, incubation periods, the spatial kernel, and 

the proportion of contacts between age groups. 

4.  We repeated steps 2 and 3, for each new case, until no more secondary cases were drawn (i.e. 

the random reproduction number drawn in step 2 was 0 for all new case). 
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5. We repeated steps 1 to 4, until we reached a maximum number of cases, or maximum number 

of trees, defined before running the simulation. 

Numerous factors influencing the transmission dynamics are not included in this simulation framework. 

However, we do not aim to generate transmission trees which describe the spread of a given pathogen 

(here measles) in a community with complete accuracy. The main aim of this simulated dataset is to 

highlight the inference capabilities of the reconstruction method, and to explore causes for 

discrepancies between the simulations and the model fits, in an ideal setting where all parameters are 

known and are accounted for in the model. 

In this use case, we analyse toy_outbreak_short. The dataset contains 75 simulated cases from 

different census tracts of Ohio in 2014 (variable cens_tract). The census tracts represent areas 

established by the Bureau of Census for analysing populations and generally contain between 2,500 to 

8,000 inhabitants. The variable cluster describes the transmission tree each case belongs to, and 

generation is equal to the number of generations between the first case of the tree (generation = 1) 

and the case.  

We reconstruct the cluster size distribution of the simulated outbreaks using different models. We then 

evaluate the agreement between the inferred and the reference transmission clusters in each model, 

and compare the results obtained with each model. Finally, we assess the geographical heterogeneity 

of the reconstructed transmission dynamics. We use the package data.table for handling data 

throughout as it is optimised to deal with large datasets [35] . The methods defined in o2geosocial would 

work similarly if we had used the data.frame syntax and format. 

library(o2geosocial) 
## We used the data.table syntax throughout this example 
library(data.table) 
data("toy_outbreak_short") 
# Show the first five rows 
print(toy_outbreak_short$cases[1:5,]) 

##     ID State       Date Genotype  Cens_tract age_group import cluster 
## 1: 112  Ohio 2014-01-01       B3 39005970100         6   TRUE      16 
## 2:  75  Ohio 2014-01-06       D8 39139002400        11   TRUE      14 
## 3: 116  Ohio 2014-01-12       B3 39101000400        11   TRUE      17 
## 4: 113  Ohio 2014-01-13       B3 39005970100         6  FALSE      16 
## 5: 145  Ohio 2014-01-13       D8 39117965300         8   TRUE      26 
##    generation infector_ID 
## 1:          1        <NA> 
## 2:          1        <NA> 
## 3:          1        <NA> 
## 4:          2         112 
## 5:          1        <NA> 
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# Extract dataset 
dt_cases <- toy_outbreak_short[["cases"]] 

In the simulated data, 95% of the clusters contain less than five cases, 47.6% of the clusters are 

isolated (also called singletons). One larger cluster includes 31 cases (Figure 2.2). 

# Reference cluster size distribution 
hist(table(dt_cases$cluster), breaks = 0:max(table(dt_cases$cluster)),  
     ylab = "Number of clusters", xlab = "Cluster size", main = "",  
     las = 1) 

 

 

Figure 2.2: Cluster size distribution of the simulated dataset. 

2.4.2. Set up and run the models with outbreaker() 

We set up the distributions the model will use to reconstruct the transmission trees. We define f_dens 

as the duration of the latent period, and w_dens as the generation time. These distributions have 

previously been described for measles outbreaks [33,34,36,37]. In this example, the same distributions 

were used to generate the simulated data and fit the model. In real-life, there can be discrepancies 

between the actual distributions and their theoretical estimates. Therefore, we also fitted the model 

using different distributions of the latent period and generation time, and explored the impact it had on 

the accuracy of the inferred transmission trees (See Extended Data). 

# Distribution of the latent period 
f_dens <- dgamma(x = 1:100, scale = 0.43, shape = 26.83) 
# Distribution of the generation time 
w_dens <- dnorm(x = 1:100, mean = 11.7, sd = 2.0) 

The age specific social contact patterns can be imported from the element age_contact of the list 

toy_outbreak_short. Alternatively, one can use the R package socialmixr to import a social 

contact matrix from the POLYMOD survey [32] . 
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# From the list toy_outbreak_short   
a_dens <- toy_outbreak_short$age_contact 
# Alternatively, from POLYMOD: 
polymod_matrix <- 
  t(socialmixr::contact_matrix(socialmixr::polymod,  
                               countries = "United Kingdom", 
                               age.limits = seq(0, 70, by = 5))$matrix) 
polymod_matrix <- data.table::as.data.table(polymod_matrix) 
# Compute the proportion of connection to each age group 
a_dens <- t(t(polymod_matrix)/colSums(polymod_matrix)) 

Finally, the distance matrix between regions is set up from the data table dt_regions, element of 

toy_outbreak_short. We use the column population to set up the population vector pop_vect. 

We compute the distance between each region into the distance matrix dist_mat using the package 

geosphere [38] . 

# Extract all regions in the territory 
dt_regions <- toy_outbreak_short[["dt_regions"]] 
# Extract the population vector 
pop_vect <- dt_regions$population 
# Create the matrices of coordinates for each region (one "from"; one "to") 
mat_dist_from <- matrix(c(rep(dt_regions$long, nrow(dt_regions)), 
                          rep(dt_regions$lat, nrow(dt_regions))), ncol = 2) 
mat_dist_to <- matrix(c(rep(dt_regions$long, each = nrow(dt_regions)),  
                        rep(dt_regions$lat, each = nrow(dt_regions))), 
                      ncol = 2) 
# Compute all the distances between the two matrices 
all_dist <- geosphere::distGeo(mat_dist_from, mat_dist_to) 
# Compile into a distance matrix 
dist_mat <- matrix(all_dist/1000, nrow = nrow(dt_regions)) 
# Rename the matrix columns and rows, and the population vector 
names(pop_vect) <- rownames(dist_mat) <- colnames(dist_mat) <-  
  dt_regions$region 

We create the lists data, config, moves, likelihoods and priors to run the main function of the package. 

In this example, we use the default parameters to build moves, likelihoods and priors. The list data 

contains the distributions f_dens and w_dens, the population vector and the distance matrix, along 

with the onset dates, age groups, locations and genotypes of the cases. 

Routinely collected surveillance data can include information on the importation status of the cases. In 

order to investigate the impact of using prior information on the importation status of the cases on 

cluster reconstruction, we implement two different models: in out1 the import status is inferred by 

the model, whereas in out2 it is set as an input parameter of the model, which only estimates who 

infected whom. 

The first short run in out1 is run with 10,000 iterations to find the minimum number of importations, 

and the main run lasts for 20,000 iterations in both models. As the import status of the cases is inferred 
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in out1, we have to set a threshold to quantify what is an unlikely likelihood of transmission between 

cases. We use a relative outlier threshold at 0.9, which means that the threshold will be the 9𝑡ℎ  decile 

of the negative log-likelihoods 𝐿𝑗𝑖(𝑡𝑖, 𝑡𝑗, 𝜃) in every sample. 

# Set movement, likelihood and prior lists to default 
moves <- custom_moves() 
likelihoods <- custom_likelihoods() 
priors <- custom_priors() 
# Data and config, model 1 
data1 <- outbreaker_data(dates = dt_cases$Date, #Onset dates 
                         age_group = dt_cases$age_group, #Age group 
                         region = dt_cases$Cens_tract, #Location 
                         genotype = dt_cases$Genotype, #Genotype 
                         w_dens = w_dens, #Generation time 
                         f_dens = f_dens, #Latent period 
                         a_dens = a_dens, #Age stratified contact matrix 
                         population = pop_vect, #Population  
                         distance = dist_mat #Distance matrix 
) 
config1 <- create_config(data = data1,  
                         n_iter = 20000, #Iteration number: main run 
                         n_iter_import = 10000, #Iteration nb: short run 
                         burnin = 5000, #burnin period: first run 
                         outlier_relative = T, #Absolute/relative threshold  
                         outlier_threshold = 0.9 #Value of the threshold 
) 
# Run model 1 
out1 <- outbreaker(data = data1, config = config1, moves = moves,  
                   priors = priors, likelihoods = likelihoods) 
# Set data and config for model 2 
data2 <- outbreaker_data(dates = dt_cases$Date,  
                         age_group = dt_cases$age_group, 
                         region = dt_cases$Cens_tract, 
                         genotype = dt_cases$Genotype, w_dens = w_dens,  
                         f_dens = f_dens, a_dens = a_dens, 
                         population = pop_vect, distance = dist_mat, 
                         import = dt_cases$import #Importation status 
) 
config2 <- create_config(data = data2,  
                         find_import = FALSE, # Not inferring import status 
                         n_iter = 20000,  
                         sample_every = 50, # 1 in 50 iterations is kept 
                         burnin = 5000) 
# Run model 2 
out2 <- outbreaker(data = data2, config = config2, moves = moves,  
                   priors = priors, likelihoods = likelihoods) 

The data frames out1 and out2 contain the posterior density, likelihood, and prior density of the trees 

generated at every iteration, along with the values of the spatial parameters a and b, the conditional 

report ratio pi, and the index, estimated infection date and number of generations for each case. 
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2.4.3. Compare inferred and reference clusters 

The function summary prints a summary of the data frame generated by outbreaker(). It contains 

a list with the number of steps, the distributions of the posterior, likelihood and priors, the parameter 

distributions, the most likely infector and the probability of being an import for each case, and the 

cluster size distribution. 

# Summary parameters a and b, removing the burnin-period 
#Model 1 
print(summary(out1, burnin = 5000)$a) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.2144  0.5733  0.8546  0.8497  1.1015  1.4955 

print(summary(out1, burnin = 5000)$b) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## 0.07172 0.09180 0.09679 0.09835 0.10494 0.12839 

# Model 2 
print(summary(out2, burnin = 5000)$a) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.2248  0.6809  0.9625  0.9359  1.1948  1.4971 

print(summary(out2, burnin = 5000)$b) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
## 0.08681 0.11978 0.12930 0.13040 0.13973 0.17477 

In order to compare the reconstructed clusters to the data in each model, we plot the median inferred 

cluster size distribution in out1 and out2 and the credible intervals. First, we group together clusters 

of similar sizes by defining the breaks of each group in the vector group_cluster. In this example, 

we defined the size categories as 1; 2; 3 – 4; 5 – 9; 10 – 15; 15 – 40 and 40 + cases. The inferred cluster 

size distributions are shown in the element cluster from the output of summary(out1), and are 

aggregated using the input variable group_cluster. 

# We create groups of cluster size: initialise the breaks for each group 
group_cluster <- c(1, 2, 3, 5, 10, 15, 40, 100) - 1 
# Reference data: h$counts 
h <- hist(table(dt_cases$cluster), breaks = group_cluster, plot = FALSE) 
 
# Grouped cluster size distribution in each run 
clust_infer1 <- summary(out1, group_cluster = group_cluster,  
                        burnin = 5000)$cluster 
clust_infer2 <- summary(out2, group_cluster = group_cluster,  
                        burnin = 5000)$cluster 
# Merge inferred and reference cluster size distributions into one matrix 
clust_size_matrix <- rbind(clust_infer1["Median",],  
                           clust_infer2["Median",], 
                           h$counts) 
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The number of isolated cases in the inferred trees in out1 is lower than in the data (Figure 2.3). We can 

therefore conclude that when the import status of the cases was inferred, the model underestimated 

the number of clusters and tended to link together unrelated cases. The cluster size distribution when 

the import status of the cases is inferred depends on the likelihood threshold set in 

outlier_threshold and outlier_relative. Using different values of 𝜆 would impact the 

cluster size distribution in out1. Conversely, the cluster size distribution in out2 is very similar to the 

data (Figure 2.3). 

# Histogram of the inferred and reference cluster size distributions  
b <- barplot(clust_size_matrix, names.arg = colnames(clust_infer1), las=1, 
             ylab = "Number of clusters", xlab = "Cluster size", main = "",  
             beside = T, ylim = c(0, max(c(clust_infer1, clust_infer2)))) 
# Add the 50% Credible Intervals 
arrows(b[1,], clust_infer1["1st Qu.",], b[1,], clust_infer1["3rd Qu.",],  
       angle = 90, code = 3, length = 0.1) 
arrows(b[2,], clust_infer2["1st Qu.",], b[2,], clust_infer2["3rd Qu.",],  
       angle = 90, code = 3, length = 0.1) 
# Add legend 
legend("topright", fill = grey.colors(3), bty = "n", 
       legend = c("Inferred import status",  
                  "Known import status", "Simulated dataset")) 

 

Figure 2.3: Comparison of inferred cluster size distribution in both models with the reference data. 

We investigate the reconstructed transmission trees to ensure the index assigned to each case is in 

agreement with the reference dataset. To do so, we write two functions: in index_infer we 

compute the proportion of iterations where the inferred index of each case matches their actual index 

(perfect match); in index_clust we compute the proportion of iterations where the inferred index 

is from the same reference cluster as the actual index (close match). 

#' Title: Compute the proportion of iterations in the outbreaker() output  
#` where the inferred index matches the actual index in dt_cases 
#' 
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#' @param dt_cases: reference dataset 
#' @param out: Matrix output of outbreaker() 
#' @param burnin: Numeric, length of the burnin phase 
#' 
#' @return Numeric vector showing the proportion of iterations pointing to 
#' the correct index case 
index_infer <- function(dt_cases, out, burnin){ 
  ## Generate the data frame listing every infector: 
  # Select rows above burnin, and columns describing who infected whom 
  out_index <- out[out$step > burnin, grep("alpha", colnames(out))] 
  # ID of each infector 
  ID_index <- matrix(dt_cases[unlist(out_index), ID],  
                     ncol = nrow(dt_cases)) 
  # Match inferred (ID_index) and actual infector (column infector_ID) 
  match_infer_data <- t(ID_index) == dt_cases$infector_ID 
  # If a case is rightly inferred as an ancestor, set match to TRUE 
  match_infer_data[is.na(t(ID_index)) & is.na(dt_cases$infector_ID)] <- T 
  prop_correct <- rowSums(match_infer_data,  
                          na.rm = T)/ncol(match_infer_data) 
   
  return(prop_correct) 
} 
# Same as index_infer, except it returns the proportion of inferred indexes 
# who are in the same reference cluster as the case 
index_clust <- function(dt_cases, out, burnin){ 
  ## Generate the data frame listing every infector: 
  # Select rows above burnin, and columns describing who infected whom 
  out_index <- out[out$step > burnin, grep("alpha", colnames(out))] 
  # cluster of each infector 
  clust_index <- matrix(dt_cases[unlist(out_index), cluster],  
                        ncol = nrow(dt_cases)) 
  # Match inferred (cluster_index) and actual cluster (column cluster) 
  match_infer_data <- t(clust_index) == dt_cases$cluster 
  # Exclude ancestors 
  match_infer_data <- match_infer_data[!is.na(dt_cases$infector_ID),] 
   
   
  prop_correct <- rowSums(match_infer_data,  
                          na.rm = T)/ncol(match_infer_data) 
   
  return(prop_correct) 
} 
# Run index_infer for each model 
index_infer1 <- index_infer(dt_cases = dt_cases, out = out1, burnin = 5000) 
index_infer2 <- index_infer(dt_cases = dt_cases, out = out2, burnin = 5000) 
# Run index_clust for each model 
index_clust1 <- index_clust(dt_cases = dt_cases, out = out1, burnin = 5000) 
index_clust2 <- index_clust(dt_cases = dt_cases, out = out2, burnin = 5000) 

Figure 2.4 shows that the proportion of perfect and close match for most cases is lower in out1, which 

indicates that inferring the import status reduced the accuracy of the inference. Using previous 
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investigations into the travel history of cases is key to improve the reconstruction of transmission 

history. 

# Plot the sorted proportion in each model 
par(bty = "n", mfrow = c(1, 2), mar = c(5,4,2,0), oma = c(0, 0, 0, 0)) 
# Panel A: Perfect match 
plot(sort(index_infer1), type = "l", ylab = "Proportion of iterations",  
     xlab = "Case", main =  "A", las = 1, col = grey.colors(3)[1], lwd = 3,  
     ylim = c(0,1)) 
lines(sort(index_infer2), col = grey.colors(3)[2], lwd = 3) 
 
# Panel B: Close match 
plot(sort(index_clust1), type = "l", xlab = "Case", ylab = "",  
     main =  "B", las = 1, col = grey.colors(3)[1], lwd = 3, ylim = c(0,1)) 
lines(sort(index_clust2), col = grey.colors(3)[2], lwd = 3) 
legend("bottomright", col = grey.colors(3)[1:2], lwd = 3, bty = "n", 
       legend = c("Inferred import status","Known import status")) 

 

Figure 2.4: Panel A: Proportion of iterations with the correct index for each case; Panel B: Proportion of iterations where the 
index is from the correct cluster. 

We now investigate the geographical distribution of the importations, and the average number of 

secondary cases per region in out1 and out2. The maps are generated using the package ggplot2 [39]. 

First, we retrieve the boundary files of the census tracts in Ohio to generate the background of the maps 

using the package tigris [40] . We import them in a format compatible with the package sf and create 

one background map for each model. 

library(ggplot2) 
# Read the shapefile and create one map for each model 
map1 <- tigris::tracts(state = "Ohio", class = "sf", progress_bar = FALSE) 
map1$INTPTLON <- as.numeric(map1$INTPTLON) 
map1$INTPTLAT <- as.numeric(map1$INTPTLAT) 
map2 <- map1 
map1$model <- "Model 1" 
map2$model <- "Model 2" 
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We are interested in two outputs of the models: i) the number of imports per region, in order to 

highlight regions where importations of cases are most likely, and ii) the geographical distribution of the 

number of secondary cases per case, which gives insight into the areas most vulnerable to the spread 

of the disease. 

Number of imports per region: The element tree of summary(out1) contains the most likely 

infector, the proportion of iterations where the index is the most likely infector and the median number 

of generations between the two cases, the most likely infection date and the chances of being an import 

for each case. We add two columns to dt_cases showing the probablity of being an import in out1 

and out2 for each case. As the import status is not inferred in out2, prop_import2 is a binary 

value, and is equal to dt_cases$import. 

# Add the proportion of iterations in model 1 where each case is an import 
dt_cases[, prop_import1 := summary(out1, burnin = 5000)$tree$import] 
# Add the proportion of iterations in model 2 where each case is an import 
dt_cases[, prop_import2 := summary(out2, burnin = 5000)$tree$import] 

We generate the number of imports per region in each model (vectors prop_reg1 and prop_reg2) 

and add it to the matrices describing the maps. 

# Number of imports per region in model 1 
prop_reg1 <- dt_cases[, .(prop_per_reg = sum(prop_import1)),  
                      by = Cens_tract]$prop_per_reg 
# Number of imports per region in model 2 
prop_reg2 <- dt_cases[, .(prop_per_reg = sum(prop_import2 )),  
                      by = Cens_tract]$prop_per_reg 
names(prop_reg1) <- names(prop_reg2) <- unique(dt_cases$Cens_tract) 
 
# Add the number of imports in each region to the maps 
map1$prop_reg <- prop_reg1[as.character(map1$GEOID)] 
map2$prop_reg <- prop_reg2[as.character(map2$GEOID)] 

We plot the number of imports per region in each model (Figure 2.5). The right panel (out2) shows the 

geographical distribution of importations in the data. We observe discrepancies between the two 

panels. In out1, the inferred number of importations in the central areas is much lower than in the 

reference data. These maps highlight the uncertainty added when the import status of each case is 

inferred. 

# Merge maps 
maps <- rbind(map1, map2) 
# Crop map to area of interest 
lim_lon <- c(-84, -82) 
lim_lat <- c(40, 41.5) 
maps <- maps[maps$INTPTLON > lim_lon[1] & maps$INTPTLON < lim_lon[2] &  
               maps$INTPTLAT > lim_lat[1] & maps$INTPTLAT < lim_lat[2],] 
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# Plot: number of imports per region, two panels 
ggplot(maps) +  geom_sf(aes(fill = prop_reg)) + facet_grid(~model)  +      
  scale_fill_gradient2(na.value = "lightgrey", midpoint = 0.8,  
                       breaks = c(0, 0.5, 1, 1.5), name = "Nb imports", 
                       low = "white", mid = "lightblue",  
                       high = "darkblue") +  
  coord_sf(xlim = c(-83.8, -82.2), ylim = c(40.2, 41.3)) + 
  theme_classic(base_size = 9) +  
  theme(axis.text = element_blank(), axis.ticks = element_blank(),  
        axis.line = element_blank()) 

 

Figure 2.5: Average number of imported cases per census tract, regions where no case was reported are shown in grey. 

Average number of secondary cases per region: In this section, we map the number of secondary cases 

per case in each region to identify which regions were associated with higher levels of transmission. We 

define the function n_sec_per_reg to compute the average number of secondary cases per case 

and aggregate it per region. We then extract the median number of secondary cases per case in each 

region. 

#' Title: Compute the number of secondary cases per case in each region 
#' 
#' @param dt_cases: reference dataset 
#' @param out: Matrix output of outbreaker() 
#' @param burnin: Numeric, length of the burnin phase 
#' 
#' @return A numeric matrix: the first column is the census tract ID, the 
#' other columns show the number of secondary cases per case. Each row  
#' corresponds to a different iteration. 
n_sec_per_reg <- function(dt_cases, out, burnin){ 
  ## Number of secondary cases per case 
  n_sec <- apply(out[out$step > burnin, grep("alpha", colnames(out))], 1,  
                 function(X){ 
                   X <- factor(X, 1:length(X)) 
                   return(table(X))}) 
  ## Aggregate by region 
  tot_n_sec_reg <- aggregate(n_sec, list(dt_cases$Cens_tract), sum) 
  ## Divide by the number of cases in each region 
  tot_n_sec_reg <- cbind(tot_n_sec_reg[, 1],  
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                         tot_n_sec_reg[, -1] / table(dt_cases$Cens_tract)) 
  return(tot_n_sec_reg) 
} 
## Generate the number of secondary cases per case in each region 
n_sec_tot1 <- n_sec_per_reg(dt_cases = dt_cases, out = out1, burnin = 5000) 
n_sec_tot2 <- n_sec_per_reg(dt_cases = dt_cases, out = out2, burnin = 5000) 

We now plot the geographical distribution of the median number of secondary cases in each region 

according to the models, and compare it with the simulations (Figure 2.6). Despite minor discrepancies, 

the maps generated by the two models are similar. Both show an important spatial heterogeneity. The 

eastern and central areas are associated with higher numbers of secondary cases. If we change the 

vectors n_sec1 and n_sec2 to plot different deciles, we show the dispersion of the number of 

secondary cases in the different iterations of the models. Similarly, we observe minor differences 

between the maps generated by the models and the simulated data. Most of the regions that repeatedly 

caused further transmissions in the simulations are identified by the models. In the Extended Data, we 

compared the regional number of secondary transmissions in the simulated data to the 95% Credible 

Intervals of both models, and found that the models were able to capture the input values in each 

region.  

 

Figure 2.6: Median number of secondary transmission per case in each census tract. 

   # Merge maps 
maps_n_sec <- rbind(map1, map2, map_data) 
# Crop map to area of interest 
lim_lon <- c(-84, -82) 
lim_lat <- c(40, 41.5) 
maps_n_sec <- maps_n_sec[maps_n_sec$INTPTLON > lim_lon[1] & 
                           maps_n_sec$INTPTLON < lim_lon[2] & 
                           maps_n_sec$INTPTLAT > lim_lat[1] &  
                           maps_n_sec$INTPTLAT < lim_lat[2],] 
 
# Plot the geographical distribution of the number of secondary cases 
ggplot(maps_n_sec) +  geom_sf(aes(fill = n_sec)) + facet_grid(~model)  +      
  scale_fill_gradient2(na.value = "lightgrey", mid = "lightblue", 
                       low = "white", midpoint = 1, high = "darkblue", 
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                       breaks = seq(0, 5, 0.5),name = "Sec cases") + 
  coord_sf(xlim = c(-83.8, -82.2), ylim = c(40.2, 41.3)) + 
  theme_classic(base_size = 9) +  
  theme(axis.text = element_blank(), axis.ticks = element_blank(),  
        axis.line = element_blank()) 

2.4.4. Customise the likelihood, prior and movement lists: the Stouffer’s rank model 

In the previous example, we ran and evaluated two different models to reconstruct transmission 

clusters from simulated surveillance data, and highlighted the spatial heterogeneity of measles 

transmission in the region. These models were run using the default likelihood, prior and movement 

functions. Now we develop a third model, where the spatial connection between regions is based on 

the Stouffer’s rank method [30] . 

In the Stouffer’s rank method, the absolute distance is not used to compute the probability of 

connection between regions. The connectivity between the regions 𝑘 and 𝑙 only depends on the 

summed population of all the regions closer to 𝑙 than 𝑘. If we define this collection of regions 𝛺𝑘,𝑙 =

{𝑖: 0 ≤ 𝑑(𝑖, 𝑙) ≤ 𝑑(𝑘, 𝑙)}, Stouffer’s distance is then 𝑝
𝑘𝑙
= 𝑚𝑙

𝑐 ∗ (
𝑚𝑘

∑ 𝑚𝑖𝑖∈𝛺𝑘,𝑙

)
𝑎

.  From this, we deduce the 

probability that a case from region 𝑙 was infected by a case from region 𝑘. 

𝑠(𝑘, 𝑙) =
𝑝𝑘𝑙
𝛴ℎ𝑝ℎ𝑙

=

(
𝑚𝑘

∑ 𝑚𝑖𝑖∈𝛺𝑘,𝑙

)

𝑎

𝛴ℎ (
𝑚ℎ

∑ 𝑚𝑖𝑖∈𝛺ℎ,𝑙

)

𝑎 

This model is similar to the power-law gravity model with two main differences: i) each cell of the 

distance matrix should be equal to ∑ 𝑚𝑖𝑖∈𝛺𝑘,𝑙
, and ii) only one spatial parameter 𝑎 is estimated. First, 

we create the distance matrix associated with Stouffer’s rank: 

# For every column of the distance matrix, use the cumulative sum of the  
# population vector ordered by the distance. Remove the values where  
# the distance between the regions is above gamma 
dist_mat_stouffer <- apply(dist_mat, 2, function(X){ 
  pop_X <- cumsum(pop_vect[order(X)]) 
  omega_X <- pop_X[names(X)] 
  # omega_X is set to -1 if the distance between two regions is above gamma 
  omega_X[X > config1$gamma] <- -1 
  return(omega_X) 
}) 
# The new value of gamma is equal to the maximum of dist_mat_stouffer + 1 
gamma <- max(dist_mat_stouffer) + 1 
# The values previously set to -1 are now set to the new value of gamma 
dist_mat_stouffer[dist_mat_stouffer == -1] <- max(dist_mat_stouffer) * 2 
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Secondly, since the connectivity matrix in the Stouffer’s rank model is only computed from one spatial 

parameter, we write a new movement function cpp_stouffer to estimate it. The formula of the 

Stouffer’s rank connectivity matrix is similar to the power law gravity models. Therefore, 

cpp_stouffer is similar to the default movement cpp_move_a, and uses the same function to 

compute the probability matrix (cpp_log_like()). This function is written with the package Rcpp, 

and is sourced using the function Rcpp::sourceCpp  [25]. 

// [[Rcpp::depends(o2geosocial)]] 
#include <Rcpp.h> 
#include <Rmath.h> 
#include <o2geosocial.h> 
// This function is used to estimate new values of the spatial parameter. 
// It is based on the structure as cpp_move_a in o2geosocial, 
// [[Rcpp::export()]] 
Rcpp::List cpp_stouffer(Rcpp::List param, Rcpp::List data,  
                        Rcpp::List config, 
                        Rcpp::RObject custom_ll,  
                        Rcpp::RObject custom_prior){ 
  // Import parameters 
  Rcpp::List new_param = clone(param); 
  double gamma = config["gamma"]; 
  int max_kappa = config["max_kappa"]; 
  Rcpp::List new_log_s_dens = new_param["log_s_dens"]; 
  Rcpp::NumericMatrix dist = data["distance"], probs = new_log_s_dens[0]; 
  Rcpp::NumericMatrix ances = data["can_be_ances_reg"]; 
  Rcpp::NumericVector pop = data["population"], limits = config["prior_a"]; 
  // Size of the probability matrix 
  int nb_cases = pow(probs.size(), 0.5); 
  // Draw new value of a 
  Rcpp::NumericVector new_a = new_param["a"]; 
  double sd_a = static_cast<double>(config["sd_a"]); 
  double old_logpost = 0.0, new_logpost = 0.0, p_accept = 0.0; 
  // proposal (normal distribution with SD: config$sd_a) 
  new_a[0] += R::rnorm(0.0, sd_a); // new proposed value 
  if (new_a[0] < limits[0] || new_a[0] > limits[1]) return param; 
  // Generate new probability matrix 
  new_param["log_s_dens"] =  
    o2geosocial::cpp_log_like(pop, dist, ances, new_a[0], new_a[0],  
                              max_kappa, gamma, "power-law", nb_cases); 
  // Compare old and new likelihood values 
  old_logpost = o2geosocial::cpp_ll_space(data, config, param,  
                                          R_NilValue, custom_ll); 
  new_logpost = o2geosocial::cpp_ll_space(data, config, new_param, 
                                          R_NilValue, custom_ll); 
  // Add prior values 
  old_logpost += o2geosocial::cpp_prior_a(param, config, custom_prior); 
  new_logpost += o2geosocial::cpp_prior_a(new_param, config, custom_prior); 
  // Accept or reject proposal 
  p_accept = exp(new_logpost - old_logpost); 
  if (p_accept < unif_rand()) return param; 
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  return new_param; 
} 

We modify the element 𝑎 of the list of movements used in the last model. We set up the lists data and 

config using dist_mat_stouffer as the distance matrix. Since there is only one spatial parameter 

in this model, we set the parameter move_b to FALSE in create_config(), and we set the prior 

of 𝑏 to the null function f_null. 

# Edit the lists of movements and priors 
moves3 <- custom_moves(a = cpp_stouffer) 
# Define null function 
f_null <- function(param) { 
  return(0.0) 
} 
priors3 <- custom_priors(b = f_null) 
 
 
# Set data and config lists 
data3 <- outbreaker_data(dates = dt_cases$Date, #Onset dates 
                         age_group = dt_cases$age_group, #Age group 
                         region = dt_cases$Cens_tract, #Location 
                         genotype = dt_cases$Genotype, #Genotype 
                         w_dens = w_dens, #Generation time 
                         f_dens = f_dens, #Latent period 
                         a_dens = a_dens, #Age stratified contact matrix 
                         population = pop_vect, #Population  
                         distance = dist_mat_stouffer #Distance matrix 
) 
config3 <- create_config(data = data3,  
                         gamma = gamma, 
                         init_b = 0, move_b = FALSE, # b is not estimated 
                         n_iter = 20000, #Iteration number: main run 
                         n_iter_import = 10000, #Iteration nb: short run 
                         burnin = 5000, #burnin period: first run 
                         outlier_relative = T, #Absolute/relative threshold 
                         outlier_threshold = 0.9 #Value of the threshold 
) 
# Run the model using the Stouffer's rank method 
out_stouffer <- outbreaker(data = data3, config = config3, moves = moves3,  
                           priors = priors3, likelihoods = likelihoods) 

We plot the inferred cluster size distribution and compare it to the reference data (Figure 2.7). We 

observe discrepancies between the inferred distribution and the data: the model over-estimates the 

number of clusters containing more than 15 cases and underestimates the number of small clusters and 

isolated individuals. 

# Grouped cluster size distribution in the Stouffer's rank model    

clust_infer_stouf <- summary(out_stouffer, burnin = 5000,     

                             group_cluster = group_cluster)$cluster   

# Merge inferred and reference cluster size distributions     

clust_size_matrix <- rbind(clust_infer_stouf["Median",], h$counts)    
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# Plot the two distributions        

b <- barplot(clust_size_matrix, names.arg = colnames(clust_infer_stouf),    

             beside = T, ylab = "Number of clusters", xlab = "Cluster size",   

             main = "", las = 1)        

# Add CIs          

arrows(b[1,], clust_infer_stouf["1st Qu.",], b[1,],      

       clust_infer_stouf["3rd Qu.",], angle = 90, code = 3, length = 0.1)  

legend("topright", fill = grey.colors(2), bty = "n",     

       legend = c("Inferred import status, Stouffer's rank method",    

                  "Simulated dataset"))        

 

Figure 2.7: Comparison of inferred cluster size distribution with the reference data. 

Finally, we plot the proportion of perfect and close matches for each case (Figure 2.8). We observe that 

the fit obtained with the Stouffer’s rank method is consistently worse than the first two models. The 

Stouffer’s rank method did not improve the agreement between the inferred trees and the reference 

data. 

# Generate the proportion of perfect and close match for each case in out3   

index_infer_stouf <- index_infer(dt_cases = dt_cases, out = out_stouffer,   

                                 burnin = 5000)      

index_clust_stouf <- index_clust(dt_cases = dt_cases, out = out_stouffer,   

                                 burnin = 5000)      

# Plot the sorted proportion in each model      

par(bty = "n", mfrow = c(1, 2), mar = c(5,4,2,0), oma = c(0, 0, 0, 0))   

# Panel A: Perfect match         

plot(sort(index_infer_stouf), main = "A", col = grey.colors(2)[1], lwd = 3,  

     xlab = "Case", ylab = "Proportion of iterations", type = "l", las = 1,   

     ylim = c(0,1))         

# Panel B: Close match         

plot(sort(index_clust_stouf), type = "l", ylab = "", xlab = "Case",    

     main = "B", las = 1, col = grey.colors(2)[1], lwd = 3, ylim = c(0,1)) 
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Figure 2.8: Panel A: Proportion of iterations with the correct index for each case; Panel B: Proportion of iterations where the 
index is from the correct cluster. 

The simulated data used in the study were generated using an exponential gravity model, which explains 

why introducing the Stouffer’s rank method did not improve the inference. This is not representative of 

the performance of each mobility model at reconstructing actual transmission clusters. 

In this use case, we only explored customising the spatial component. However, the other components 

of the likelihoods can also be edited, using the functions custom_priors(), 

custom_likelihoods(), or custom_moves(). For instance, to account for changes in the 

distribution of the generation time throughout an outbreak [41], one would have to change the element 

timing_infections of custom_likelihoods(). However, the distribution would need to be 

set prior to running the models.  

2.5. Discussion 

The R package o2geosocial is a new tool for data analysis building upon the framework developed in 

outbreaker2. It uses routinely collected surveillance data to reconstruct transmission networks. It can 

be used on a broad range of diseases where genetic sequencing is not common, or informative. For 

instance, it has been applied on national measles surveillance data to reconstruct the cluster size 

distribution of outbreaks in the United States between 2001 and 2016 [7] . In this study, we presented 

an application on a simulated dataset using detailed geographic information on the location of cases. 

We implemented several models to reconstruct the cluster size distribution of the simulated outbreak. 

Although each model was able to capture the overall dynamics of transmission, we observed 

discrepancies between the reference data and the reconstructed cluster size distribution for models 

where the importation status of the cases was inferred. These discrepancies are linked to the threshold 

set to define what is considered an unlikely connection. A looser threshold may lead to unrelated cases 

being connected and a lower number of inferred imports, whereas a stricter threshold increases the 
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number of short transmission chains. Therefore, the use of epidemiological information describing 

importation status improves the accuracy of the transmission cluster reconstruction in o2geosocial. In 

case of incomplete epidemiological information, the user can set the importation status for some of the 

cases, and the others would be inferred. These results highlight that epidemiological investigations are 

crucial to improve our ability to reconstruct transmission events, particularly when unrelated 

importations happen concurrently. 

The method described in this paper does not account for long-distance transmission, as transmission 

events are impossible in o2geosocial when the distance between regions is above the parameter 

gamma. In case of long-distance transmission, the infected case would be considered as a new 

importation. Nevertheless, this limitation is not critical since o2geosocial was designed to identify areas 

most susceptible to local transmission, i.e. regions where importations were likely to lead to local 

outbreaks. 

The use of transmission trees and transmission clusters to assess current or future risk of outbreaks 

comes with various limitations. First, it relies upon the assumption that previous transmission patterns 

are representative of future outbreaks. Second, it requires past observed transmission events, and does 

not account for the number of opportunities of transmission per case. Where only sporadic isolated 

cases have been reported in the country, it is not possible to draw relevant conclusions on communities 

potentially most vulnerable to transmission. Third, partial detection of cases may bias the cluster size 

distribution, and under-estimate the number of secondary transmissions per case. Patterns of 

transmission, and characteristics associated with high-transmission events may still be observable but 

could introduce a bias if reporting is itself is affected by the same factors as is transmission. Finally, the 

use of transmission trees for real time modelling can be challenging, given the right-censoring of 

transmissions caused by recent infectious individuals [42]. 

The default implementation of the method assumes that the generation times are independent and 

identically distributed throughout an outbreak, whereas in reality, depletion of susceptibles and 

competing risk of infection through clustering of contacts would be expected to affect the generation 

interval. The method can be customised to integrate time varying generation intervals set prior to 

running the models. However, estimating the distribution of the generation interval during the 

inference procedure is more challenging to implement in the current framework, which may introduce 

a bias in our results. 

The analyses presented in this paper were run on simulated data, which partly explains the very close 

match between the inferred and reference cluster size distribution. Indeed, the distributions of the 

incubation period and generation time used to generate the simulations were the same as the ones 
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used for cluster inference in the Main Analysis. Using imprecise or inaccurate distributions can lead to 

biases in the reconstruction of the transmission trees. We re-ran the inference procedure using different 

distributions (changing the mean or the standard deviation), the results can be seen in the Extended 

Data. When the distributions were set with lower standard deviations, several links were not observed 

in the inferred transmission trees anymore. Indeed, these connections had been made impossible since 

the range of likely values was narrower. In all other examples, the simulated and inferred clusters size 

distribution remained very close, we only observed a slight drop in the proportion of iterations that 

contain the right transmission links. Since the likelihood of connection is computed from several 

components, the discrepancies between the distributions used in the simulations and the model fits did 

not substantially changed the inferred trees. 

We also showed how the model could be edited to implement different mobility models. Describing 

human mobility during infectious diseases outbreaks is challenging, and the performance of the models 

depends on the setting [29,43–45]. Future developments in the package will focus on facilitating the 

integration of new variables in the likelihood of connection, such as workplace or school. Currently, such 

variables would have to be integrated within one of the components of likelihood. We aim to simplify 

the addition of new parameters and components in the inference framework. We encourage the 

development of extensions of o2geosocial to study a wide range of pathogens and settings where 

sequence data are not informative. We hope that wider use of o2geosocial can help maximise the 

information brought by routinely collected data and epidemiological investigations, in order to improve 

our understanding of outbreak dynamics. 
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Chapter 3. Probabilistic reconstruction of measles transmission clusters 

from routinely collected surveillance data 
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3.1. Abstract 

Pockets of susceptibility resulting from spatial or social heterogeneity in vaccine coverage can drive 

measles outbreaks, as cases imported into such pockets are likely to cause further transmission and lead 

to large transmission clusters. Characterizing the dynamics of transmission is essential for identifying 

which individuals and regions might be most at risk. As data from detailed contact-tracing investigations 

are not available in many settings, we developed an R package called o2geosocial to reconstruct the 

transmission clusters and the importation status of the cases from their age, location, genotype and 

onset date. We compared our inferred cluster size distributions to 737 transmission clusters identified 

through detailed contact-tracing in the USA between 2001 and 2016. We were able to reconstruct the 

importation status of the cases and found good agreement between the inferred and reference clusters. 

The results were improved when the contact-tracing investigations were used to set the importation 

status before running the model. Spatial heterogeneity in vaccine coverage is difficult to measure 

directly. Our approach was able to highlight areas with potential for local transmission using a minimal 

number of variables and could be applied to assess the intensity of ongoing transmission in a region. 

3.2. Introduction 

Establishing who infected whom during an outbreak can help inform the design and evaluation of 

control measures [1–5]. Transmission links can be reconstructed through contact-tracing investigations, 

whereby cases are asked their movements and contacts during their infectious period. Given that 

contact-tracing investigations are not always carried out due to the logistical effort and cost involved, 

inference methods have been developed to use epidemiological data to estimate the probability that a 

transmission event occurred between any given pair of cases [6–12]. This makes it possible to establish 

probabilistic transmission trees that link all observed cases. The ensemble of cases belonging to the 

same transmission tree is called a transmission cluster. 

Wallinga & Teunis [2] first developed a likelihood-based estimation procedure to reconstruct 

probabilistic transmission trees from a given distribution of generation times and observed symptom-

onset dates of each case. Since then, genomic, spatial or contact data have been used to supplement 

the timing of symptoms, which helped identify determinants of transmission, mixing behaviour, 

individual dispersion, evaluate control measures, anticipate future developments of outbreaks and 

study viral evolutionary patterns [5,8,9,13–17]. 

As sequencing of pathogens has become more common, the use of such data to infer transmission trees 

has increased. Methods developed to add genetic distance to a Wallinga–Teunis algorithm, where cases 

with lower genetic distance are more likely to be grouped in the same transmission group, showed it 

substantially increased the accuracy of the reconstructed transmission trees [8,18–21]. 
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The utility of sequence data depends on the characteristics of the pathogen [22,23]. Based on the highly 

variable 450 nucleotides region of the N gene (N-450) of the measles virus genome, eight measles 

genotypes have been detected since 2009 [24,25]; these genotype designations are helpful in linking 

cases, as linked cases must be infected by a virus of the same genotype [25]; however, the diversity of 

measles genotypes is decreasing [26]. It has been suggested that further sequencing the M-F non-coding 

region, or full genome sequencing, could help identify measles virus transmission trees, but so far, 

extended sequencing during measles outbreaks has been scarce [27,28]. In addition, the evolutionary 

rate of measles virus is very low [29]; therefore, samples from unrelated cases can be very close 

genetically and genetic sequences from measles cases are not usually indicative of direct transmission 

links [27,28]. 

As measles is highly infectious, under-immunized communities (also called pockets of susceptibles) 

resulting from local heterogeneity in vaccine coverage can lead to large, long-lasting outbreaks [30–34]. 

Detecting these pockets of susceptibles can be challenging, as historical local values of coverage 

throughout a given country are rarely available. The number of cases in the transmission trees resulting 

from each importation during outbreaks, also called the cluster size distribution, will depend both on 

individual factors (e.g. age of the imported case which might affect contact patterns) and community 

factors (e.g. the history of coverage in the area) [35,36]. The size of a cluster can, therefore, reflect the 

level of susceptibility of individuals directly and indirectly connected to the imported case [37,38]. 

Here, we introduced a model combining age, location, genotype and rash onset date of cases to 

reconstruct probabilistic transmission trees. We chose these features to make the model applicable to 

a wide range of settings as they are commonly reported and informative on transmission. We wrote the 

R package o2geosocial to conduct inference on individual-level data using this model. It is based on the 

package outbreaker2 and is designed for outbreaks with partial sampling of cases, or uninformative 

genetic sequences, such as measles outbreaks [9,39]. We used the likelihood of transmission links 

between different cases to estimate their importation status. We compared the inferred importation 

status and cluster size distribution to the transmission clusters identified via contact tracing during 

measles outbreaks in the USA between 2001 and 2016. 

3.3. Methods 

3.3.1. Presentation of the algorithm 

Transmission trees are used to represent who infected whom during an outbreak. They are directed 

acyclic graphs, where nodes are the reported cases and edges show the connection between them. The 

root of each transmission tree is an imported case, i.e. a case who was infected in a different 

transmission setting. The cases placed in the same transmission tree form a transmission cluster. We 
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estimated the number of cases per cluster (cluster size distribution) and the importation status of the 

cases from probabilistic transmission trees inferred using routinely collected epidemiological variables. 

We used a Metropolis–Hastings algorithm with Markov chain Monte Carlo (MCMC) to classify a set of 

cases into a set of transmission trees with associated probabilities quantified using a Bayesian model to 

combine the epidemiological features of the cases. At every iteration of the MCMC algorithm, we 

proposed a new set of model parameters, infection dates and connections between cases. These three 

elements formed a tree proposal. We computed the ratio between the posterior probability of this 

proposal and the current posterior probability. The posterior probability (up to a multiplicative constant 

which would cancel out when calculating the ratio) was calculated from the likelihood of the trees, and 

the prior probability of the parameters. The log-likelihood of each tree was equal to the sum of the log-

likelihoods of each case. All the notations are defined in Table 3.1. 

Table 3.1: Table of notations of all variables and distributions defined in the methods. 

Parameter Symbol 

Onset date 𝑡𝑖, 𝑡𝑗 

Infection date 𝑇𝑖 

Age 𝛼𝑖, 𝛼𝑗 

Tree 𝜏𝑗 

Genotype 𝑔𝑖, 𝑔𝜏𝑗  

Region 𝑟𝑖, 𝑟𝑗 

Number of generations 𝜅𝑗𝑖 

Spatial parameters 𝑎,𝑏,𝑐 

Conditional report ratio 𝜌 

Connectivity 𝑛𝑟𝑗𝑟𝑖 

Population 𝑚𝑟𝑖, 𝑚𝑟𝑗  

Distance 𝑑𝑟𝑖𝑟𝑗  

Parameter set 𝜃 
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Importation threshold 𝜆 

Generation time distribution 𝑤(𝑡𝑖 − 𝑡𝑗) 

Latent period distribution 𝑓(𝑡𝑖 − 𝑇𝑖) 

Age contact probability 𝑎(𝛼𝑖 , 𝛼𝑗) 

Genotype probability 𝐺(𝑔𝑖, 𝑔𝜏𝑗) 

Probability of missing generation 𝑝(𝜅𝑗𝑖|𝜌) 

Spatial probability 𝑠(𝑟𝑖, 𝑟𝑗| 𝑎, 𝑏) 

Log-likelihood of connection between 𝑖 and 𝑗 Lji(𝑡𝑖 , 𝑡𝑗 , ) 

Individual log-likelihood  𝐿𝑖(𝑡𝑖 , j, 𝑡𝑗 ,) 

3.3.1.1. Likelihood function and parameter definition 

In a tree proposal, each case 𝑖 was assigned an infector 𝑗 and an infection date 𝑡𝑖. We computed the log-

likelihood of each case, 𝐿𝑖(𝑡𝑖 , 𝑗, 𝑡𝑗, 𝜃) to calculate the likelihood of the tree. The log-likelihood of 𝑖 was 

split in two: (i) the log-probability density of observing the onset date 𝑇𝑖 if case i had been infected at 

time 𝑡𝑖 log(𝑓(𝑡𝑖 − 𝑇𝑖)) and (ii) the log-likelihood of connection between 𝑖 and 𝑗 Lji(𝑡𝑖 , 𝑡𝑗 , ), with 𝜃 

the parameter set of the model (1): 

𝐿𝑖(𝑡𝑖 , j, 𝑡𝑗 , ) = log(𝑓(𝑡𝑖 − 𝑇𝑖)) + Lji(𝑡𝑖 , 𝑡𝑗 ,)      ( 1 ) 

The function f represents the distribution of the incubation period. The log-likelihood of connection Lji 

was computed from five components reflecting the age group, genotype, location, inferred date of 

infection of cases 𝑖 and 𝑗, and the report ratio (2). We allowed for an indirect link between cases due to 

unreported individuals, 𝜅𝑗𝑖 corresponds to the number of generations between 𝑖 and 𝑗. If 𝜅𝑗𝑖  =  1, 𝑗 

infected 𝑖, whereas if 𝜅𝑗𝑖  =  2, an unreported case infected by 𝑗 infected 𝑖, 𝜅𝑗𝑖 increases with the 

number of missing links between 𝑖 and 𝑗 

Lji(𝑡𝑖 , 𝑡𝑗 ,) = log (𝑝(𝜅𝑗𝑖|𝜌)  ×  𝑤
 (𝜅𝑗𝑖)(𝑡𝑖 − 𝑡𝑗) × 𝑎

(𝜅𝑗𝑖)(𝛼𝑖, 𝛼𝑗) × 𝐺(𝑔𝑖 , 𝑔𝜏𝑗) × 𝑠
(𝜅𝑗𝑖)(𝑟𝑖, 𝑟𝑗| 𝑎, 𝑏)) (2) 

We calculated the temporal probability of transmission between 𝑖 and 𝑗 from the number of days 

between 𝑡𝑖 and 𝑡𝑗 and the distribution of the generation time of the disease 𝑤(t). This probability was 

quantified by  𝑤(𝜅𝑗𝑖)(𝑡𝑖 − 𝑡𝑗, 𝜅𝑗𝑖), 𝑤
(𝜅𝑗𝑖) =  𝑤 ∗ 𝑤 ∗ … ∗ 𝑤, where ∗ is the convolution operator applied 

𝜅𝑗𝑖 times. We used a geometric distribution 𝑝(𝜅𝑗𝑖|𝜌) to quantify the probability of observing 𝜅𝑗𝑖 missing 



93 
 

generation between 𝑖 and 𝑗, given the conditional report ratio 𝜌. The conditional report ratio quantifies 

the probability of missing generations between two connected reported cases. Entire missing clusters, 

cases infected after the last cases or cases infected before the ancestor of a cluster would not interfere 

in the connection between two cases and, therefore, would not affect the value of the conditional 

report ratio. The conditional report ratio can be higher than the overall report ratio of an outbreak. The 

‘ancestor’ is the earliest identified case in a cluster. 

𝑎(𝛼𝑖 , 𝛼𝑗, 𝜅𝑗𝑖) was defined as the probability of transmission between age groups 𝛼𝑖 and 𝛼𝑗. This 

probability corresponds to the proportion of contacts to the age group 𝛼𝑖 that originated from 𝛼𝑗 and 

can be deduced from studies such as POLYMOD [36]. We defined 𝐺 (𝑔𝑖, 𝑔𝜏𝑗) as the probability of 

observing the pathogen genotype 𝑔𝑖 in case 𝑖 in the tree 𝜏𝑗 containing case j. There can only be one 

measles virus genotype per transmission tree, or cases with unreported genotype. The genotype 𝑔𝜏𝑗 is 

the genotype contained in the tree 𝜏𝑗 and is known if at least one case in 𝜏𝑗 had a reported genotype. 

𝐺 (𝑔𝑖, 𝑔𝜏𝑗) =  

{
 

 
1 𝑖𝑓 𝑔𝑖 unknown
1 𝑖𝑓 𝑔𝜏𝑗  unknown

1 𝑖𝑓 𝑔𝑖  and 𝑔𝜏𝑗both known and 𝑔𝑖 = 𝑔𝜏𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      ( 3 ) 

In (3), if 𝐺 (𝑔𝑖 , 𝑔𝜏𝑗) = 0, then the connection between 𝑖 and 𝑗 is impossible, and (1) and (2) are equal to 

𝑙𝑜𝑔(0) =  −∞.  

𝑠(𝑟𝑖,  𝑟𝑗,  𝜅𝑖𝑗) was defined as the probability of connection from 𝑟𝑗 to 𝑟𝑖, regions of residency of 𝑖 and 

𝑗 (4). We used an exponential gravity model to quantify the connectivity of the different geographical 

units [40]. This approach showed good performance at modelling short distance commuting, and was 

easy to parametrise [40–44]. In the simplest form of the exponential gravity model, the number of 

connections between 𝑟𝑖 and 𝑟𝑗 is proportional to the product of the origin population 𝑚𝑟𝑗, the 

destination population 𝑚𝑟𝑖  and an exponential decrease of the distance between 𝑟𝑖 and 𝑟𝑗 𝑑𝑟𝑗𝑟𝑖  : nrjri  ∝

 𝑒
−𝑎×𝑑𝑟𝑗𝑟𝑖 ×mrj

b ×mri
c , with 𝑎, 𝑏 and 𝑐 parameters adjusting for the impact of distance and population. 

From this definition, we deduced 𝑠(𝑟𝑗, 𝑟𝑖), the spatial probability of transmission from 𝑖 to 𝑗: 

𝑠(𝑟𝑖, 𝑟𝑗) =  
nrjri
∑ 𝑛hriℎ

=
𝑒
−𝑎×𝑑rjri × mrj

b ×mri
c

∑  𝑒−𝑎×𝑑hri ×mh
b ×mri

c
ℎ

 

=
𝑒
−𝑎×𝑑rjri× mrj

b

∑  𝑒
−𝑎×𝑑hri×mh

b
ℎ

       ( 4 ) 
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Only the parameters 𝑎 and 𝑏 were required to compute the spatial probability of transmission. If 𝑟𝑖 =

𝑟𝑗, then (4) becomes: 𝑠(𝑟𝑖, 𝑟𝑗) =  
𝑚𝑟𝑖
𝑏

∑ 𝑚ℎ
𝑏

ℎ
,  Other distributions than the exponential decrease can be used 

in this framework if transmission follows a different pattern. 

The parameters 𝜌, 𝑎 and 𝑏 were estimated. At each iteration of the MCMC, the log-likelihood of the 

trees was equal to the sum of all individual log-likelihoods 𝐿𝑖 from equation (1). The log-posterior 

density of the proposed trees was calculated by summing the overall log-likelihood of the trees and the 

log-priors of the parameters.  

3.3.1.2. Tree proposals 

We used a Metropolis-Hastings algorithm with MCMC to sample from the posterior distribution of 

parameters and the transmission trees. To do this, we developed a set of proposal tree updates. These 

updates were accepted with acceptance probability as defined by the Metropolis-Hastings algorithm 

[45]. We used eight types of tree proposal to ensure good mixing. Each proposal conserved the overall 

number of trees, with a maximum of one unique genotype reported per tree. 

Five of the proposals had already been implemented in the outbreaker2 package and were adapted to 

this setting: (i) change the number of generations between two cases; (ii) change the conditional report 

ratio 𝜌; (iii) change the time of infection; (iv) change the infector of a case (if the case is not the ancestor 

of a tree); (v) swap infector-infectee (if none is the ancestor of a tree).  

We added two proposals to change 𝑎 and 𝑏, the spatial kernel parameters. For each proposal, the 

probability of transmission between every geographical unit was recalculated with the new values. The 

distance matrix had to be computed for each number of generations between cases, which considerably 

slowed down the algorithm. As we could not use sequence data, assessing whether a case was isolated 

or whether it was connected to a reported infector with two missing generations would be very 

challenging using our model alone. Therefore, we limited the maximal number of missing generations 

to 1 when 𝑎 or 𝑏 were estimated (max (𝜅𝑗𝑖) = 2). Finally, the last proposal was designed to change the 

ancestor of the tree while conserving the overall number of trees (Figure 3.1).  
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Figure 3.1: Example of the change of ancestors. (a) The initial tree and (b) the new tree proposed after the movement. Initially, 
there are two ancestors (cases 1 and 2) in a group of nine cases. Cases 3 and 7 have different genotypes and cannot be part of 
the same tree, the genotypes of the other cases are not reported. The date of infection is in increasing order (1 is the first case, 
9 is the last). Therefore, 1 is the only potential infector for 2. One new ancestor was randomly drawn to conserve the number of 
trees. In this example, 7 is the new ancestor (6 was the only other possibility). The ratio of the posterior densities of (a,b) were 
then used to determine whether to accept or reject the proposal, according to the Metropolis–Hastings algorithm. This 
movement ensures good mixing of the potential ancestors of the transmission clusters. 

 

3.3.1.3. Inference of importation status and cluster 

Unrelated measles cases stemming from different importations and different regions can be part of the 

same dataset. Grouping cases and excluding unrealistic transmission links reduces the number of 

possible trees and speeds up the MCMC runs. To do so, we listed each case’s potential infectors using 

three criteria: (i) the potential infectors must be of the same genotype as the case, or have unreported 

genotype, (ii) the location of potential infectors must be less than 𝛾 km away from the case, and (iii) the 

potential infectors must have been reported later than 𝛿 days before the case. This threshold should be 

determined from the maximum plausible generation time of the disease. The spatial threshold 𝛾 should 

be defined according to the relevance of long-distance transmissions. Cases with no potential infector 

were considered as importations. Otherwise, they were grouped together with (i) their potential 

infectors and (ii) cases with common potential infectors. 

After grouping the cases, we estimate their importation status and the cluster size distribution using 

two runs of MCMC (Figure 3.2). The first run was shorter and aimed at removing the most unlikely 

connections among each group, as they can reflect unrealistic estimates for incubation periods or 

generation times and corrupt the estimation of the date of infection. We defined a reference 

threshold 𝜆, whereby if the individual value of log-likelihood Li was worse than 𝜆, then the connection 

between 𝑖 and their infector was considered unlikely. In Outbreaker2, 𝜆 was a relative value, defined 

from a quantile of the individual log-likelihoods. In o2geosocial, 𝜆 can be a relative value or an absolute 

value, chosen from the number of components of the likelihood. For each sample saved from the short 
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run, we computed the number of unlikely connections n. If there was no iteration where all connections 

were better than 𝜆, min(n) new importations were added to the initial tree for the long run (Figure 3.2). 

 

Figure 3.2: Estimating importation status and cluster size distributions in two MCMC runs. Step 1: initial tree obtained after pre-
clustering, with the minimum number of importations (here 2, as there are two reported genotypes). Step 2: samples from the 
first short run, with red lines showing connections worse than the arbitrary threshold 𝜆. Step 3: initial tree for the final run, with 
one more importation than in step 1, which corresponds to the minimum number of unlikely transmissions at step 2. Step 4: 
samples from the long run. Step 5: final trees used to compute cluster size distribution and importation status of each case. 
Case 7 is an importation in one-third of the final samples, whereas case 3 is an importation in all of them. 

Finally, we ran a long MCMC chain and obtained samples from the posterior distribution. After removing 

the burn-in period and thinning the chain, we deleted the unlikely transmission links in each iteration 

and identified transmission clusters. Therefore, unlike the previous versions of outbreaker2, the number 

of importations in each sample can vary and the individual probability of being an importation can be 

computed (Figure 3.2).  
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3.3.2. Validation case study: measles outbreaks in the USA between 2001 and 2016 

3.3.2.1. Data 

To evaluate the performance of the model, we inferred the transmission clusters from a dataset that 

also included information on whether measles cases were part of a cluster based on contact-tracing 

investigations. Measles cases in the USA are reported by healthcare providers and clinical laboratories 

to their corresponding health department. Each case is investigated by local and state health 

departments classified according to standard case definitions [46], and linked into clusters 

epidemiologically (e.g. by establishing a direct contact or a shared location between cases, or when 

cases are part of a specific community where an outbreak is occurring). Cases are considered 

internationally imported if at least part of the exposure period (7–21 days before rash onset) occurred 

outside the USA and rash occurred within 21 days of entry into the USA, with no known exposure to 

measles in the United States during the exposure period. 

Confirmed measles cases are routinely reported by state health departments to the CDC. A total of 2098 

measles cases were reported in the USA between January 2001 and December 2016. The number of 

annual cases did not exceed 700 cases during this time period (Figure 3.3, electronic supplementary 

material, Figure S1). The importation status, 5-year age group, onset date, county and state of residence 

were fully reported for 2077 cases. The 21 cases with missing data were discarded. Twenty-five per cent 

of the cases were classified as importations. Thirty-nine per cent of the cases had their genotype 

reported.  
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Figure 3.3: (a) Number of cases per state and (b) annual number of cases reported in the USA between 2001 and 2016. Alaska 
and Hawaii are not shown in (a). 

Among cases with complete data, 737 independent clusters, containing 1-380 cases, were reconstructed 

through contact-tracing investigations. Not every identified case could be linked to an importation, and 

some transmission clusters contained multiple imported cases (e.g. when related individuals travel 

together to a foreign country and were infected there). Out of the 737 reference clusters, 38 had several 

cases classified as importations, 256 had none identified. 

3.3.2.2. Model and parameters 

The distributions and priors used in the studies are listed in Table 3.2. As no studies quantifying the 

probability of age-specific contacts have been carried out in the USA, we used the estimates from the 

POLYMOD study in the UK [36]. The incubation period and the generation time of measles were taken 

from previous studies [47–49]. We used the population centroid of each county to compute the distance 

matrix [50]. We used a beta distribution as the prior of the conditional report ratio [8]. The mean of the 

prior distribution was calculated using the number of clusters whose first case was not classified as an 

imported case, meaning the investigations were not able to trace back to the first case imported. As 

there was no prior information on the possible values of the spatial parameters 𝑎 and 𝑏, we used 

uniform distributions between 0 and 5. 

Table 3.2: Values of parameters used to cluster cases declared in the USA. 

Parameter Symbol Distribution 

Incubation period 𝑓(𝑡) Gamma,  
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mean = 11.5, sd = 2.24 

Generation time 𝑤(𝑡) 
Normal, 
Mean = 11.7, sd = 2.0 

Conditional report ratio 𝜌 
Prior: Beta distribution, 
Mean = 0.65, sd = 0.15 

Spatial parameter 1 𝑎 Prior: Uniform distribution 

Spatial parameter 2 𝑏 Prior: Uniform distribution 

Spatial pre clustering  𝛾 Fixed: 100 km  

Temporal pre clustering 𝛿 Fixed: 30 days 

Importation threshold 𝜆 

Absolute: 

• 5 × log 0.05 = −15 
• 5 × log 0.1 = −11 

Relative: 

• 5%  

 

For pre-clustering of cases, we set the temporal threshold 𝛿 to 30 days, which is above the 97.5% upper 

quantile of the generation time with a missing generation. We were interested in local transmission to 

describe the impact of an imported case on a community. But we only had information on the county 

of residency for each case. Counties are large geographical units: the average county land area is 2911 

km2 and the maximum values reach 50 000 km2. Therefore, we set the spatial threshold 𝛾 to 100 km to 

exclude long-distance transmission, while still allowing for cross-county transmission.  

Finally, we tested several relative and absolute importation thresholds 𝜆. Absolute values were 

calculated from a factor 𝑘, multiplied by the number of components in 𝐿𝑖, excluding the binary genetic 

component. Tested values were k = 0.05 (𝜆 = log(0.05) ∗ 5 =  −15) and k = 0.1 (𝜆 =  −11). 

Connections were considered unlikely if the log-likelihood was worse than 𝜆. Relative values were 

quantiles of all recorded log-likelihoods in the sampled trees (Table 3.2).  

3.3.2.3. Inference of importation status 

Using the contact-tracing investigations, we considered three different initial distributions of the 

importation status. In scenario 1, there was no inference of the importation status of cases, and the first 

case of each epidemiological cluster was classified as importation (ideal importation). In scenario 2: 

there was no inference of the importation status of cases, and all cases identified as importation in the 

contact-tracing investigations were classified as importations (epidemiological importation). Finally, in 

scenario 3, the importation status of cases was inferred, using different thresholds 𝜆, and using no prior 

information on the importation status of cases or the importation status from the contact-tracing 

investigations. 
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3.3.2.4. Inference of clusters 

In order to compare the inferred and reference clusters, we calculated for each case i: (i) the proportion 

of cases from the same reference cluster as 𝑖 that were inferred with 𝑖 (sensitivity) and (ii) the 

proportion of cases in the same inferred cluster as 𝑖 that were part of the reference cluster (precision). 

These values were calculated at every iteration, and the median values were used to evaluate the fit 

obtained with different values of 𝜆. We also compared the inferred cluster size distribution to the 

reference data. The credibility intervals for each case are reported in electronic supplementary material, 

Figure S2. 

3.4. Results 

We clustered 2077 measles cases reported in the USA between January 2001 and December 2016 using 

their onset date, age groups, location and genotype. Using the contact-tracing investigations, we 

considered three different initial importation status distributions: (i) only the ancestors of each 

epidemiological cluster (first case of each cluster) were importations (ideal importation), (ii) all cases 

classified as importation in the contact-tracing investigations were importations (epidemiological 

importation), (iii) no prior information on importation status of cases. The importation status of the 

cases was, therefore, not probabilistically inferred in scenarios 1 and 2. The length of the short 

preliminary run was 30 000 iterations and the main run was 70 000 iterations. For each run, the trace 

of the posterior distribution shows the convergence of the algorithm (electronic supplementary 

material, Figure S3). 

In scenario 1, we did not infer the importation status of cases. The inferred cluster size distribution 

matched the contact-tracing investigations (Figure 3.4A); 98% of the reference singletons were also 

isolated in the inferred cluster. For 94% (95% credibility interval: 91–98%) of cases, the inferred cluster 

had a sensitivity and precision above 75%, meaning more than 75% of the cases in the inferred cluster 

were in the reference cluster, and more than 75% of the cases in the reference cluster were in the 

inferred cluster (Figure 3.4B). For 80% (78–93%) of cases, the inferred clusters were a perfect match 

with the reference clusters. The cluster size distribution stratified by state was similar to the contact-

tracing investigations (electronic supplementary material, Figure S4). Therefore, when each ancestor 

was considered as an importation, the inferred clusters were very close to the reference ones. 
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Figure 3.4: Description of transmission clusters inferred using prior knowledge on importation status of cases. (a) Cluster size 
distribution for scenarios 1 and 2 (grey and dark grey), compared to the reference clusters (light grey). Arrows represent the 
95% credibility intervals of each estimate. Only clusters containing at least two cases are represented. Inset: Number of 
importations and number of isolated cases (singletons) in scenarios 1 and 2, and in the reference clusters. For each scenario, 
the horizontal dark line represents the number of importations that are also importations in the reference clusters, same for 
singletons. (b) Heatmap representing the precision and sensitivity of the clusters for each case in scenario 1, cases are classified 
in a category depending on the proportion of their reference cluster that were inferred in the same cluster (x-axis) and the 
proportion of mismatches in the inferred cluster. The same for scenario 2. 

In scenario 2, we used the importation status distribution of cases reported in the contact-tracing 

investigations (539 importations). Pre-clustering highlighted 165 cases with no potential infector, which 

were also classified as importations. We observed discrepancies between the inferred cluster size 

distribution and the reference one: among the 704 cases inferred as importation, 61 (9%) were not 

importations in the reference cluster. Furthermore, 94 cases were the ancestor of a reference cluster 

and were not classified as importations in the inferred clusters (13%). The overall cluster size distribution 

matched the reference distribution, but 111 reference singletons were inferred as part of transmission 

clusters (Figure 3.4A; electronic supplementary material, Figure S5). Although the precision of the 

inferred cluster was above 75% for 93% (88–93%) of the cases, 31% (6–39%) had a sensitivity score 

below 0.5, meaning they were classified with less than half of the cases from their reference clusters 

(Figure 3.4C). The discrepancies observed in this scenario are due to inconsistencies between the 
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importation status distribution and the clustering of cases in the contact-tracing investigations, as 

reference clusters that gathered several importations were split into different inferred clusters. 

In scenario 3, we used different threshold 𝜆 to infer the importation status of cases. We tested 𝜆 =

−15, 𝜆 =  −15 (absolute value), and 𝜆 =  95𝑡ℎ centile of all recorded log-likelhoods (relative value). 

For each case 𝑖, if the log-likelihood 𝐿𝑖 was worse than 𝜆, the connection between the case and its 

infector was removed and the case was considered imported. Firstly, using an absolute factor 𝜆 = −15, 

586 (581–593) cases were classified as importations, and 361 (355–369) of them were singletons. These 

numbers are much lower than the reference dataset that contains 737 clusters, and 539 singletons 

(Figure 3.5A; electronic supplementary material, Figure S6). However, very few cases inferred as 

importations or singletons were not classified as such in the reference dataset (15 (10–22) misclassified 

importations, 4 (0–14) misclassified singletons), and the cluster size distribution for clusters including 

two cases and more was very similar to the reference one. The precision of the reconstructed cluster 

was very high (above 75% for 88% (85–93%) of cases) (Figure 3.5B). Overall, the algorithm was not able 

to accurately identify importations and singletons as the threshold was too low to eliminate some 

unrealistic connections, but the inferred larger clusters matched their reference counterparts. 

 

Figure 3.5: Description of transmission clusters generated with inferred importation status of cases. (a) Cluster size distribution 
for different value of threshold in scenario 3 (sorted by shades of grey), compared to the reference clusters (light grey). Arrows 
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represent the 95% credibility intervals of each estimate. Only clusters containing at least two cases are represented. Inset: 
Number of importations and number of isolated cases (singletons). For each scenario, the horizontal dark line represents the 
number of importations that are also importations in the reference clusters, same for singletons. (b) Heatmap representing the 
precision and sensitivity of the clusters for each case in scenario 3, with a 5% relative threshold, cases are classified in a 
category depending on the proportion of their reference cluster that were inferred in the same cluster. (c) Same when 
importation status is taken from the contact-tracing investigations and inferred using a 5% relative threshold. 

We then observed the impact of increasing 𝜆 on the inferred cluster size distribution. Runs obtained 

using an absolute threshold with 𝜆 = −11 and 95% relative threshold yielded very similar results. The 

number of cases inferred as importations was higher than in previous runs, while all remaining links 

showed good connection between cases. The number of importations was closer to the reference 

dataset, and the number of singletons was greater than the reference. Nevertheless, 11% (10–12%) of 

the inferred importations was not classified as importation in the reference clusters. Furthermore, the 

number of two-case chains was overestimated, and bigger clusters were likely to be split because of the 

removal of weaker connections. Therefore, increasing 𝜆 did not improve the cluster size distribution, as 

many importations in the reference clusters were not identified and the number of mismatches 

increased (electronic supplementary material, Figure S7). 

Finally, we combined prior information and inference of importation status to create a scenario where 

the importation status of only a proportion of the cases is known, because of disparities in the contact-

tracing investigations. This scenario is relevant for a dataset combining different outbreaks scattered 

across a large area or a long period of time. Cases considered as importations in the contact-tracing 

investigations were set as importations, and we inferred the importation status of the remaining cases. 

We used a low threshold to remove the least likely transmission links (𝜆 = −15). Including prior 

information led to some misclassification of importation status due to the inconsistencies between the 

epidemiological importation status and the reference clusters. As in scenario 2, some cases were 

classified with only part of their reference clusters because clusters with several importations were split 

into different clusters. Indeed, the sensitivity score of 34% (7–51%) of cases was below 0.5. 

Nevertheless, the cluster size distribution observed in the simulation was the closest to the reference 

clusters. There were 725 (719–731) clusters, 89% of importations were also ancestors of reference 

clusters and the number of singletons matched the reference clusters (Figure 3.5A-C). The inferred 

clusters of 88% (86–94%) of the cases had a precision score of 1, showing they were clustered without 

any false positives. Despite discrepancies in several states (Massachusetts, Ohio), the cluster size 

distribution stratified by state showed good agreement with the reference clusters (electronic 

supplementary material, Figure S8). 

The conditional report ratio in the transmission chains 𝜌 and the spatial parameters 𝑎 and 𝑏 was 

estimated in each scenario. The parameter estimates did not depend on the prior importation status 

distribution or the value of 𝜆. 𝜌 was consistently estimated above 90%, showing a low number of 
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missing generations between cases (electronic supplementary material, Figure S9). High values 

of 𝜌 show that most of the reported cases could be connected without missing generations. This is not 

representative of the overall report ratio, which is usually much lower [51]. 

There was little variation in the estimates of the spatial parameters between the different scenarios. 

The population parameter 𝑎 was estimated between 0.6 and 1 for every scenario, and the distance 

parameter 𝑏 was between 0.08 and 0.12. In every scenario, more than 80% of the inferred transmission 

were between cases distant of less than 10 km, and few long-distance transmissions were recorded (50–

100 km); hence, although most of the reconstructed connections were between cases from the same 

county, the algorithm was able to identify clusters spreading over several counties or states (electronic 

supplementary material, Figure S10). 

We highlighted the added value of including the spatial distance between cases in the likelihood by 

comparing the cluster size distribution inferred by selecting certain components of 𝐿𝑖 (electronic 

supplementary material, Figure S11). The credibility intervals were much wider when the distance 

between cases is not part of the likelihood, and the number of chains containing 2–10 cases was 

overestimated. The important impact of the spatial component of likelihood was also due to the 

widespread American territory, and could be lower in a different setting. 

We used the ratio of the number of importations over the number of subsequent cases per state to 

evaluate the intensity of transmission in each state between 2001 and 2016 (Figure 3.6). The maps 

obtained in scenario 1 (ideal scenario) or in scenario 3 (estimation of importation, with epidemiological 

importations and 𝜆 = −15) were very similar. We only observed minor differences, for example, in 

South Dakota and in Massachusetts, where the ratios were higher in scenario 3. The highest ratio (31.8 

in scenario 1) was observed in Ohio, and is mostly due to a 383 case outbreak in 2014 [32]. We observed 

major differences between the incidence map (Figure 3.2A) and the ratio per state. Indeed, although 

403 cases were reported in California (highest number in the USA), importations caused on average 1.32 

subsequent cases in scenario 1 (1.60 in scenario 3), showing a high proportion of reported cases were 

inferred as importations. 
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Figure 3.6: Ratio of the number of importations over the number of subsequent cases in each state in (a) scenario 1 (ideal 
importations) and (b) scenario 3 with epidemiological importations and 𝜆 = −15. Grey states represent states that did not 
report any case. 

Similarly, we used the inferred transmission chain to compute the inferred reproduction number in each 

state. According to the model, about 60% cases did not cause future transmission, and about 5% caused 

more than five subsequent cases (electronic supplementary material, Figure S12). These numbers were 

consistent in each run. The geographical distribution of reproduction number was very similar to the 

importation–subsequent cases ratio (electronic supplementary material, Figure S13). 

3.5. Discussion 

We developed the R package o2geosocial to classify measles cases into transmission clusters and 

estimate their importation status using routinely collected surveillance data (genotype, age, onset date 

and location of the cases). As recently observed during the 2018–2019 measles outbreak in New York, 

delays in childhood vaccination, local susceptibility and increased contacts can lead to large outbreaks 

following importations [52,53]. Therefore, we were interested in highlighting the effect of imported 

cases on communities and we focused on short distance transmission to identify areas where they 

repeatedly caused subsequent transmission chains. Although this is not predictive of future 

transmission, it highlights communities with potential for large transmission clusters. 

We compared the inferred transmission clusters to the contact-tracing investigations of 2077 confirmed 

measles cases reported in the USA between 2001 and 2016. We were able to produce reliable estimates 

of known transmission clusters using epidemiological features with only few misclassifications. 

Estimating the importation status of cases without prior knowledge was challenging and caused 

uncertainty on the results. We tested different threshold 𝜆 to eliminate unlikely transmissions, and we 

were able to identify most of the imported cases. Nevertheless, if several cases were imported in the 



106 
 

same region at a similar time, we could not find all of them without discarding valid transmission events, 

and increasing the number of false positives. When we used the importation status as defined in the 

contact-tracing investigations without probabilistic inference (scenarios 1 and 2), the reconstructed 

clusters were similar to the reference ones. Results were also conclusive when we combined prior 

information and importation inference. The reconstruction of transmission greatly depends on the 

epidemiological investigations to identify measles importations in a community. 

We used the genotype to censor connections between cases when it was reported, as there can be only 

one reported genotype per transmission cluster. Using a simulated dataset 

(toy_outbreak_long in o2geosocial), we explored the impact of increasing the proportion of genotyped 

cases on clustering and observed it could help identify the number of concurrent transmission trees 

when multiple genotypes are co-circulating. Moreover, we introduced a spatial component to the 

likelihood of connection between cases using an exponential gravity model. Previous studies showed 

this model was able to capture short-distance dynamics better than other gravity models, and was easy 

to parametrize. Introducing the spatial component greatly improved the precision and the sensitivity of 

the reconstructed clusters (electronic supplementary material, Figure S11), and the parameter 

estimates were robust in the different scenarios. 

The final results on the clustering of the 2077 cases using o2geosocial were obtained in 7 h for each run 

of 100 000 iterations on a standard desktop computer (Intel Core i7, 3.20 GHz 6 cores), which is much 

faster than previous implementations of outbreaker and outbreaker2. With the addition of the pre-

clustering step, whereby we reduced the number of potential infectors for each case, the algorithm ran 

faster. For smaller chains (50 000 iterations), 4 h were needed to estimate the importation status and 

cluster the cases. The code for the package and the analysis developed in this project is shared on Github 

(alxsrobert/o2geosocial and alxsrobert/datapaperMO), with an illustrative toy dataset, and can be used 

to analyse recent outbreaks where contact-tracing investigations were not carried out. 

Although the results obtained are promising, it should be noted that the dynamics of measles 

transmission in the USA are likely to be very specific to this location. Indeed, there were less than 700 

annual cases between 2001 and 2016. These cases were scattered across a large area, which made the 

pre-clustering of cases very efficient as we focused on short-distance transmission. In smaller or more 

endemic settings, the number of potential infectors per cases after the pre-clustering step might be 

higher, which would increase the running time. 

Furthermore, as the location of each case was deduced from the population centroid of counties, we 

assumed that the distance between cases from the same county was effectively zero. American counties 

are large and widespread geographical units that can include more than 1 million individuals. For future 
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use of o2geosocial, more accurate information on the location of cases could improve cluster inference 

by identifying multiple importations in a given county. Because cases are reported by the state of 

residency, we had to ignore that cases may have been out of the reported county or state during their 

incubation and infectious period, which has been seen during some outbreaks, such as the 2015 ‘Disney 

outbreak’ in California [54]. 

We did not include prior information on the local susceptibility of the different areas affected 

in o2geosocial, and these could be estimated using historical values of local coverage. However, 

protocols to estimate local vaccination coverage can differ in time and space and be difficult to compare, 

or unavailable at the local level. Furthermore, these estimates are cross-sectional in nature, and might 

not take into account catch-up vaccination campaigns, or immunity induced by previous outbreaks. 

Local seroprevalence surveys could identify pockets of susceptibles, but they have not been carried out 

on a subnational scale in most countries [55]. 

There has been no national quantitative analysis of age-specific contact patterns carried out in the USA, 

so we relied on a contact matrix between age groups available for Great Britain from the POLYMOD 

study [36]. Nevertheless, little variation in the contact rates between age groups has been observed 

between European countries, and a previous projection of the social contact matrix in the USA yielded 

similar results [56]. POLYMOD data were probably the most reliable source of information we could use 

to deduce an estimate of the contact matrix in the USA. 

3.6. Conclusion 

Heterogeneity in immunity can cause large outbreaks in countries with high national vaccine coverage, 

and identifying potential foyers of transmission in post-elimination settings is key for outbreak 

prevention and control. We have presented a method for estimating the cluster size distribution of past 

measles outbreaks from routinely collected surveillance data. We found that adding prior knowledge 

on the importation status of cases improved the inference of the transmission clusters. Although the 

method was able to identify a proportion of importations, epidemiological investigations on the history 

of travel and exposure reduced uncertainty on the clustering of cases. We believe these investigations 

are needed to produce reliable estimates of past transmission clusters. In lieu of the importation status, 

if multiple genotypes are co-circulating, increasing the proportion of genotyped cases could help discard 

potential connections and find imported cases. Even with limited information, this method was able to 

infer probabilistic transmission clusters in a fast and efficient way. 
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3.7. Disclaimer  

The findings and conclusions in this report are those of the authors and do not necessarily represent 

the official position of the Centers for Disease Control and Prevention, US Department of Health and 

Human Services 
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4.1. Abstract 

4.1.1. Background 

Despite high levels of vaccine coverage, sub-national heterogeneity in immunity to measles can create 

pockets of susceptibility, which are hard to detect and may result in long-lasting outbreaks. The 

elimination status defined by the World Health Organization aims to identify countries where the virus 

is no longer circulating and can be verified after 36 months of interrupted transmission. However, since 

2018, numerous countries have lost their elimination status soon after reaching it, showing that the 

indicators used to define elimination may not be predictive of lower risks of outbreaks.  

4.1.2. Methods and Findings 

We quantified the impact of local vaccine coverage and recent levels of incidence on the dynamics of 

measles in each French department between 2009 and 2018, using mathematical models based on the 

‘Epidemic-Endemic’ regression framework. High values of local vaccine coverage were associated with 

fewer imported cases and lower risks of local transmissions. Regions that had recently reported high 

levels of incidence were also at a lower risk of local transmission, potentially due to additional immunity 

accumulated during these recent outbreaks. Therefore, all else being equal, the risk of local transmission 

was not lower in areas fulfilling the elimination criteria (i.e., low recent incidence). After fitting the 

models using daily case counts, we used the parameters’ estimates to simulate the effect of variations 

in the vaccine coverage and recent incidence on future transmission. A decrease of 3% in the three-year 

average vaccine uptake led to a five-fold increase in the number of cases simulated in a year on average.  

4.1.3. Conclusions 

Spatiotemporal variation in vaccine coverage because of disruption of routine immunisation 

programmes, or lower trust in vaccines, can lead to large increases in both local and cross regional 

transmission. The association found between local vaccine coverage and incidence suggests that, 

although regional vaccine uptake can be hard to collect and unreliable because of population 

movements, it can provide insights into the risks of imminent outbreak. Periods of low local measles 

incidence were not indicative of a decrease in the risks of local transmission. Therefore, the incidence 

indicator used to define the elimination status was not consistently associated with lower risks of 

measles outbreak in France. More detailed models of local immunity levels or subnational 

seroprevalence studies may yield better estimates of local risk of measles outbreaks.  
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4.2. Introduction 

Immunity against infectious diseases accumulates following infection and, if a vaccine is available, 

routine immunisation programs and vaccination campaigns. Measles is highly infectious and can cause 

large outbreaks in populations with low immunity [1,2]. Therefore, high levels of vaccine coverage are 

required to minimise the risks of outbreaks [3]. Furthermore, vaccine uptake must be homogeneously 

high across the territory to avoid local transmission sustained by regional discrepancies [4,5]. The large-

scale implementation of routine immunisation programs led to a drastic reduction in measles cases 

worldwide, and measles was targeted for elimination in five World Health Organization (WHO) Regions 

by 2020 under the Global Vaccine Action Plan 2011-2020 [6].  

Elimination status, as defined by the WHO, refers to “the absence of endemic measles transmission for 

≥12 months in the presence of a well-performing surveillance system” in a given country or region, and 

is verified “after 36 months of interrupted endemic measles virus transmission”[7].  Although imported 

cases, or cases directly related to importations could still be expected, there should be no continuous 

transmission persisting over a long period of time in a region where measles was eliminated. A given 

WHO region can declare measles eliminated when all countries in the region document interruption of 

endemic transmission for more than 36 months.  

Recently, several countries had their elimination status revoked following large outbreaks less than five 

years after it was verified. For instance, the United Kingdom achieved elimination in 2017, and lost the 

status in 2019 along with Albania, Czechia, Greece, Venezuela, and Brazil [8,9]. In these countries, 

interruption of transmission during a few years was not indicative of reduced risks of major outbreaks. 

Such occurrences can be explained by several factors, such as a replenishment of susceptible individuals 

after years without transmission, or importations of cases into subnational areas with lower levels of 

immunity caused by heterogeneity in vaccine coverage [10–13]. The number and geographical 

distribution of the susceptible individuals is not routinely monitored in most countries given the 

perceived cost and logistical challenges of large serological surveys, yet it is a main predictor of outbreak 

risk [3]. Local values of vaccine coverage can be an alternative measure of heterogeneity, but they are 

not always available and can be outdated because of the mobility between regions. Furthermore, they 

only describe vaccine-induced immunity, and therefore ignore the immunity caused by previous 

outbreaks. In this study, we aim to i) estimate the impact of recent local transmission and local vaccine 

coverage on the current risk of outbreaks, and the changes in transmission dynamics that would results 

from variations in these factors, and ii) identify the areas most at-risk for local transmission using France 

as a case study. 
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To do so, we implemented an Epidemic-Endemic time-series model using hhh4, a framework developed 

by Held, Höhle and Hofmann to study the separate impact of covariates on importation, cross-regional 

transmission and local transmissions on aggregated case counts [14,15]. We adapted this framework to 

daily case counts and applied it to the daily number of measles cases per department (NUTS3 levels) in 

France reported to the European Center for Disease Prevention and Control (ECDC) between January 

2009 and December 2018. We computed the average values of vaccine uptake and the number of cases 

per department in the past three years to mimic the timeframe used to define the elimination status, 

and modelled their impact on the local risks of outbreaks. 

4.3. Methods 

4.3.1. Description of the hhh4 framework 

We used the modelling framework implemented in the “hhh4” model, which is part of the R package 

“surveillance”[15], to analyse infectious disease case counts. All the notations are defined in Table 4.. 

The expected number of cases (𝜇𝑖,𝑡) reported in the region 𝑖 at time 𝑡 depends on three sources of 

transmission (called “components”):  

i. The autoregressive component (𝜆𝑖,𝑡) represents the impact of 𝑌𝑖,𝑡−1, the number of cases in 𝑖 at 

the previous time step, on the number of cases in 𝑖 at 𝑡. The number of new cases expected 

from the autoregressive component is the product of predictors 𝜆𝑖,𝑡 and 𝑌𝑖,𝑡−1. A high value of 

𝜆𝑖,𝑡 indicates that, if there are cases in 𝑖, there is potential for high transmission levels. On the 

other hand, if 𝜆𝑖,𝑡 is low, cases in 𝑖 are unlikely to lead to much local transmission. 

ii. The neighbourhood component (𝜙𝑖,𝑡) represents the impact of 𝑌𝑗,𝑡−1, the number of cases 

reported in regions around 𝑖 at the previous time step, on the number of cases in 𝑖 at 𝑡. The 

exact impact of cases in these regions on cases in 𝑖 is determined by a distance matrix 𝜔 which 

quantifies the connectivity between the different regions. If 𝜙𝑖,𝑡 is high, cases in regions around 

𝑖 are more likely to cause new cases in 𝑖, whereas a low value of 𝜙𝑖,𝑡 indicates that cross regional 

transmissions towards 𝑖 are less likely. 

iii. The endemic component (𝜈𝑖,𝑡) represents the background number of new cases occurring in 

region 𝑖, regardless of the current number of cases in 𝑖, or in the regions around 𝑖. If 𝜈𝑖,𝑡 is high, 

new cases in 𝑖 are common, regardless of the number of cases in or around 𝑖 at the previous 

time step. Since the endemic component does not depend on 𝑌𝑡−1, it represents the 

background importations that cannot be linked to the mechanistic components. Therefore, 

these cases either correspond to importations from outside the modelled area (France in our 

case), or cases that are not otherwise predicted by the other two components.  

The full equation for the expected number of cases in region 𝑖 at time 𝑡 is: 
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𝜇𝑖,𝑡 = 𝜈𝑖,𝑡 + 𝜆𝑖,𝑡 ∗ 𝑌𝑖,𝑡−1 + ϕi,t ∗  ∑ (𝜔𝑗𝑖 ∗ 𝑌𝑗,𝑡−1)𝑗≠𝑖    (5) 

The predictors 𝜆𝑖,𝑡, 𝜙𝑖,𝑡 and 𝜈𝑖,𝑡 are independently impacted by different covariates, i.e., a covariate may 

be associated with a reduction of importations, but have little impact on the spread of the virus within 

the region. We assume that 𝑌𝑖,𝑡, the number of observed cases at 𝑡 in 𝑖, follows a negative binomial 

distribution to allow for overdispersion [16]. The overdispersion parameter 𝜓 is estimated. 

The predictors 𝜆𝑖,𝑡, 𝜙𝑖,𝑡 and 𝜈𝑖,𝑡 are estimated using log-linear regressions. For each predictor, we 

estimate: i) The intercept 𝛼 (identical across spatial units), and ii) the vector of coefficients 𝛽 associated 

with 𝑧𝑖,𝑡 the vector of covariates at 𝑡 in 𝑖 included in each component. 

𝑙𝑜𝑔(𝜆𝑖,𝑡) = 𝛼
(𝜆) + 𝛽(𝜆) ∗ 𝑧𝑖𝑡

(𝜆)
     (6) 

𝑙𝑜𝑔(𝜙𝑖,𝑡) = 𝛼
(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡

(𝜙)
     (7) 

𝑙𝑜𝑔(𝜈𝑖,𝑡) = 𝛼
(𝜈) + 𝛽(𝜈) ∗ 𝑧𝑖𝑡

(𝜈)
     (8) 

Table 4.1: Table of notations of all variables and distributions defined in the methods. 

Parameter Definition 

𝑖, 𝑗 Regions 

𝑡 Time 

𝑌𝑖,𝑡 Number of cases reported in the region 𝑖 at time 𝑡 

𝑌𝑖,𝑡
′  Potential for transmission in the region 𝑖 at time 𝑡 

𝜇𝑖,𝑡 Average number of cases predicted in the region 𝑖 at time 𝑡 

𝜆 Autoregressive predictor 

𝜙 Neighbourhood predictor 

𝜈 Endemic predictor 

𝜔 Connectivity matrix 

 𝛼 Intercept 

𝛽 Vector of coefficients 

𝑧 Matrix of covariates 

𝑓(𝑡) Distribution of the serial interval  

𝑚𝑖𝑡 Number of inhabitants in the region 𝑖 at time 𝑡 

𝑑𝑖𝑗  Distance between regions 𝑖 and 𝑗 

𝛾, 𝛿, 𝜖 Parameters of the exponential gravity model 

𝑢𝑖𝑡 Average vaccine coverage in the region 𝑖 at time 𝑡 

𝑛𝑖𝑡 Recent incidence per million in the region 𝑖 at time 𝑡 
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𝑁𝑖𝑡  Category of recent incidence in the region 𝑖 at time 𝑡 

𝑠𝑖𝑡 Surface area of the region 𝑖 at time 𝑡 

4.3.2. Data 

The observed case counts 𝑌𝑖,𝑡 was computed from 14,461 cases (10,988 confirmed and 3,473 probable 

cases) routinely collected in metropolitan France, and reported to the ECDC between January 2009 and 

December 2018 (Figure 4.1A). This data was retrieved on The European Surveillance System (TESSy) on 

22 January 2019. The cases were stratified by the metropolitan department they were reported in. The 

department correspond to French NUTS3 regions. We excluded three cases where this information was 

not available. We used the date of symptom onset reported for each case to compute the daily number 

of cases from 2009 to 2018 per department. 

 

Figure 4.1: Panel A: Daily number of cases reported in France between 1st January 2009 and 30th November 2018. Panel B: 
Distribution of the composite serial interval used in the model. The different colours of the curve correspond to the three 
scenarios used to compute the distribution of the serial interval (orange: serial interval when missing ancestor; red: serial 
interval without unreported case, brown: serial interval when the case between the two reported cases was missing). Panel C: 
Transmission potential, which was computed by convolving the number of cases in the last 30 days with the composite serial 
interval. 

4.3.3. Adaptation of hhh4 to daily case counts 

In hhh4, the average number of new cases stemming from the autoregressive and neighbourhood 

components depends on the number of cases at the previous time step. Therefore, if we use daily case 

counts, the number of cases at 𝑡 is only impacted by the number of cases the day before. In reality, 

however, the serial interval of measles is estimated to be 11 days on average [17]. Previous studies using 

ℎℎℎ4 relied on temporally aggregated case counts, which partially solved this problem: if the time step 

is close to the average serial interval, cases of the same generation of transmission can be assumed to 

be roughly grouped together in the same time point [18]. Nevertheless, studying weekly (or fortnightly) 
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aggregated cases counts does not reflect the distribution of the serial interval (i.e., it ignores overlapping 

generations of transmission because of shorter or longer delays between primary and secondary cases). 

This can lead to directly connected cases being grouped in the same time step, or separated by more 

than one time step. This aggregation also ignores the potential for unreported cases, which may lead to 

cases causing transmission two to three weeks after their onset date via an intermediate, unobserved 

case. Finally, the starting date of aggregation influences how cases are grouped, which can lead to 

discrepancies in the parameter estimates.  

Recent developments in the surveillance package included weight estimation to represent the relative 

impact of previous time steps on the number of cases at 𝑡 [19]. Since we are using daily case counts, we 

set the weights of the different time steps from the distribution of the serial interval. We computed  

𝑌′𝑖𝑡, the transmission potential for each department and time step, by multiplying the number of recent 

cases by the distribution of the serial interval 𝑓(𝑡): 𝑌𝑖𝑡
′ = ∑ 𝑌𝑖,𝑡−𝑘 ∗ 𝑓(𝑘)

50
𝑘=1 . Only a subset of measles 

cases are reported to the surveillance system [20], therefore we accounted for the risks of unreported 

cases by computing a composite serial interval from three different transmission scenarios (Figure 4.1B): 

1. In case of direct transmission between two cases 𝑖 and 𝑗, the number of days between the two 

cases 𝑓1(𝑡) follows a Normal distribution truncated at 0: 𝑓1(𝑡)~𝑁(11.7, 2) [17].  

2. In case of unreported cases between 𝑖 and 𝑗, the number of days between the two cases 𝑓2(𝑡) 

follows a Normal distribution truncated at 0: 𝑓2(𝑡)~𝑁(23.4, √8). This distribution corresponds 

to the convolution of 𝑓1(𝑡) with itself. 

3. If 𝑖 and 𝑗 share the same unreported index case, the number of days between 𝑖 and 𝑗 follows a 

half-Normal distribution (excluding 0) of standard deviation √8 days. This distribution 

corresponds to the distribution of the difference of 𝑓1(𝑡) with itself, excluding values below 1. 

We added this last scenario to account for multiple concurrent importations stemming from an 

unreported infector. 

We considered that 50% of the composite serial interval reflected direct transmission (scenario 1, 

without missing generations between cases), and 50% came from the two scenarios with unreported 

cases (scenarios 2 and 3). The distribution of the composite serial interval is shown in Figure 4.1B. We 

ran sensitivity analysis to estimate the parameters of the model using composite serial intervals 

computed with different proportions of direct transmission, and observed it had little influence on the 

estimation of each parameter (Supplement Section 1).  

4.3.4. Connectivity between departments 

In the hhh4 framework, the average number of cases caused in the department 𝑖 at time 𝑡 by cases from 

another department 𝑗 is quantified by the neighbourhood component. It is equal to ϕi,t ∗ 𝜔𝑗𝑖 ∗ 𝑌𝑗,𝑡−1 



122 
 

(Equation 1). Therefore, the number of cases caused by cases from 𝑗 in 𝑖 in hhh4 is influenced by three 

factors:  

• The susceptibility of the department 𝑖, quantified by the neighbourhood predictor ϕi,t, defined 

as 𝑙𝑜𝑔(𝜙𝑖,𝑡) = 𝛼
(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡

(𝜙)
. 

• The number of connections from 𝑗 to 𝑖, calculated using an exponential gravity model [21], 

whereby the number of connections between 𝑖 and 𝑗 is proportional to the product of the 

number of inhabitants in the department of origin 𝑚𝑗, the department of destination 𝑚𝑖 and 

an exponential decrease in the distance between 𝑖 and 𝑗 𝑑𝑗𝑖. Therefore, the number of 

connections from 𝑗 to 𝑖 was calculated as 𝑤𝑗𝑖 = e
−𝛿𝑑𝑗𝑖𝑚𝑖𝑡

𝛾
 𝑚𝑗𝑡

𝜆  .  

• The proportion of the population in 𝑗 that is infectious. 

Therefore, the average number of cases expected from department 𝑗 to department 𝑖 at 𝑡 can be written 

as the product of these three factors: 

𝑌𝑗𝑖,𝑡 = exp (𝛼
(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡

(𝜙)
) ∗  e−𝛿𝑑𝑗𝑖𝑚𝑖𝑡

𝜖  𝑚𝑗𝑡
𝛾
 ∗  
𝑌𝑗,𝑡−1

𝑚𝑗𝑡

= exp (𝛼(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡
(𝜙)

∗ 𝜖 ∗ log(𝑚𝑖𝑡)) ∗  
 e−𝛿𝑑𝑗𝑖  𝑚𝑗𝑡

𝛾
 

𝑚𝑗𝑡
∗ 𝑌𝑗,𝑡−1 

Therefore, the log-population log (𝑚𝑖𝑡) was added as a covariate of the predictor of the neighbourhood 

component 𝜙. The number of inhabitants in each French department between 2009 and 2018 was taken 

from the INSEE website [22]. 

We implemented two models with different methods to compute the distance between departments 

𝑑𝑗𝑖.  

1. In Model 1, every department can be connected to each other, therefore only importations 

coming from outside the departments included in the study fall into the endemic component. 

The distance matrix was computed using the distance between the population centroids of each 

department, which were calculated using the 1𝑘𝑚2 European Grid dataset [23]. This dataset 

contains the number of inhabitants in each grid cell covering the country (resolution 1km). We 

computed the weighted population centre in each department using the R function 𝑧𝑜𝑛𝑎𝑙 from 

the package raster[24] and calculated the distance between population centres.  

𝑌𝑗𝑖,𝑡 =
𝜙𝑖𝑡 ∗ e

−𝛿𝑑𝑗𝑖 ∗
𝑚𝑗𝑡
𝛾

𝑚𝑗𝑡
∗ Yj,t−1  
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2. In Model 2, the neighbourhood component only takes into account transmission between 

neighbouring departments, assuming that cross-regional transmissions between non-

neighbouring departments would be captured by the baseline number of daily importations (i.e. 

the endemic component): 

𝑌𝑗𝑖,𝑡 = {
𝜙𝑖𝑡 ∗

𝑚𝑗𝑡
𝛾

𝑚𝑗𝑡
∗ Yj,t−1 if 𝑖 and 𝑗 share a border

0 otherwise

 

Therefore, the neighbourhood component in Model 1 includes both the neighbourhood component and 

part of the endemic transmission in Model 2. 

4.3.5. Covariates 

Different covariates can be added in each component of the hhh4 framework [25]. We implemented 

the same set of covariates in the two models. The two covariates of interest were the impact of vaccine 

coverage and the category of incidence in each department in the past three years. We chose this 

timeframe in order to match the requirements of the elimination status assessment. We also included 

the number of inhabitants, the surface area of each department, and the seasonality as control 

variables, as explained below: 

4.3.5.1. Vaccine coverage 

For each department 𝑖 and time step 𝑡, we computed 𝑢𝑖,𝑡, the average proportion unvaccinated in the 

department 𝑖 over the 3 years prior to 𝑡 according to local coverage reports. We averaged over the past 

three years in order to use the same timeframe as the elimination status assessment. We used the 

yearly first dose uptake among 2-year-old children in each French department between 2006 and 2017. 

This data is publicly available on the website Santé Publique France [26–28]. The uptake of the second 

dose was not reported before 2010, and many departments had missing entries after 2010. Therefore, 

only the local coverage of the first dose was used in the model.  

Since 26% of the entries in the coverage dataset were missing, we ran a beta mixed model to infer the 

missing values. We used the time and squared time (in years) as covariates, and random effects 

stratified by department. We used the average prediction to infer the missing values from the fitted 

model and get the complete vaccine coverage dataset. More details on the regression, and the 

sensitivity analyses that were run are presented in the Appendix (Supplement Section 2). All values of 

coverage in 2009 were missing, and were not imputed; we computed the average vaccine coverage in 

2010, 2011, and 2012 using only two of the three previous years.  

Adding the log-proportion of unvaccinated to the model was the most appropriate approach, since it 

allows the rate of disease spread (i.e. the value of the predictors 𝜆, 𝜈, and 𝜙) to be proportional to the 
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density of susceptibles [25]. Therefore, we calculated the average log-proportion of unvaccinated in the 

three years before 𝑡 and added it as a covariate in all three components.  

4.3.5.2. Impact of recent incidence  

This covariate quantifies the impact of past outbreaks on current transmission. Departments are eligible 

for WHO certification of elimination status if they have maintained low levels of transmission over the 

past three years [7]. Therefore, we computed 𝑛𝑖,𝑡, the number of cases per million reported between a 

month and three years before 𝑡 in 𝑖. We excluded cases reported in the last month since recent cases 

may be directly linked to current transmission.   

𝑛𝑖,𝑡 =  1,000,000 ∗ ∑
𝑌𝑖𝑡
𝑚𝑖𝑡

𝑇<𝑡−365∗3

𝑇>(𝑡−30)

 

We aggregated 𝑛𝑖,𝑡 in three categories: i) 𝑁𝑖,𝑡
(0)
= {

1 𝑖𝑓 𝑛𝑖,𝑡 < 10 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: very limited transmission in recent 

years, department potentially eligible for elimination (30% of entries) ; ii)𝑁𝑖,𝑡
(1) = {

1 𝑖𝑓 10 ≤ 𝑛𝑖,𝑡 < 45 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: 

Moderate transmission in recent years (36% of entries); iii) 𝑁𝑖,𝑡
(2) = {

1 𝑖𝑓 𝑛𝑖,𝑡 ≥ 45 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: major outbreak 

reported in the department in recent years. The threshold of 45 cases per million corresponds to the 

last tercile of 𝑛𝑖,𝑡, hence  33% of 𝑛𝑖,𝑡 fall into this last category.  

Computing the level of recent incidence required the number of cases per department in the past three 

years. Therefore, since this analysis integrates case counts data from 2009, we needed to compute the 

incidence in each department between 2006 and 2008. Less than 50 cases were reported in France per 

year in 2006 and 2007 [29], therefore we considered their contribution to the recent level of incidence 

per department was null. On the other hand, 597 measles cases were reported to the ECDC in France in 

2008, but were not stratified by department. Therefore, we used the number of cases reported per 

department in 2008 on Sante-Publique-France (597 cases overall, mostly reported in the second half of 

2008 [30]) and integrated them in the computation of 𝑁𝑖,𝑡 for 𝑡 < 2012. 

The level of recent incidence was a covariate in all three components.  

4.3.5.3. Number of inhabitants and surface area 

In the subsection “Connectivity between departments”, we discussed the impact of the number of 

inhabitants on the number of movements between departments. Furthermore, several studies have  

indicated a potential association between the population density and the number of secondary 

transmissions [31–33]. Therefore, we controlled for the impact of the number of inhabitants in each 

department, and the surface area (i.e., the geographical size) on the number of local transmissions.  
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The log-number of inhabitants  log (𝑚𝑖,𝑡) in the department 𝑖 at time 𝑡 was added as a covariate in all 

three components. The log-surface of the department log (𝑠𝑖,𝑡) was added as a covariate in the 

autoregressive component. 

4.3.5.4. Seasonality 

We control for the impact of the seasonality of measles outbreaks in France on transmission by adding 

two covariates (sine-cosine) to all three components. 

4.3.5.5. Full model equations for predictors 

The covariates are all integrated in the covariate vectors in the equations 2, 3 and 4, yielding: 

Autoregressive predictor: 𝛽(𝜆)𝑧𝑖𝑡
(𝜆)
= 𝛽𝑢

(𝜆)
𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽𝑁(1)

(𝜆)
𝑁𝑖,𝑡
(1)
+ 𝛽

𝑁(2)
(𝜆)
𝑁𝑖,𝑡
(2)
+ 𝛽𝑚

(𝜆)
log (𝑚𝑖,𝑡) +

𝛽𝑠
(𝜆)log (𝑠𝑖,𝑡) + 𝛽𝑐𝑜𝑠

(𝜆)cos (
2𝜋𝑡

365
) + 𝛽𝑠𝑖𝑛

(𝜆)sin (
2𝜋𝑡

365
) 

Neighbourhood predictor: 𝛽(𝜙)𝑧𝑖𝑡
(𝜙)

= 𝛽𝑢
(𝜙)
𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽𝑁(1)

(𝜙)
𝑁𝑖,𝑡
(1)
+ 𝛽

𝑁(2)
(𝜙)

𝑁𝑖,𝑡
(2)
+ 𝛽𝑚

(𝜙)
log (𝑚𝑖,𝑡) +

𝛽𝑐𝑜𝑠
(𝜙)
cos (

2𝜋𝑡

365
) + 𝛽𝑠𝑖𝑛

(𝜙)
sin (

2𝜋𝑡

365
) 

Endemic predictor: 𝛽(𝜈)𝑧𝑖𝑡
(𝜈)
= 𝛽𝑢

(𝜈)
𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽𝑁(1)

(𝜈)
𝑁𝑖,𝑡
(1)
+ 𝛽

𝑁(2)
(𝜈)

𝑁𝑖,𝑡
(2)
+ 𝛽𝑚

(𝜈)
log (𝑚𝑖,𝑡) +

𝛽𝑐𝑜𝑠
(𝜈)
cos (

2𝜋𝑡

365
) + 𝛽𝑠𝑖𝑛

(𝜈)
sin (

2𝜋𝑡

365
).  

4.3.6. Model calibration 

A model is deemed well-calibrated if it is able to correctly identify its own uncertainty in making 

predictions [34]. The most straightforward method to evaluate whether ℎℎℎ4 models are well-

calibrated is to generate a one-step-ahead forecast over a chosen test period and compare them with 

the data [15]. Since we use daily case counts, this method would only assess the ability of the models 

to capture the number of cases on the next day. We explored the calibration of our models several days 

ahead. To do so, we selected the last two years of data as the test period, fit the model up to each day, 

and simulated the number of cases over the next 3, 7, 10 and 14 days for each day of the test period in 

each department. For each date, we ran at least 100,000 simulations. If the number of cases observed 

in the data had not been generated in 100,000 simulations, we ran simulations until it was reached.  

From these simulations, we generated the predictive probability distribution at each time step in each 

department. In a model with perfect calibration, the actual number of cases follows the predictive 

probability distribution (𝜇𝑖𝑡~𝑃𝑖𝑡 for all predictive distributions 𝑃𝑖𝑡), i.e., the probability integral 

transform (PIT) histogram is uniform. We computed the PIT histograms in both models for predictions 

over 3, 7, 10, and 14 days. The PIT histograms were computed using a non-randomised yet uniform 
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version of the PIT histogram correcting for the use of discrete values described in Czado et al [35] and 

implemented in hhh4. 

The PIT histograms were used to estimate whether the short-term forecasts were in line with the data, 

and whether the models were consistently missing some scenarios of transmission.  

4.3.7. Simulation study 

In order to highlight the impact of variations in the local vaccine coverage or the level of recent 

transmission on the risks of outbreaks, we generated simulations of the number of cases in France 

across one year under different conditions. To compute these simulations, we used the last values of 

average vaccine coverage (the average was computed from the values in 2015, 2016, and 2017) and the 

levels of recent incidence in mid-2018, and simulated the daily number of cases between the 1st of 

August 2018 and the 31st of December 2019. We started the simulations during the period of the year 

associated with the lowest number of cases (i.e., on the 1st of August), in order to avoid biases. Indeed, 

if we had used the last three months of data (until November 2018), some departments may have been 

repeatedly associated with higher numbers of cases in our simulations, not because they are more at 

risk of importation or transmission, but because there had been cases reported in these departments 

at the beginning of the epidemic year. We were only interested in highlighting the impact of variations 

in coverage and recent transmission, rather than predicting the level of transmission for the entire year 

of 2019. 

We generated 100 samples of the regression coefficients using the variance-covariance matrix and 

assumed they followed a multivariate normal distribution. For each sample, we computed the values of 

the three predictors between the 1st of August 2018 and the 31st of December 2019, and simulated the 

daily number of cases in each department across the year. We ran 100 simulations per sample (i.e. 

10,000 simulations were generated per scenario).  

We studied four scenarios: i) Using the latest local values of coverage (averaged over the past three 

years), population and category of recent incidence, ii) Increasing the vaccination coverage in each 

department by three percent, iii) Decreasing the vaccination coverage in each department by three 

percent, and iv) setting the recent incidence in each department to minimal levels (i.e. conditions 

fulfilling the WHO elimination status requirements).  

Finally, since tourism and local events can lead to mass gatherings and trigger repeated importations 

independent of parameters included in the model [36,37], we studied the impact of repeated local 

importations of cases into specific departments. To do so, we simulated one year of transmission (i.e., 

until the end of 2019) following the importations of 10 cases in a given department in December 2018. 
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In these simulations, we did not allow for any other baseline importations throughout the year, in order 

to assess the potential for geographical spread throughout the country after importation in one 

department.  

4.4. Results 

4.4.1. Impact of the covariates on each component 

The parameter estimates obtained in both models are shown in Figure 4.2. Values above 0 show 

aggravating effects associated with an increase in the number of expected cases at the next time step. 

For both models, departments with a high proportion unvaccinated in the past three years were 

associated with a higher number of expected cases in the autoregressive (Model 1:  0.14 [0.03 - 0.24] ; 

Model 2: 0.19 [0.09 - 0.29]) and the endemic component (Model 1:  0.37 [-0.17 - 0.91] ; Model 2: 0.48 

[0.17 - 0.80]). This indicates that these departments were at higher risks of background importations, 

and secondary transmission upon importation. In both components, the effect of vaccination was 

slightly stronger in Model 2, where cross-regional transmission is restricted to neighbouring 

departments, than in Model 1, where cross-regional transmission can happen between all departments, 

although the confidence intervals overlapped. In Model 1, the proportion unvaccinated also had an 

aggravating effect on the number of cross-departmental transmissions (0.47 [0.23 - 0.71]), whereas in 

Model 2 there was no clear association between the proportion unvaccinated and an increase in cross-

regional transmission (-0.02 [-0.29 - 0.25]). The differences between the models’ coefficients were due 

to the cross-regional transmission in Model 1 corresponding to both the neighbourhood component 

and some of the endemic transmission in Model 2.  

The association between the level of incidence over the past three years (parameters: 𝑖𝑚𝑚𝑢𝑛 1 and 

𝑖𝑚𝑚𝑢𝑛 2 in Figure 4.2) and the components of transmission was similar in both models. In the auto-

regressive component, departments that reported high incidence over the past three years (𝑖𝑚𝑚𝑢𝑛 2) 

were associated with fewer secondary cases per case in the department (Model 1: -0.15 [-0.23 - -0.08]; 

Model 2: -0.13 [-0.20 - -0.06]). This could be linked to outbreak-induced immunity causing a depletion 

of susceptibles in departments where incidence was high over the past few years. On the other hand, 

the parameters associated with 𝑖𝑚𝑚𝑢𝑛 2 were above 0 in the neighbourhood and endemic 

components, which indicates that departments with high incidence in the past three years were more 

at risk of cross-regional transmission and background importations (Model 1: Endemic 0.89 [0.50 – 

1.27]; Neighbourhood: 0.25 [0.09 – 0.41]; Model 2: Endemic 0.67 [0.46 – 0.89]; Neighbourhood: 0.31 

[0.11 – 0.51]). The parameter 𝑖𝑚𝑚𝑢𝑛 1 was only significantly different from 0 in the endemic 

component (Model 1: 0.66 [0.22 – 1.10]; Model 2: 0.57 [0.34 – 0.80]), meaning departments that 
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recently reported moderate levels of transmission were associated with more background importations, 

but no difference was noticeable in cross-regional or within-region transmission.  

The other covariates included in the model showed that the number of inhabitants in a department had 

an important impact on both the endemic and neighbourhood components: departments with more 

individuals were more likely to report background importations and cross-regional transmission.  On the 

other hand, the population and the surface area of the departments had no impact on the 

autoregressive component. We also observed a strong impact of seasonality on the three components 

(Figure 4.2). Indeed, the peak values of the predictors were 20 to 37% higher than the average value in 

all components of transmission (Supplement Section 3). The peak of the autoregressive component was 

in February for both models, the endemic peak was in May for Model 1 (April in Model 2), whereas the 

neighbourhood component peaked in December in Model 1 (March in Model 2).  

 

Figure 4.2: Estimates of the parameters in each component of Model 1 (blue) and Model 2 (purple): Panel A: Autoregressive 
component; Panel B: Neighbourhood component; Panel C: Endemic component; Panel D: Other coefficients. The y-axis. 𝑢𝑛𝑣𝑎𝑥 
corresponds to the effect of  𝑢𝑖,𝑡, the mean proportion unvaccinated over the three years before 𝑡 in 𝑖; 𝑖𝑛𝑐𝑖𝑑1 and 𝑖𝑛𝑐𝑖𝑑2 

correspond to the effect of 𝑁𝑖,𝑡
1  and 𝑁𝑖,𝑡

2  the category of incidence in the three years before 𝑡 in 𝑖; 𝑝𝑜𝑝 corresponds to the effect 

of 𝑚𝑖,𝑡 the number of inhabitants at 𝑡 in 𝑖; 𝑎𝑟𝑒𝑎 corresponds to the effect of the surface; 𝑠𝑖𝑛 and 𝑐𝑜𝑠 correspond to the effects 

of seasonality; 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 correspond to the spatial parameters of the connectivity matrix 𝑤 (𝛿 and 𝛾); 
𝑜𝑣𝑒𝑟𝑑𝑖𝑠𝑝 is the estimate of the log-overdispersion parameter in the negative binomial distribution of 𝑌𝑖,𝑡. Dots show the mean 

values associated with the parameters; arrows show the 95% Confidence interval. Note different y-axes between graphs. 

Using the mean parameter estimates, and the latest values of vaccination coverage, incidence, and 

number of inhabitants per department, we computed the local predictors 𝜙𝑖, 𝜆𝑖, and 𝜈𝑖 in both models 

to highlight the spatial heterogeneity of the transmission risks (Figure 4.3). The predictors were 

computed ignoring the impact of seasonality, which does not change the geographic distribution of risks 

since it is not region-dependent in the models. Therefore, the maps correspond to the average local 

value of the predictors the year following the last data entry (i.e. the 30th of November 2018). The 
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geographic distributions of the autoregressive predictor are similar in Model 1 and Model 2. This 

indicates that the same departments were classified as having higher risks of local transmission in both 

models. Areas with lower values of vaccine uptake such as the South East and South West of France 

were associated with higher risks of secondary transmission. Indeed, the highest values of within-region 

transmission were reported in Bouches-du-Rhône and Var (in the South East of France). Populous 

departments in the North of France were also at risk of secondary transmission despite higher 

vaccination coverage.  

As expected, the overall number of baseline importations in Model 1 was lower than in Model 2, which 

was compensated by a higher number of cross-regional transmissions (Figure 4.3). This shows that some 

of the cases that could not be linked to local transmission, or transmission between neighbouring 

departments in Model 2, were classified as cross-regional transmissions in Model 1, which would 

indicate long-distance transmission events. In both models, departments with a higher number of 

inhabitants were most at-risk of cross-regional and baseline importations, which corresponds to the 

strong association between the number of inhabitants and the endemic and neighbourhood 

components highlighted in Figure 4.2. Departments like Bouches-du-Rhône that combine a high number 

of inhabitants with low vaccine coverage were associated with the highest number of baseline and 

cross-regional importations in both models.  The variations in the autoregressive component were 

smaller than in the importation-related components: For instance, the highest autoregressive predictor 

value (Var: 0.81 [0.74 - 0.88]) was 35% higher than the lowest value (Lozère: 0.60 [0.53 – 0.66]) in Model 

1, whereas the number of baseline importations in Bouches-du-Rhônes was more than 100 times above 

the number of importations in Lozère (South of France). This can be explained by the coefficients of the 

autoregressive components being much closer to 0 than the most extreme coefficients in the 

importation-related components (Figure 4.2). 
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Figure 4.3: Average values of the endemic, neighbourhood, and autoregressive predictors per department in Model 1 (upper 
row) and Model 2 (lower row) over the year 2019. Since the absolute values are expected to vary over the year because of 
seasonality, the panels show the relative geographical heterogeneity. The endemic predictor corresponds to the number of 
importations per day per department, whereas the autoregressive predictor corresponds to the number of secondary cases per 
case in each department. The absolute value of the neighbourhood predictor is harder to interpret directly since it is multiplied 
by the connectivity matrix in the equation. Higher values were associated with departments with higher risks of observing cases 
following population movements. 

4.4.2. Model fit and calibration 

The daily and weekly fits of Model 1 and Model 2 indicate that they were able to match the transmission 

dynamics observed in France between 2009 and 2017, despite wide variations in the annual number of 

cases (Figure 4.4 Panel A and B, Supplement Section 4). In years where active transmission was reported, 

most of the cases stemmed from the autoregressive component, indicating that the local outbreaks 

were sustained by transmission within the departments. Indeed, across all years, the autoregressive 

component accounted for 72.9% of the cases, whereas 23.7% of the cases came from cross-regional 

transmission, and 3.4% from the endemic component (Supplement Figure S12).  This shows that in 

Model 1, 97.6% of the cases were explained by the transmission stemming from other cases reported 

in the dataset (93.2% in Model 2). The endemic component described the minority of isolated cases that 

could not be linked to any concurrent transmission cluster. Therefore, these cases would be more likely 

to be reported at times of low national levels of transmission when no other case could be linked to 

them, which explains the shift in seasonality of the endemic component observed in Figure 4.2 and 

Supplement Section 3. 

In order to visually assess the calibration of the model, and its ability to provide reliable short-term 

predictions for the number of cases per department, we generated PIT histograms showing the 
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probability integral transform obtained when forecasting the number of cases 3, 7, 10, and 14 days 

ahead (Figure 4.4, Panels C to F). The PIT histogram is uniform for predictions 3 and 7 days ahead (all 

groups are above 0.9 and below 1.1), which shows the number of occurrences where the predictions of 

the model did not capture the number of cases one week ahead was not higher than expected under a 

uniform distribution. As we increased the number of days of forecast, there were more occurrences of 

the model mis-predicting the number of cases to come. Indeed, the U-shape observed in Panel F of 

Figure 4.4 indicates the model was less capable of identifying extreme events two weeks in advance. 

The calibration study indicated that Model 2 was more prone to under-estimating the number of cases 

than Model 1, and showed signs of bias for the 7, 10, and 14-day predictions (Supplement Section 4). 

The national number of cases predicted by Model 1 and Model 2 were similar, and match the data for 

predictions 7 days ahead (Supplement Figure S11). The AIC scores and the calibration study indicated 

Model 1 was able to fit the data better than Model 2 and was better calibrated. The rest of the Results 

section therefore focuses on the conclusions reached using Model 1. The equivalent analysis run on 

Model 2 is presented in the Supplementary Section 4. 

 

Figure 4.4: Panel A and B:  Daily and weekly fit between the data and Model 1. The inferred number of cases is split among the 
three components of the model. Panel C to F: PIT histograms of Model 1, generated respectively for predictions 3, 7, 10, and 14 
days ahead. 

4.4.3. Impact of vaccination and recent incidence on onwards transmission 

In order to illustrate the impact of recent outbreaks and variations in vaccine coverage on the 

transmission dynamics in France, we generated 10,000 simulations and computed the number of cases 

per department in 2019. We ran the simulation from August 2018 (during the historically low 
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transmission season), until 31st December 2019. We generated four sets of simulations under different 

initial conditions: using the last measures of average local vaccine coverage, category of recent 

incidence, and number of inhabitants; increasing or decreasing the vaccine coverage by three percent, 

and setting the category of recent incidence to 0 in each department. 

Under the latest measures of coverage and incidence, the simulated outbreaks display a wide variation 

in the number of cases in 2019 (minimum 100 cases, median 1,100 cases, maximum 11,100 cases).  

Active transmission was generated in a wide range of departments. Indeed, across the simulation set, 

44 of the 94 French departments reported more than 10 cases in at least 25% of the simulations. There 

was noteworthy spatial heterogeneity in the levels of incidence. Indeed, in 12 departments, there was 

no case generated in more than half of the simulations (Figure 4.5, top right panel). The departments 

most vulnerable to active transmissions were highly populated urban areas, such as Paris, the Bouches-

du-Rhône, and the North of France. Because they are highly populated, these departments were 

susceptible to repeated importations (they reported at least 1 case in more than 95% of the 

simulations), which could then cause large transmission clusters. This was especially evident in the 

South-East of France, where we highlighted that the number of secondary cases per case in the 

department was among the highest in the country (Figure 4.3 and Figure 4.5). Numerous departments 

were affected by large outbreaks in a subset of the simulated datasets: 27 departments reported more 

than 50 cases in at least 5% of the simulations (Figure 4.5). Further, at least one major outbreak was 

generated in the majority of the simulations: in 55% of the simulations, one department reported more 

than 100 cases (the most commonly affected department were Paris and its surroundings, the Nord, 

and Bouches-du-Rhône). 

Decreasing the average three-year vaccine coverage by three percent led to an important increase in 

the number of cases per outbreak (median 4,900 cases, more than 95% of the simulations resulted in 

more than 1,000 cases). This was first due to an increase in importations and cross-regional 

transmission: all 94 departments had at least one case in more than half of the simulations, 77 in at 

least 90% of the simulations. Furthermore, the decrease in vaccination coverage resulted in higher 

chances of uncontrolled transmissions in many departments (Figure 4.5, third row). On the other hand, 

increasing the vaccine coverage by three percent caused an important drop in the number of cases 

(median 605 cases, 80% of the simulations generated less than 1,000 cases), caused by both a decrease 

in the number of importations, and in the potential for secondary transmission following importations. 

Although outbreaks were still punctually generated, these events are much rarer than in the other two 

simulation sets: in 25.8% of the simulations, at least one department generated more than 100 cases 

(54.1% with the baseline scenario, 95.4% when we reduced the local vaccine coverage). 
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Finally, setting the local recent incidence to the minimum level in each department, which would fulfil 

the elimination guidelines, had two opposite effects: it led to a decrease in the number of importations 

and cross-regional transmission, and an increase in the number of infections within each department 

(Figure 4.2). In this simulation set, the number of departments where no cases were generated in more 

than half of the simulations was similar to when the vaccine coverage was increased (24 departments 

in this simulation set, 29 when the vaccine coverage was increased, Figure 4.5), which shows the 

reduction in the number of cross-regional transmission and background importations. Conversely, the 

number of large outbreaks was only marginally inferior to the reference simulation set: in 44% of the 

simulations, there were more than 100 cases generated in at least one department (54% in the 

reference dataset). The geographical distribution of the risks of large outbreaks was almost identical to 

the reference simulation set (Figure 4.5). Therefore, although the number of importations was reduced, 

changing the level of recent incidence did not have a clear impact on the risks of active transmission. 

More departments became vulnerable to secondary transmission, and despite importations in these 

departments being rarer, they were more likely to lead to large outbreaks when they happened. The 

two opposing effects recent incidence had on importation and transmission therefore created a 

different dynamic of transmission observed in the simulation set, without strongly reducing the risks of 

outbreaks. 

Each of these simulation sets highlighted the wide range of scenarios that could be generated using the 

parameter distributions inferred by our model. In order to gain more understanding on the spatial 

spread and consequences of importations, we then explored the impact of localised repeated 

importations on overall transmission. 
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Figure 4.5: Percentage of simulations where the number of cases reported in each department in 2019 was at least 1, 10, and 
50 cases for each scenario using parameter estimates from Model 1. Each row corresponds to a different scenario: i) Reference, 
ii) Minimum level of recent incidence in each department, iii) Local vaccine coverage decreased by three percent in each 
department, iv) Local vaccine coverage increased by three percent in each department. 

4.4.4. Impact of local clusters of transmission 

Since the endemic component, which can be interpreted as external importations, represented a 

minority of the cases in our model (Supplement Figure S12), repeated importations in a given 

department over a short timespan rarely occurred in the simulations. Furthermore, due to the 

seasonality of the endemic component, fewer importations are generated early in December to 

February, which corresponds to the peak period of the other components, and would therefore be more 

likely to cause secondary transmissions (Supplement Section 3). We simulated one year of transmission 

following ten importations in December 2018 to illustrate: i) the potential for local outbreaks, and ii) 
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the spatial spread of transmission following repeated local importations. We selected four departments 

to compare the impact of repeated importations in a range of settings: Paris (many inhabitants, 91% 

vaccine coverage, surrounded by urban areas), Bouches-du-Rhône (many inhabitants, 84% vaccine 

coverage), Haute Garonne (many inhabitants, 91% vaccine coverage but high levels of recent incidence, 

surrounded by rural areas with lower vaccine coverage), and Gers (Rural area, 79% vaccine coverage) 

(Figure 4.6).  

Firstly, major local outbreaks in the department of importation were generated in all four simulation 

sets, and especially in Paris and Bouches-du-Rhône, where the proportion of simulations that yielded 

more than 100 subsequent cases in the department was 40% and 39%, respectively. In the Bouches-du-

Rhône, large outbreaks were mostly due to the low vaccination coverage, whereas in Paris, outbreaks 

were mostly linked to the connectivity to nearby areas and the high number of inhabitants, which meant 

the department was likely to attract cross-regional transmissions. Major local outbreaks were rarer in 

the other two scenarios (9% of simulations above 100 in Haute Garonne, 10% in Gers). The lower 

proportion of large outbreaks resulted from different factors: recent large outbreaks in Haute Garonne 

reduced the autoregressive predictor, lowering the number of secondary cases per case imported; 

whereas since Gers is a rural department, with a low number of inhabitants, almost all the local cases 

were due to local transmission (auto-regressive component), with very few cross-regional transmissions 

into Gers. 

Conversely, the simulations where cases were imported in Gers yielded the largest spatial spread 

throughout the country: the median number of departments that reported at least 1 case was 53 (16 

when the importations were generated in Haute Garonne; 15 in Bouches-du-Rhône; 39 in Paris). As 

stated in the method, the number of cross-regional transmissions is the product of the predictor and 

the connectivity matrix, divided by the number of inhabitants in the department of origin, to represent 

that only a fraction of commuters will be infected. Therefore, populous areas are more likely to attract 

cross-regional transmissions, whereas more rural departments are more likely to seed outbreaks in 

other areas. The relatively high spatial spread when cases were imported in Paris is due to the short 

distance between Paris and its suburbs, which is then more likely to cause cross-regional transmission 

in the northern departments. Despite the cross-regional spread observed in both of these simulations 

sets, outbreaks remained local, and occurrences of nation-wide outbreaks were almost null. The 

departments most at risk of outbreak following cross-regional spread were some of the direct 

neighbours of the department of importations, or the large urban areas (Figure 4.6). To further explore 

this, we ran the same simulations decreasing the vaccine coverage by three percent, which greatly 

increased the number of departments exposed in each simulation set, and increased the risk of local 

transmission (Supplement Section 6). Therefore, although repeated importations could cause active 
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transmission in and around the departments of importation, the current values of vaccine coverage and 

the seasonality of transmission were able to prevent nationwide transmission.  

 

Figure 4.6: Percentage of simulations where the number of cases reported in each department in 2019 was at least 1, 10, and 
50 cases following the importations of ten cases in December 2018, and using the parameter estimates from Model 1. For each 
row, the department of importation is indicated by a black dot. 

4.5. Discussion 

This analysis explored which local factors were associated with high risks of transmission in France over 

the last decade. Since 2017, immunity gaps, caused by failures to vaccinate, have been linked to a 

resurgence of measles in all WHO regions [38]. In countries near elimination, large outbreaks have been 

linked to heterogeneity in the levels of immunity, with pockets of susceptibles fuelling punctual 

outbreaks despite high national vaccine uptake [1,2,4,25]. Our study showed that local values of vaccine 

coverage were linked to lower transmission, whereas lower levels of recent incidence were not 
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associated with lower risks of local transmission. Furthermore, we highlighted that a drop of 3% in the 

three-year vaccine coverage triggered a five-fold increase in the number of cases simulated in a year. 

The fact that higher vaccine coverage was associated with a lower number of secondary cases is 

consistent with prior expectations, and would confirm that the local values of first dose vaccine 

coverage are a good indicator of the actual immunity in the population and risks of future transmission. 

Reporting accurate values of local vaccine coverage is challenging, for instance because the vaccination 

status of people moving regions can be hard to track and lead to measurement errors. Furthermore, we 

did not have access to complete data on the coverage of the second MMR dose, which would be a better 

indicator of vulnerable areas. Therefore, detecting the association between recent vaccine uptake and 

incidence is encouraging. The impact of local vaccination coverage on transmission may also be muddled 

by sub-regional vaccine heterogeneity. For instance, pockets of susceptibles within a region, i.e. areas 

within the region where the vaccine coverage is substantially lower than the regional average, may be 

at high risk of transmission and would not be observable in regional coverage [39]. This phenomenon 

can only be hypothesised here, and could be explored using local data on incidence and vaccine uptake 

at a sub-regional scale.  

Variations in vaccine coverage had a noticeable impact on the number of cases generated in the 

simulation study. We showed the effects of a three percent increase and decrease of the three-year 

average vaccine coverage on the number of cases, which highlighted the risks of uncontrolled 

transmission in the event of a decrease of vaccine-induced protection. Events such as the disruption 

caused by the SARS-COV-19 pandemic on routine measles vaccination campaigns could therefore highly 

increase the risks of uncontrolled measles transmission in the years to come [40,41].  

The departments that reported few cases per million in the past three years were associated with higher 

risks of local transmission (autoregressive component). Therefore, according to our model, regions 

eligible for elimination status were not associated with lower risks of onwards transmission. Conversely, 

high levels of recent transmission were associated with a lower number of cross-regional transmissions 

and importations, although we cannot methodologically establish the causality of this association. The 

impact on the simulation study was clear: when we set the category of recent incidence to the lowest 

level, departments were less exposed to cases, and spatial spread was rarer, whilst there was little 

change in the risks of major outbreaks. The simulations showed an ‘all-or-nothing’ situation: 

departments tended to report very few to no cases, whilst also being more likely to be affected by 

outbreaks. These results would indicate that looking into the level of incidence to quantify the future 

risks of outbreaks can be deceptive, and importations in a department with low recent incidence would 

result in large transmission clusters. 
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We proposed a new framing of the Epidemic-Endemic model implemented in hhh4 by adapting it to 

daily count data using the distribution of the serial interval to compute the local transmission potential. 

Using daily case counts allowed us to avoid biases associated with aggregated case counts, such as the 

influence of the arbitrary aggregation date, by accounting for the impact of variation in the serial 

intervals. We also accounted for the risks of unreported cases by computing a composite multimodal 

serial interval, thus allowing for transmission with a missing generation, or an unreported ancestor. The 

model was able to capture the dynamic of transmission better than the 10-day aggregated model, as 

shown by the calibration study (Supplement Section 7). Nevertheless, our framing of the hhh4 model 

introduced new biases: we used a distribution of the serial interval based on previous studies rather 

than estimating the weights during the fitting procedure and set the proportion of missing generations 

in the composite serial interval. We explored the impact of the proportion of missing generations by 

fitting the model with different composite serial intervals and concluded that the impact of each 

covariate was robust to these changes (Supplement Section 1). We also integrated a potential day-of-

the-week effect, and observed that although it had an impact on the auto-regressive component, it did 

not change the estimates of the other parameters, and therefore did not change the conclusions of the 

study (Supplement Section 8).  

Using the hhh4 model allowed us to analyse the different impact of various covariates on local and cross-

regional transmission, and background importation of cases. According to the models we implemented, 

an overwhelming majority (>90%) of the transmission came from the cross-regional and local 

components of the regression. This indicates that in the models, the endemic component only 

corresponds to rare background cases that could not be linked to concurrent transmission events. This 

could point towards model misspecifications, for example, connecting unrelated importations to 

concurrent local transmission. Since endemic transmission tends to refer to cases otherwise 

unexplained by the mechanistic components, the seasonality of the endemic component is decoupled 

from the other components, i.e. endemic cases are likely when local and cross-regional transmission are 

lower.  

Since the endemic component accounted for such a small minority of the cases, group importations of 

cases in a given department were rarely observed in the simulations. However, tourism, and local events 

lead to large gatherings and can increase the risks of group importations in a limited period of time 

[36,37]. We simulated the spatial spread following repeated importations in a given department, and 

highlighted that although large outbreaks in the department of importations were common, nation-

wide transmission following these importations was very rare. Only the departments where all cases 

had been imported, and its neighbours, were at risk of uncontrolled outbreaks. Decreasing the level of 

vaccination by three percent was associated with a large increase in the level of exposure of all 
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departments, and in the number of departments where large outbreaks were generated (Supplement 

Section 6 and 7). The high levels of transmission observed in recent years in France suggest that 

importations are frequent, and even a small drop in vaccination could dramatically increase measles 

transmission in the country. 

Furthermore, since the number of inhabitants was strongly associated with risks of background 

importations, most of the endemic importations were reported in urban areas, where the risks of 

exportations were lower. This could explain the discrepancies between the distribution of the number 

of cases in the simulations (Figure 4.5, top row), and the actual number of cases reported in France in 

2019 [42]. Active transmission was reported in a number of rural areas, notably in the South West of 

France, and in Savoie (East). This could be due to importations and cross-regional transmission that are 

under-estimated by our model. Although the model captured the dynamics seen in the data, the 

calibration study showed it was only able to predict short-term transmission up to one week. The PIT 

histogram associated to the 14-day calibration displayed signs of bias, which shows that the model was 

not able to consistently predict variations in the future number of cases in the next two weeks. We 

identify several factors that could explain the discrepancies observed for longer term predictions: i) the 

indicator of local immunity we used was flawed: two-dose coverage would be a better indicator of the 

proportion of the population that is protected; ii) The sub-regional heterogeneity in coverage and past 

incidence within the department that could be concealed by NUTS3 aggregated data: because of social 

groups that rarely mix with one another, or large NUTS regions, large outbreaks in a given community 

would not be a good indicator of the overall level of immunity in a region. Nevertheless, we believe that 

the results obtained using limited publicly available covariates are encouraging and we intend to apply 

this method using more complete data.  

We identified a number of limitations of this study that have not yet been mentioned: Firstly, potential 

reactive control measures in case of high transmission were not accounted for. It is likely that if the level 

of incidence was increasing over a short period of time, control measures would be implemented and 

the behaviour of the individuals may change (e.g. school closures, catch-up vaccination campaigns). This 

could impact the number of expected cases after a certain threshold is passed, and impact the dynamics 

in the simulated outbreaks. Secondly, we did not include information on the age or genotype of the 

cases. Therefore, unrelated importations in successive time-steps in a given region may be considered 

as linked by our model, whereas they should be separated. Further development of this method could 

focus on taking this aspect into account, in order to give information on the number of independent 

concurrent chains. Thirdly, since this is not a transmission model, some extreme values could trigger 

unlikely behaviour. For instance, if the vaccination rate would be 100%, we would still expect sporadic 

transmission. Although this would not be entirely implausible given that only the vaccination coverage 
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in the past three years was taken into account in the models (i.e. even if it was 100% coverage, there 

could be susceptible individuals in different age groups). Finally, the impact of the different covariates 

on the number of cases was constant through time. For instance, the impact of seasonality may depend 

on factors such as the weather which may vary each year, which would not be accounted for in the 

model we developed. 

We used variables collected in a wide range of settings (regional vaccine coverage, incidence, number 

of inhabitants, surface), therefore this analysis can be reproduced in other countries to analyse the 

potential for local transmission as well as the impact of recent incidence and vaccine-induced immunity. 

Since the case counts data are not publicly available, we share the code used to generate the analysis 

applied to a simulated dataset on a Github repository: (https://github.com/alxsrobert/measles-

regional-transmission).  

4.6. Disclaimer 

The views and opinions of the authors expressed herein do not necessarily state or reflect those of 

ECDC. The accuracy of the authors’ statistical analysis and the findings they report are not the 

responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data 

provided. ECDC is not responsible for the correctness of the data and for data management, data 

merging and data collation after provision of the data. ECDC shall not be held liable for improper or 

incorrect use of the data. 
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Chapter 5. Impact of aggregation on the Epidemic-Endemic framework: 

A simulation study 

5.1. Introduction 

Reports of outbreaks from national routine surveillance often come in the form of aggregated spatio-

temporal data, i.e. they contain the number of cases per region and per unit of time. These publicly 

available reports are typically weekly, or fortnightly aggregated. Therefore, the information they give 

on transmission dynamics is coarser than daily case reports, although these are harder to access. 

Publicly available data are key to understanding how a given virus can spread in a variety of settings. 

Therefore, mathematical models have been adapted to use aggregated data and to incorporate them 

in the study of outbreak dynamics [1–3]. However, aggregating incidence data is a simplification that 

may lead to biases, for instance infectors and infectees may be grouped together at the same time point, 

and a dependence on the starting date of aggregation can introduce bias. Hence there is a need to 

assess whether the outputs of models using daily surveillance data are robust if applied to aggregated 

data. 

The Epidemic-Endemic framework, implemented in the R package surveillance, was introduced by Held 

et al. to study infectious disease counts [4], and was further developed in various studies [3,5–8]. It uses 

aggregated case counts to analyse the number of cases resulting from three different components: the 

number of importations, local transmission, and cross-regional transmission in each region. It has 

repeatedly been applied to aggregated measles case counts in countries near elimination, for instance 

highlighting the impact of heterogeneity in regional coverage on measles transmission in Germany [6]. 

The Epidemic-Endemic framework commonly computes the average number of cases expected using 

the number of cases per region at the previous time step. This assumes that the aggregation mirrors the 

typical number of days between the infector and an infectee’s reported onset dates (i.e. the serial 

interval), and therefore ignores the variability of these intervals and, consequently, the impact of 

unreported generations between two connected cases or intervals that are shorter than the temporal 

resolution of reporting. The date of aggregation also influences which cases are clustered together, and 

which generation each case belongs to. Therefore, using aggregated data may influence how the 

transmission parameters are estimated, and may introduce biases. 

In the fourth chapter of this thesis, I adapted the Epidemic-Endemic framework to daily case counts, 

describing the risks of transmission over time using the distribution of measles serial interval [9]. In this 

chapter, I aimed to look into the impact of using aggregated data on the parameter fits and the 

calibration of the model. To do so, I generated a set of simulated outbreaks, using France as a case 
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study, and the parameter distribution estimated in Chapter 4. Daily and 10-day aggregated Epidemic-

Endemic models were then fitted to the simulated outbreaks. Finally, the outputs were compared to 

assess whether both sets of models were able to estimate the right parameter values, and whether 

using daily data significantly improved the calibration of the model.  

5.2. Methods 

5.2.1. Summary of the Epidemic-Endemic framework 

The Epidemic-Endemic framework (also called “hhh4”), introduced in Chapter 4, is used to model the 

regional case counts 𝑌𝑖𝑡. To do so, the model assumes that 𝑌𝑖𝑡  follows a negative binomial distribution 

with mean 𝜇𝑖𝑡, the expected number of cases at the time step 𝑡 in the region 𝑖, which depends on three 

sources of transmission, also called components: 

- The autoregressive component (predictor 𝜆𝑖𝑡) represents the number of secondary cases 

originating from 𝑌𝑖𝑡−1, the number of cases in 𝑖 at the previous time step. 

- The neighbourhood component (predictor 𝜙𝑖𝑡) represents the number of cases originating from 

𝑌𝑗𝑡−1 , the number of cases in 𝑗 = 1. . 𝑛 (𝑗 ≠ 𝑖), the regions around 𝑖, at the previous time step. 

The connectivity between the different regions is quantified by the connectivity matrix 𝜔𝑖𝑗. 

- The endemic component (predictor 𝜈𝑖𝑡) represents the background number of cases expected 

at 𝑡 in 𝑖 that are not linked to recent transmission in or around 𝑖. 

The full equation for the expected number of cases in region 𝑖 at time 𝑡 is: 

𝜇𝑖,𝑡 = 𝜈𝑖,𝑡 + 𝜆𝑖,𝑡 ∗ 𝑌𝑖,𝑡−1 + ϕi,t ∗  ∑ (𝜔𝑗𝑖 ∗ 𝑌𝑗,𝑡−1)𝑗≠𝑖    (9) 

The predictors 𝜆𝑖,𝑡, 𝜙𝑖,𝑡 and 𝜈𝑖,𝑡 are estimated using log-linear regressions. Each predictor contains the 

intercept 𝛼 (identical across spatial units), and the vector of coefficients 𝛽 associated with 𝑧𝑖,𝑡 (the 

vector of covariates in each component at 𝑡 in 𝑖). 

𝑙𝑜𝑔(𝜆𝑖,𝑡) = 𝛼
(𝜆) + 𝛽(𝜆) ∗ 𝑧𝑖𝑡

(𝜆)     (10) 

𝑙𝑜𝑔(𝜙𝑖,𝑡) = 𝛼
(𝜙) + 𝛽(𝜙) ∗ 𝑧𝑖𝑡

(𝜙)
     (11) 

𝑙𝑜𝑔(𝜈𝑖,𝑡) = 𝛼
(𝜈) + 𝛽(𝜈) ∗ 𝑧𝑖𝑡

(𝜈)     (12) 

5.2.2. Generation of simulated outbreaks  

I generated 100 simulated datasets, containing the daily number of cases in each of the 94 French 

metropolitan departments (i.e. NUTS3 regions) between January 2009 and December 2017. All the 

functions used to generate and analyse the outbreaks, and generate the plots of the analysis, are 

available on the Github repository https://github.com/alxsrobert/measles-regional-immunity. The 
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outbreaks were simulated using the equations (1) to (4), using the same set of covariates as in Chapter 

4, namely: 

1. The 3-year average local vaccine coverage: the first dose local vaccination uptake at 2 years-old 

is available on the website Santé Publique France [10–12]. I retrieved and collated the local 

data, and inferred the missing entries using a beta mixed model. For more details on the 

inference methods, and the coverage data, see Section 1 in Chapter 4’s Appendix. The functions 

used to generate the coverage data are in the script function_coverage.R on the 

aforementioned Github repository. The log-proportion of coverage log(𝜇𝑖𝑡) was added as a 

covariate in all three components. 

2. The category of incidence: This covariate quantifies the impact of local transmission in the past 

three years on current transmission. Firstly, I computed 𝑛𝑖𝑡, the number of cases per million 

reported in each region between a month (to exclude current transmission) and three years 

before the current time step. The local incidence is then split into three categories: i) 𝑁𝑖,𝑡
(0) =

{
1 𝑖𝑓 𝑛𝑖,𝑡 < 10 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: very limited transmission in recent years; ii) 𝑁𝑖,𝑡

(1) = {
1 𝑖𝑓 10 ≤ 𝑛𝑖,𝑡 < 45 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: 

Moderate transmission in recent years; iii) 𝑁𝑖,𝑡
(2) = {

1 𝑖𝑓 𝑛𝑖,𝑡 ≥ 45 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
: major outbreak reported in 

the department in recent years. The thresholds were chosen to match the parametrisation used 

in Chapter 4. At the beginning of the simulation (1st January 2009), the level of incidence was 

set to the minimum in all regions, i.e. 𝑁𝑖0
0 = 1,   𝑁𝑖0

1 = 0, and 𝑁𝑖0
2 = 0, and was then computed 

at each time step of the simulations. The category of incidence was added as a covariate in all 

three components. 

3. The number of inhabitants: The population per French department between 2009 and 2018 𝑚𝑖𝑡 

is publicly available on the INSEE website [13]. The functions used to generate the population 

data are in the script function_distance_population.R on the Github repository. The log-number 

of inhabitants was added as a covariate in all three components. 

4. The surface area of each region was also computed using the INSEE data [13]. The log-surface 

of each region was added to the auto-regressive component. 

5. The seasonality was generated using two covariates (sine-cosine functions), and added to all 

three components. 

The connectivity between regions was computed using an exponential gravity model, where every 

region was connected to one another [14]. The connectivity between two regions 𝑖 and 𝑗 was computed 

as follows: 𝑤𝑖𝑗 = e
−𝛿𝑑𝑗𝑖 ∗

𝑚𝑗𝑡
𝛾

𝑚𝑗𝑡
, where 𝑑𝑗𝑖  is the distance in kilometres between 𝑖 and 𝑗, and 𝑚𝑗𝑡 the 

number of inhabitants in 𝑗 and 𝑡. The values of the parameters 𝛿 and 𝛾 were taken from the final 
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parameter estimates in Model 1. The distance between departments was calculated from the 

population centroids of each department, which were computed using the 1𝑘𝑚2 European Grid dataset 

[15]. This dataset contains the number of inhabitants in each grid cell covering France (resolution 1km). 

The weighted population centre was calculated using the R function zonal from the package raster [16]. 

For each outbreak, the set of parameters was drawn using Monte Carlo simulations. These simulations 

were generated from the parameter means and the covariance matrix estimated with Model 1 in 

Chapter 4, assuming that the estimates follow a multivariate normal distribution (Table 5.2).  

In the default aggregated version of the Epidemic-Endemic framework, the number of cases generated 

at 𝑡 by the autoregressive and neighbourhood components solely depends on the number of cases at 

𝑡 − 1. In the daily version of the framework, the transmission potential was computed by convoluting 

the number of daily cases in the last month with the distribution of the serial interval 𝑓(𝑡): 𝑌𝑖𝑡
′ =

∑ 𝑌𝑖,𝑡−𝑘 ∗ 𝑓(𝑘)
50
𝑘=1 . The average serial interval for measles was taken to be 11 days, following a 0-

truncated normal distribution: 𝑓1(𝑡)~𝑁(11.7, 2) [9]. Therefore, in the simulated outbreaks the 

transmission potential was computed at each iteration in every region.  

The full equation of the average number of new cases at 𝑡 in 𝑖 was generated from Equation (1), 

replacing 𝑌𝑖𝑡  by the transmission potential 𝑌𝑖𝑡
′ , and with the predictors as follows: 

Autoregressive predictor: 𝛽(𝜆)𝑧𝑖𝑡
(𝜆)
= 𝛽𝑢

(𝜆)
𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽𝑁(1)

(𝜆)
𝑁𝑖,𝑡
(1)
+ 𝛽

𝑁(2)
(𝜆)
𝑁𝑖,𝑡
(2)
+ 𝛽𝑚

(𝜆)
log (𝑚𝑖,𝑡) +

𝛽𝑠
(𝜆)log (𝑠𝑖,𝑡) + 𝛽𝑐𝑜𝑠

(𝜆)cos (
2𝜋𝑡

365
) + 𝛽𝑠𝑖𝑛

(𝜆)sin (
2𝜋𝑡

365
) 

Neighbourhood predictor: 𝛽(𝜙)𝑧𝑖𝑡
(𝜙)

= 𝛽𝑢
(𝜙)
𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽𝑁(1)

(𝜙)
𝑁𝑖,𝑡
(1) + 𝛽

𝑁(2)
(𝜙)

𝑁𝑖,𝑡
(2) + 𝛽𝑚

(𝜙)
log(𝑚𝑖,𝑡) +

𝛽𝑐
(𝜙)
cos (

2𝜋𝑡

365
) + 𝛽𝑠

(𝜙)
sin (

2𝜋𝑡

365
)demic predictor: 𝛽(𝜈)𝑧𝑖𝑡

(𝜈) = 𝛽𝑢
(𝜈)𝑙𝑜𝑔(𝑢𝑖,𝑡) + 𝛽𝑁(1)

(𝜈) 𝑁𝑖,𝑡
(1) + 𝛽

𝑁(2)
(𝜈) 𝑁𝑖,𝑡

(2) +

𝛽𝑚
(𝜈)log (𝑚𝑖,𝑡) + 𝛽𝑐

(𝜈)cos (
2𝜋𝑡

365
) + 𝛽𝑠

(𝜈)sin (
2𝜋𝑡

365
) 

The number of new cases at each day and region was generated using a negative binomial distribution, 

where the mean was computed from Equation (1), and the overdispersion parameter was taken from 

the parameter set generated in Chapter 4. The mean value of each parameter is listed in Table 5.2. In 

order to assess the impact of partial reporting of cases on the models’ performances, 30% of the cases 

were removed to account for incomplete reporting of cases, which is common during measles 

outbreaks. The removed cases were chosen at random. In real-life outbreaks, the proportion of missing 

cases could vary depending on the number of cases in the area, and the capacities of the surveillance 

system, this was not accounted for in this example, since I only aimed to quantify how Epidemic-

Endemic models can adjust to some level of partial reporting. 
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Table 5.2: Mean values of the parameters used to generate the simulation set. For each simulation, the parameter set was 
drawn using the covariance matrix. 

Parameter Symbol Mean value, 

autoregressive 

component 

Mean value, 

neighbourhood 

component 

Mean value, 

endemic 

component 

Intercept 𝛼 −0.018 7.54 −5.83 

Coefficient associated with the log 

proportion unvaccinated 

βu 0.14 0.47 0.37 

Coefficient associated with moderate 

levels of recent transmission 

β𝑁1 −0.044 0.031 0.66 

Coefficient associated with high 

levels of recent transmission 

β𝑁2 −0.15 0.25 0.89 

Coefficient associated with the log 

number of inhabitants 

β𝑚 0.048 1.06 1.49 

Coefficient associated with the 

surface of the department 

𝛽𝑠 0.0057 Not included Not included 

Coefficient associated with the 

cosine function of seasonality 

𝛽𝑐𝑜𝑠 0.27 0.12 0.0082 

Coefficient associated with the sine 

function of seasonality 

𝛽𝑠𝑖𝑛 0.016 −0.14 0.21 

Parameter quantifying the impact of 

the number of inhabitants on the 

connectivity between regions 

𝛾 Not applicable 0.27 Not applicable 

Parameter quantifying the impact of 

the distance on the connectivity 

between regions 

𝛿 Not applicable 0.0079 Not applicable 

Overdispersion 𝜙 3.31 

 

5.2.3. Fitting and evaluating the models 

After each simulation, a daily and an aggregated model were fitted to the daily case counts reported 

per region, i.e.  the number of local cases after accounting for the report rate. Both models integrated 

the same covariates, listed in the previous section (i.e. coverage, incidence, population, surface, 

seasonality). The thresholds of the incidence categories were not the same as the categories used in the 

simulations. Indeed, the threshold for high level of incidence in the simulations was defined as 45 cases 
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per million in the past 3 years, which is similar to the categories used in Chapter 4 and corresponds to 

the second incidence tercile in the French data. To match the protocol used in Chapter 4, the threshold 

describing the highest level of incidence in the model was computed using the second tercile of all 

measures of recent incidence, for each simulation. Therefore, the thresholds differ for each iteration. 

In the daily model, I accounted for potential missing generations between cases by using a composite 

serial interval accounting for three scenarios: 

1. In case of direct transmission between two cases 𝑖 and 𝑗, the number of days between the two cases 

𝑓1(𝑡) follows a Normal distribution truncated at zero: 𝑓1(𝑡)~𝑁(11.7, 2).  

2. In case of unreported cases between 𝑖 and 𝑗, the number of days between the two cases 𝑓2(𝑡) 

follows a Normal distribution truncated at zero: 𝑓2(𝑡)~𝑁(23.4, √8), i.e. the convolution of 𝑓1(𝑡) 

with itself. 

3. If 𝑖 and 𝑗 share the same unreported index case, the number of days between 𝑖 and 𝑗 follows a half-

Normal distribution (truncated at zero) of standard deviation √8 days, which is equivalent to the 

distribution of the difference of 𝑓1(𝑡) with itself, excluding values below 1.  

As in Chapter 4, 50% of the composite serial interval reflected direct transmission (scenario 1, without 

missing generations between cases), and 50% came from the two scenarios with unreported cases 

(scenarios 2 and 3). The aggregated model used a 10-day aggregation, which should correspond to the 

optimal aggregation for measles outbreaks, given it is close to the average serial interval.  

The aggregated and non-aggregated models were compared using different characteristics: Firstly, their 

ability to accurately estimate the parameters, i.e. whether the mean estimates in a given simulation set 

were close to the means from the input data, and whether the input parameter fell into the 95% 

confidence interval of the parameter distribution. The estimated parameters were compared to their 

“true” values used for the simulations using Probability Integral Transform (PIT) histograms, which were 

generated by computing the quantile of the input parameter in the cumulative distribution of the fitted 

distribution [17]. The fitted distribution was calculated using a normal distribution, with the means and 

standard deviation estimated by the Epidemic-Endemic models. 

Secondly, I compared the predictive ability of the two models for each simulation using a strictly proper 

scoring rule, which is a common way to assess predictive ability when compared to data [18]. To 

compute the forecast scores of both models, I generated 10-day predictions every 10 days for the last 

year of data, which corresponded to 35 dates of calibration. For the aggregated model, the built-in 

function OneStepAhead was used to generate the forecasts. In the daily models, analytically computing 

the distribution of the cumulated number of cases predicted over 10 days was not straightforward. 

Therefore, a simulation approach was chosen instead, where the daily model was fitted up to each date 
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of calibration 𝑡𝑐. The parameters estimated during this fit were then used to generate 𝐾 simulations of 

the number of cases per region in the next 10 days. The local number of cases across the 10 days were 

added together to generate the distribution of the number of cases predicted per region. In all 

calibration sets, 𝐾 was set to 20,000 simulations, which led to stable predictive distributions. If the 

number of cases observed in the data had not been observed in the calibration with 𝐾 = 20,000, more 

simulations were generated until the number of observed cases was obtained at least once. The 

distributions obtained under the aggregated and daily models were then compared to the data to 

compute the Ranked Probability Score (RPS), a strictly proper scoring rule, as an overall indicator of 

predictive ability. The RPS encapsulates the paradigm that forecasts should aim to “maximise sharpness 

subject to calibration” [18], and is defined for count data as [19]: 

𝑅𝑃𝑆(𝑃𝑡 , 𝑥𝑡) = ∑(𝑃𝑡(𝑘) − 𝟙(𝑘 ≥ 𝑥𝑡))

∞

𝑘=0

 

𝑃𝑡(𝑘) is the predictive cumulative probability of observing incidence k at time t, and 𝑥𝑡 the observed 

data point. 

For a more detailed assessment, I also separately evaluated predictive bias (i.e. the degree to which the 

models systematically under- or overestimated the number of cases) and sharpness (i.e. the width of 

the predictive distributions) of the models. The bias is defined as [20]:  

𝐵𝑡(𝑃𝑡, 𝑥𝑡) = 1 − (𝑃𝑡(𝑥𝑡) + 𝑃𝑡(𝑥𝑡 − 1)) 

And the sharpness is evaluated using the normalised median absolute deviation about the median 

(MADN) [20]:  

𝑆𝑡(𝑃𝑡) =
1

0.675
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑦)|) 

With 𝑦 a variable with Cumulative distribution function (CDF) 𝑃𝑡. 

For each simulated dataset, the Permutation Test implemented in the surveillance package was used to 

assess whether the differences in RPS between both models were significant [7]. 

5.3. Results 

5.3.1. Description of the simulated outbreaks 

Each dataset was simulated by drawing the number of cases per department from a negative binomial 

distribution every day between January 2009 and December 2017. The set of simulated outbreaks 

generated showed a wide variety of transmission dynamics. The overall number of cases generated in 

nine years ranged from 5,900 to 258,100, while 60% of the simulations had between 10,000 and 20,000 



152 
 

cases (Figure 5.1A). Since only 70% of the cases were assumed to be reported, the median number of 

cases reported in the simulation was 10,600 cases. Similarly, the number of annual cases greatly varied 

between the simulation sets (Figure 5.1B). Major outbreaks with more than 2,000 cases were generated 

in at least one simulation every year, whereas the minimum was around 300 cases per year. Within-

simulation variations were also observed: in some simulations the number of yearly cases was relatively 

constant, with seasonal outbreaks reaching similar daily maximums every year (Figure 5.1C), whereas 

in others, large outbreaks followed for several years with low levels of transmission (Figure 5.1D). 

 

Figure 5.1: Panel A: Overall number of cases generated and reported per simulation, 70% of the generated cases were reported. 
The black dotted line represents the actual number of cases reported in France in this timespan (approximately 14 000 cases).  
Panel B: Boxplots of the number of cases reported per year in the simulations, Panels C and D: Daily number of cases in two of 
the simulations generated. The y-axis in panels A and B are shown in log-scale. 

Finally, the spatial distribution of the cases showed that in more than 95% of the simulations, all the 

departments reported at least one case (left panel Figure 5.2), excepted for Lozère and Arriège (in 

orange on the map), which were exposed only in more than 75% of the simulations. More spatial 

heterogeneity was observed in the distribution of departments that reported 10 yearly cases or more 

in at least one year of the simulations: All departments in the suburbs of Paris and the north of France 

reported more than 10 yearly cases at least once, whereas various rural regions in the centre and the 

south reported 10 cases in less than half the simulations (Central panel Figure 5.2). Finally, large 

outbreaks were sparser: many rural regions never reached 50 cases in a year, where highly populated 

urban centres (Departments around Paris, Lille, Lyon, or Marseille in orange and red) reported more 
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than 50 annual cases at least on one occasion in more than half of the simulations. This is most likely 

because urban centres tend to attract cases from cross-regional transmissions, as observed in Chapter 

4. Indeed, since the set of parameters used to generate this simulation set was taken from the model 

fitted in Chapter 4, this pattern was expected. The R scripts and the functions used to generate the 

simulations are available in the R folder of the Github repository 

https://github.com/alxsrobert/measles-regional-immunity (files generate_simulations.R, 

function_generate_all_outbreaks.R, and function_generate_outbreak.R). 

 

Figure 5.2: Percentage of simulations where the number of cases reported in each department was at least 1, 10, and 50 cases 
in at least one year.  

5.3.2. Parameter fits 

For each of the simulations, two models were fitted using the Epidemic-Endemic framework 

implemented in the R package surveillance: a daily model, and an aggregated model using a 10-day 

aggregation. The code for the implementation of both models is shown in R/ function_analysis_hhh4 

and R/generate_analysis_simulations.R, whereas the code to generate all the figures is available in 

R/generate_plots_simulations.R.  

Firstly, I compared the ability of both the aggregated and daily models to capture the actual values of 

the parameters in the 95% confidence intervals. The parameters selected for the comparison were the 

coefficients associated with each covariate, which quantify whether the model accurately described the 

impact of the covariates on each component, and the two parameters used to compute the connectivity 

matrix, which describe whether the models generated the same pattern of cross-regional connectivity 

as the simulations.  

https://github.com/alxsrobert/measles-regional-immunity
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In the set of daily models, the 95% confidence interval captured most of the input parameters used to 

generate the simulations: 14 of the 21 selected parameters were contained in the 95% confidence 

interval in at least 90% of the simulations (Figure 5.3A). The impact of the categories of incidence was 

harder to accurately estimate. Indeed, the incidence parameters in the neighbourhood and 

autoregressive components were included in the confidence interval in 82 to 90% of the simulations. 

This could be caused by the combined impact of unreported cases, and discrepancies in the incidence 

category thresholds between the models and the simulations. Indeed, in the models the threshold 

defining the last category of incidence was computed using the second tercile of all measures of recent 

incidence, whereas in the simulation, it was set to 45 cases per million.  

In the aggregated models, the proportion of input parameters included in the 95% confidence intervals 

of the model was lower, and did not exceed 85% for any of the parameters (Figure 5.3B). The seasonality 

of the neighbourhood and autoregressive components did not correspond to the simulations. Indeed, 

the “cosine” seasonal parameters in the autoregressive component was never included in the 95% 

confidence interval, and the “sine” parameter was included in 73% of the models. The seasonal 

parameters in the neighbourhood models were captured in 24 to 27% of the models. This indicates that 

the timing of the peaks in transmission differed in the simulations and the aggregated models. 

Furthermore, discrepancies were observed in the coefficients quantifying the impact of the categories 

of incidence, which were included in the 95% confidence intervals in 63 to 76% of the simulations.  
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Figure 5.3: Histograms representing the proportion of simulation sets where the input parameters used to generate the 
simulations are included in the 95% confidence interval of the model. For each parameter, the value should be close to 95%, 
indicating that 95% of the models included the input parameter in their 95% confidence interval. The top panel shows the 
results using the daily model, whereas the bottom panel corresponds to the aggregated model fits. The red dotted line 
corresponds to 95%. The parameters integrated in these figures are the covariates’ coefficients in each component, and the 
parameters of the gravity model. 

More specifically, the coefficients associated with the proportion unvaccinated and the recent levels of 

incidence in each component are of special importance, since they describe the impact of the covariates 

of interest in Chapter 4. In all three components, the daily model estimated the impact of vaccination 

with more precision and accuracy than the aggregated models (Figure 5.4). Indeed, the distribution of 

the difference between the mean estimate and the input parameter had a lower variance around 0 in 

the daily models than the aggregated set. Because of this bias, the impact of vaccination on the number 

of local secondary transmissions was estimated to be negligible, or negative, in some of the aggregated 

models (i.e. the mean estimate in Figure 5.4B was below 0). The PIT histograms highlighted the bias 

observed in the aggregated models: in all three compartments the PIT histograms were skewed towards 

extreme values, whereas the PIT histograms generated with the daily models were more uniform. This 

indicates that the aggregated models tended to underestimate or overestimate the impact of 

vaccination on the different components. However, the estimation of the impact of vaccination on the 

endemic component appears imprecise in both models (Figure 5.4, Panels G and H), which could be 

because cases stemming from the endemic component were hard to identify if they were generated 

during phases of active transmission. These new importations may then be considered by the models 

as secondary cases stemming from concurrent transmission chains, and change the estimated impact 

of the covariates. Alternatively, the uncertainty could be due to the small number of cases stemming 

from the endemic component. 
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Figure 5.4: Comparison between the estimated impact of the proportion unvaccinated in the daily (red curves) and aggregated 
(blue curve) models, and the input distribution in the simulations, in each component. Each row corresponds to a different 
component. The left column (panels A, D, and G) shows the density plots of the difference between the input parameter in the 
simulations, and the mean parameter estimate in both sets of models, the black dotted vertical line corresponds to 0, where the 
estimated parameter was equal to the input value. The central column (panels B, E, and H) corresponds to the distribution of 
the mean parameters in both models, along with the distribution in the simulations. The black dotted vertical line corresponds 
to 0, where the impact of the parameter on the number of cases is null. Finally, the right column (panels C, F, and I) corresponds 
to the PIT histograms of the parameter for both models. The dotted horizontal line corresponds to a value of 1, which would 
correspond to the ideal PIT histogram. 

Similarly, the parameters quantifying the effect of recent incidence were more accurately estimated in 

the daily models of moderate (‘incidence 1’) and high (‘incidence 2’) transmission (Figure 5.5 and Figure 

5.6). Although the PIT histograms of the daily models were not uniform, the aggregated models were 

more skewed towards extreme values. The impact of recent incidence was harder to capture for both 

models because of the report ratio, and the discrepancies in the thresholds defining the categories of 

incidence in the simulation and the models. However, despite the skewed PIT histograms, the distance 

between the mean estimate and the input distribution was small, and the overall conclusions were 

robust: Increases in recent incidence were associated with a reduction in local secondary transmission 

and an increase in cross-regional transmission. Furthermore, the parameters associated with moderate 

transmission (incidence 1) had a small impact on transmission, whereas high recent levels of 

transmission had a larger effect across all the components.  
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Figure 5.5: Comparison between the estimated impact of medium levels of recent incidence in the daily (red curves) and 
aggregated (blue curve) models, and the input distribution in the simulations, in each component. Each row corresponds to a 
different component. The left column (panels A, D, and G) shows the density plots of the difference between the input 
parameter in the simulations, and the mean parameter estimate in both sets of models, the black dotted vertical line 
corresponds to 0, where the estimated parameter was equal to the input value. The central column (panels B, E, and H) 
corresponds to the distribution of the mean parameters in both models, along with the distribution in the simulations. The black 
dotted vertical line corresponds to 0, where the impact of the parameter on the number of cases is null. Finally, the right column 
(panels C, F, and I) corresponds to the PIT histograms of the parameter for both models. The dotted horizontal line corresponds 
to a value of 1, which would correspond to the ideal PIT histogram. 
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Figure 5.6: Comparison between the estimated impact of high levels of recent incidence in the daily (red curves) and aggregated 
(blue curve) models, and the input distribution in the simulations, in each component. Each row corresponds to a different 
component. The left column (panels A, D, and G) shows the density plots of the difference between the input parameter in the 
simulations, and the mean parameter estimate in both sets of models, the black dotted vertical line corresponds to 0, where the 
estimated parameter was equal to the input value. The central column (panels B, E, and H) corresponds to the distribution of 
the mean parameters in both models, along with the distribution in the simulations. The black dotted vertical line corresponds 
to 0, where the impact of the parameter on the number of cases is null. Finally, the right column (panels C, F, and I) corresponds 
to the PIT histograms of the parameter for both models. The dotted horizontal line corresponds to a value of 1, which would 
correspond to the ideal PIT histogram. 

I also compared the proportion of cases originating from each component in the simulations, and in 

both sets of models (Figure 5.7). In the simulations, between 65% to 73% of the cases came from the 

autoregressive component, whereas cross-regional transmission represented 20% to 34% of the 

transmissions. The proportions of cross-regional transmissions and endemic importations were 

estimated to be slightly higher in the daily models. This could be explained by punctual local 

transmission being classified as cross-regional because of competing infectors. The difference was much 

more apparent in the set of aggregated models, where only half the cases (50% to 57%) stemmed from 

the autoregressive component, and the proportion of cross-regional transmissions was higher. Because 

of the aggregation, some of the local transmissions cannot be classified in the autoregressive 

component, which could be due to longer serial intervals or unreported generations, and are therefore 

explained by the model as cross-regional transmission or background importations. This difference is 

further highlighted by the discrepancies in the distribution of the two spatial parameters (𝛾 and 𝛿) 

between the simulations and the set of aggregated models: indeed, the population parameter was 
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overestimated (bottom panel Figure 5.8), whereas the distance parameter tended to be much lower in 

the aggregated models than in the simulations. Therefore, the decay associated with the increase in 

distance was slower in the aggregated models (top panel Figure 5.8), and the connectivity matrix 

estimated in the aggregated models was more uniform, hence cross-regional transmissions between 

distant regions were more frequent. This shows that in the aggregated models, some of the local 

transmissions were replaced by cross-regional transmissions. 

 

Figure 5.7: Median proportion of cases originating from each component in the simulation sets, and the daily and aggregated 
models. The arrows correspond to the 95% confidence intervals in each set.  

 

Figure 5.8: Comparison between the estimated parameters of the exponential gravity model in the daily (red curves) and 
aggregated (blue curve) models, and the input distribution in the simulations, in each component. Each row corresponds to a 
different component. The left column (panels A, D, and G) shows the density plots of the difference between the input 
parameter in the simulations, and the mean parameter estimate in both sets of models, the black dotted vertical line 
corresponds to 0, where the estimated parameter was equal to the input value. The central column (panels B, E, and H) 
corresponds to the distribution of the mean parameters in both models, along with the distribution in the simulations. The black 
dotted vertical line corresponds to 0, where the impact of the parameter on the number of cases is null. Finally, the right column 
(panels C, F, and I) corresponds to the PIT histograms of the parameter for both models. The dotted horizontal line corresponds 
to a value of 1, which would correspond to the ideal PIT histogram. 
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5.3.3. Predictive ability 

Three indicators were used to compare the 10-day prediction of both sets of models to the data over 

the calibration period: the bias, which quantifies whether a model systematically over- or underpredicts 

case numbers; the sharpness, which is independent of the data and quantifies whether the model 

generates predictions in a narrow range of possible outcomes; and the Ranked Probability Scores (RPS), 

which is lower if the predictive distribution is close to the one generating the data. The values of each 

indicator were compared by computing the difference between the predictions of the two models in 

each simulation. Values of sharpness and RPS are always positive, and lower values are generally 

preferred, whereas the bias can be negative, and the optimal value is 0. Therefore, the biases were 

compared by computing the difference in absolute bias between the models. 

In most of simulations, the bias value was closer to 0 in the daily models (Figure 5.9A), whereas the 

values of sharpness were mostly lower in the aggregated models. This indicates that the aggregated 

models tended to generate narrower predictions, but the daily models were often more balanced. 

Finally, the RPS was always lower in the daily models. This indicates that using daily incidence improved 

the predictive ability in every simulation. Nevertheless, to test whether this improvement was 

substantial, I generated a permutation test on the mean RPS in the aggregated and daily model, for each 

simulation. In 4% of the simulations, there was limited evidence the daily models improved the 

predictions (𝑝𝑣𝑎𝑙𝑢𝑒 >  0.1 in the permutation test), whereas in 57% of the simulations, there was 

strong evidence that the predictions generated by the daily models were better than the predictions 

from the aggregated models (𝑝𝑣𝑎𝑙𝑢𝑒 <  0.001 in the permutation test).   

 

Figure 5.9: Difference in absolute bias, sharpness, and Ranked Probability Scores between the aggregated and daily models. In 
all three values, lower levels are better. Therefore, positive differences mean that the aggregated values were higher (i.e. the 
daily model performed better). 
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5.4. Discussion 

The daily models were better able to capture the input parameters of the simulations than the set of 

aggregated models, and generated predictions significantly better calibrated in most of the simulated 

outbreaks. In particular, the estimated impact of vaccination coverage corresponded to the input 

parameters in every component. On the other hand, the impact of the level of recent incidence was 

harder to capture since the categories of incidence were defined by different thresholds in the 

simulations and the models. This difference was introduced to match the protocol used in Chapter 4 to 

define the incidence categories: rather than setting the threshold using an absolute value (45 cases per 

million in the simulations), I computed the second tercile of incidence in each simulation. Although the 

mean parameter estimates were biased in some of the simulations, the daily models were able to 

identify the direction of effect associated with high levels of recent incidence. By using a composite 

serial interval, the daily models were able to capture the dynamics of transmission despite partial 

reporting. Therefore, this study highlights the added value of adapting the Epidemic-Endemic 

framework to daily data.  

On the other hand, running the analysis with daily models was more computationally demanding than 

with the aggregated framework. Similarly, the simulation-based calibration was more time consuming 

than analytically computing the distribution in the aggregated models. Fitting one daily model took 

about five minutes (less than one minute per aggregated model), and the calibration runs were about 

30 minutes long per simulation (less than two minutes per aggregated model) on a standard desktop 

computer (Intel Core i7, 3.20 GHz 6 cores). Although the aggregated models were outperformed by daily 

models, they were also mostly able to capture the value of the input parameters, and their predictions 

were associated with low bias. Therefore, at least in the scenarios studied, aggregated models could be 

said to be able to provide insights into the dynamics of transmission if daily data are unavailable. 

However, this study highlights the importance of developments in the Epidemic-Endemic to integrate 

cases infected a few time steps before on current transmission, as recently implemented by Bracher 

and Held [8]. The aggregated models implemented in this study tended to replace local spread by cross-

regional transmissions because there was no eligible infector in the region (either because they were 

not reported, or because of their aggregated onset date). Weighting the potential for transmission over 

several time steps could allow aggregated models to capture transmission events with longer serial 

intervals, or to integrate the impact of unreported generations. This could be particularly important 

with weekly or fortnightly aggregated data because the aggregation period would then be more distinct 

from the average serial interval for measles, and infectors would be less likely to be grouped exactly one 

time step before the infectees.  
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The simulated outbreaks generated in this chapter do not aim to be an accurate description of real-life 

transmission dynamics. Indeed, factors that were not included in the simulation framework could 

impact transmission, and the impact of the parameters may change through time. Furthermore, the 

impact of recent incidence is more complex than the three-category covariate generated here, and the 

local vaccine coverage may not be an accurate description of the level of immunity in the population. 

However, the main aim of this study was to explore the loss of information caused by the aggregation 

of case count across different outbreak scenarios. The variability of outbreaks generated by the 

simulations allowed an assessment of the added value of daily case counts. The conclusions reached in 

this study are likely to be robust to the addition of new variables since they would affect both the 

aggregated and non-aggregated models similarly. Changes in transmission dynamics, such as different 

serial intervals or reporting rate may have an impact on the conclusions. Indeed, in a fully reported 

outbreak, with a narrow distribution of the serial interval, on average close to the scale of aggregation, 

the cases classified in each time step would be more likely to belong to the same generation, with their 

infectors classified at the previous time step. In this example, the added value of the daily model should 

be more limited. 

Points of improvement in the daily framework would include the use of a time-varying serial interval to 

compute the transmission potential, or the estimation of the serial interval distribution in the fitting 

procedure. Indeed, the distribution of the serial interval can vary throughout an outbreak [21,22], 

meaning it may be better to define the distribution of the serial interval according to the number of 

local cases recently reported, which would impact the transmission potential. Furthermore, in order to 

account for time-varying reporting rate, one could account for changes in the proportion of the 

composite interval that stems from direct transmission during the outbreak. This would be especially 

relevant with decade-long time series, where the ability of the surveillance system to detect cases may 

improve through time. In conclusion, the adaptation and application of the Epidemic-Endemic 

framework to simulated daily case counts resulted in an improvement in the parameter estimates and 

in the calibration of the models. Integrating daily data into this method is therefore promising and 

should be further explored to disentangle the local and spatial spread of infectious pathogens. 
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Chapter 6. Discussion 

In this thesis, I have explored how various routinely collected data sources can be combined and 

integrated in mathematical models to gain insight into the risks of measles outbreaks in countries near 

elimination. I have approached this question from two different angles, firstly through the 

reconstruction and analysis of transmission chains, then by evaluating the association between different 

indicators of immunity and local case counts to identify reliable predictors of the local risks for 

outbreaks. I will start this chapter by providing a summary of the results from previous chapters, 

followed by a discussion of the strengths and limitations of the methods developed in this PhD thesis. I 

will then summarise the contributions relative to previous research, and finally I will present the future 

research opportunities that arise from the conclusions of this project. 

6.1. Summary of main findings 

In Chapter 2, I presented the R package o2geosocial, which I developed to infer who infected whom 

using the onset date, location, age group and genotype of the cases. These variables were chosen 

because they are routinely collected in most settings, and can all be informative of the history of 

transmission [1–3]. This novel method was implemented as an R package, building upon previously 

developed reconstruction methods such as the package outbreaker2 [4,5], and published on CRAN. 

Chapter 2 also contains a reproducible example to highlight the flexibility and limitations of the model. 

This example is based on a simulated dataset of 75 cases reported in a community within 6 months. The 

method was able to identify the infector for most of the cases, and highlighted the areas more often 

associated with secondary transmissions. This chapter also showed the added value brought by previous 

knowledge on the importation status of the cases. Indeed, the inference of the importation status led 

to inconsistencies between the inferred transmission trees and the simulated data, whereas the 

transmission trees inferred when the importations were already identified consistently matched the 

data. This was due to the presence of multiple concurrent independent transmission chains reported in 

a small geographical area, which are harder to detect since measles genetic data are uninformative in 

this context (i.e. the method may not find how many independent chains are happening at the same 

time). Increasing the proportion of importations detected by the model is crucial to correctly assess the 

cluster size distribution and the number of locally acquired cases per region. For instance, 

underestimating the number of importations would lead to an underestimation of the number of 

clusters, and an overestimation of the number of locally acquired cases following each importation. 

Therefore, the accuracy of the inferred clusters can be improved by case investigations into recent 

travels, in order to identify at least a proportion of the importations prior to the inference process. 
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Despite being initially developed to match the specificities of measles virus, o2geosocial requires data 

often collected in infectious disease outbreaks and is therefore applicable to a wide range of settings 

and pathogens. For instance, reconstructing transmission trees during seasonal flu outbreaks would be 

useful for identifying routes of transmission repeatedly observed, and showing what locations are 

typically associated with increases in incidence. Such a study could then be used to design specific 

vaccination programs and surveillance in the areas most often linked to super-spreading events. On the 

other hand, this method may have stronger limitations for outbreaks with low report rates, for instance 

because of asymptomatic transmission. In this situation, o2geosocial may over-estimate the number of 

unrelated importations and under-estimate the missing links between cases. Finally, for pathogens such 

as the Ebola virus, where genetic sequences are informative, o2geosocial presents the opportunity to 

integrate all the cases (i.e. un-sequenced cases would not be excluded), but may not be able to optimally 

use the information contained in the reported genetic sequences compared to methods that fully take 

this into account. 

This application of o2geosocial on simulated data thus showed its ability to accurately reconstruct who-

infected-whom in a simulated measles outbreak and highlighted some of its limitations. However, these 

simulated data are not perfectly representative of actual outbreak dynamics and can exaggerate how 

effective an inference method really is. Indeed, the simulation framework perfectly matched the 

inference framework, which means that all factors responsible for transmissions are integrated in the 

inference framework, which is not true in applications using real-life data. In the third chapter of the 

thesis, I applied o2geosocial to measles cases reported in the USA between 2001 and 2016. In the United 

States, contact-tracing investigations are carried out in order to reconstruct the transmission clusters 

through patient interviews. Therefore, the transmission clusters inferred by various o2geosocial models 

could be directly compared to the clusters from contact-tracing investigations. Overall, the inferred 

transmission clusters matched the epidemiological clusters: the models were able to correctly infer up 

to 87% of the imported cases (assuming import status was always correctly ascertained in 

epidemiological investigation), and captured the overall cluster size distribution. The geographic 

distance between cases was identified as the most informative variable for clustering, however this may 

be due to the specificities of measles in the United States (i.e. few cases reported over a very large 

geographic area), and may not be generalisable to other settings. The match between inferred and 

epidemiological clusters was further improved when the importation status was known. Since the 

reconstructed clusters matched the epidemiological contact tracing investigations, this method could 

be extended to routinely collected data when contact tracing investigations are not carried out. The 

probabilistic transmission trees could then be studied to bring insights into the areas most at risk of 
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transmission, estimate transmission parameters [6], and identify the variables associated with increased 

numbers of secondary cases [7],  or super-spreading events [8].   

The fourth chapter focused on evaluating the impact of local vaccine coverage and recent incidence on 

the daily number of measles cases per department (i.e. NUTS3 regions) in France, between 2009 and 

2018. The case count data was fitted by adapting the Epidemic-Endemic framework to daily data. In the 

existing literature, the Epidemic-Endemic model had been applied to aggregated case counts [9–12]. 

This chapter aimed to evaluate whether areas eligible for WHO’s elimination status (i.e. with low recent 

incidence) were actually associated to lower risks of outbreaks in France, and whether local vaccine 

coverage was a reliable predictor of future transmission. In the Epidemic-Endemic models, the 3-year 

average local vaccine uptake was associated with a lower risk of importations (whether cross-regional 

or baseline importations), and local secondary transmission, indicating that recent values of vaccine 

coverage were relevant indicators of the risks of outbreak in France. On the other hand, higher levels of 

local incidence in the past three years were associated with lower risks of local secondary transmission, 

which indicates that areas that had not reported any cases in the past three years were estimated to be 

more at risk of outbreaks than the other departments. This could be linked to a replenishment of 

susceptibles, whereby after years of low incidence, the number of susceptible individuals is sufficient to 

trigger outbreaks, and thus raises questions regarding the requirements of WHO’s elimination status, 

where countries become eligible for elimination after three years of interrupted transmission [13]. In 

Chapter 4, I also highlighted the importance of maintaining the national vaccine uptake by exploring the 

impact of variations in vaccine coverage on the number of simulated cases in a year: a drop in 3% of the 

three-year average vaccine coverage across the country led to a large increase in the number of annual 

cases simulated (almost all simulations generated more than 1,000 cases). While predictions of the 

model lacked accuracy when the calibration period exceeded 10 days ahead and therefore these 

simulations should not be taken as accurate predictions of future outbreaks the relative impact of 

variations in coverage is informative of the importance of maintaining the vaccine uptake to limit the 

risks of outbreaks. The model implemented highlighted the heterogeneous risks of transmission in the 

different French departments. Indeed urban, populated areas were associated with increased risks of 

cross-regional transmission, and the risks of local transmission were highest in the South East and the 

North of France. These areas, identified as vulnerable by the model, could be targeted by serological 

surveys, in order to verify whether the levels of immunity in the population are sufficient to avoid future 

outbreaks, and, if not, design catch up vaccination campaigns targeting the local population. 

Finally, the fifth chapter of the thesis presented a comparison between aggregated and non-aggregated 

Epidemic-Endemic models, implemented using the R package surveillance and applied to simulated 

data. Using the parameter sets generated in Chapter 4, I generated 100 simulated outbreaks, and fitted 
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the simulated case counts with aggregated and non-aggregated models, using the same set of covariates 

as in the simulations. Although both models were able to capture the dynamics observed in most 

simulated outbreaks, the daily models outperformed the aggregated models both in their ability to 

correctly capture the parameters used to generate the simulations, and in their ability to make accurate 

predictions. The improvements were mostly due to the ability of the daily models to deal with variations 

in the distribution of the serial intervals and underreporting. The aggregated models tended to 

compensate for missing local cases at the previous time step by increasing the risks of cross-regional 

transmission, thereby linking the current case counts to unrelated cases in other regions.  This highlights 

the importance of collecting and using daily data when they are available, and adapting aggregated 

models to account for missing generations [9].  

This set of projects has shown how routinely collected data can help reconstruct local risks of 

transmission, and highlighted the importance of developing novel methodology to make the best 

possible use of routinely collected data. Using two case studies in countries near elimination (France), 

or where measles had already been declared eliminated (USA), it also highlighted that the 

heterogeneous risks of measles outbreaks can only be captured using multiple data sources, since each 

measure of risk has strong limitations, and that the indicators of vulnerability need to be evaluated in 

order to thoroughly assess the risks of measles outbreaks in a country.  

6.2. Strengths and limitations 

The methods implemented in the different chapters share the strength of being applicable to many 

settings: I focused on developing inference frameworks aiming to maximise the amount of information 

that can be inferred from routinely collected measles surveillance and coverage data. As highlighted in 

Chapter 1, local heterogeneity in immunity against measles is caused by multiple factors, which makes 

the identification of vulnerable areas challenging. The transmission tree reconstruction method, and 

the Epidemic-Endemic framework show two complementary approaches to measure and identify areas 

associated with higher risks of transmission. Both methods are also adaptable to other pathogens where 

local heterogeneity in risks of transmission is a leading cause of transmission. As mentioned earlier, this 

would be especially relevant for pathogens with high detectability of the cases, and where several years 

of data are available, in order to observed repeated transmission patterns. The code implemented to 

reproduce the analysis in each chapter is documented in publicly available Github repositories in order 

to be transparent, and make extensions and adaptations as easy as possible. The epidemiological data 

used in Chapter 3 and Chapter 4 were not publicly available, and thus could not be shared. Therefore, I 

reproduced the analysis using simulated data in both cases.  
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The reconstruction method implemented in o2geosocial was applied to simulated and real-life data, 

and both analyses showed the method was able to capture complex dynamics of transmission. Given 

the limited number of variables required to generate accurate results, these analyses could be repeated 

in many countries and different settings. Probabilistic transmission trees reconstructed using several 

years of data could be used to compare the characteristics of the areas associated with importations, 

or with increases in the number of cases, every year. Increasing the level of immunity in these areas, 

identified as crucial for limiting the spread of the virus, would be key to reduce the risks of future spread. 

Therefore, these regions could then be targeted by SIAs, or adaptation in the immunisation program 

could be implemented, in order to close the immunity gap. Furthermore, integrating different countries 

into the analysis could bring insight into the number of cross-national transmissions. One could also use 

the transmission trees reconstructed in different countries to highlight characteristics associated with 

areas at risk and thus identify indicators of transmission (e.g. low recent incidence, high levels of vaccine 

hesitancy, high connectivity with other regions), or events commonly associated with increases in the 

number of cases. 

The R package was developed with the purpose of being highly flexible. Indeed, each component in the 

likelihood of connection between two cases can be edited to implement alternative methods. For 

instance, in Chapter 2 I showed how the spatial component, by default described using a gravity model, 

can be changed to a Stouffer’s rank model, which was shown to perform well at reconstructing human 

movements during pre-vaccination era measles outbreaks [14]. The temporal likelihood could also be 

edited to implement a time-varying serial interval defined before running o2geosocial. Indeed, the 

distribution of the number of days between connected cases can change over the course of the 

outbreak, so setting a different distribution depending on the number of active cases could improve the 

ability of o2geosocial to accurately capture the history of transmission [15]. Different age-stratified 

contact matrices can also be used to compute the probability of transmission between age groups. 

However, although all the analyses implemented in this thesis were able to match the transmission 

patterns in the input data, it cannot be concluded whether they would work as well in every setting. 

Indeed, the specificities of the countries used for the analyses may hide certain biases and overstate the 

abilities of the models implemented. For instance, the small number of cases reported in the United 

States may maximise the ability of o2geosocial to reconstruct transmission clusters, given that cases 

were spread across such a large spatial area. 

Similarly, the analyses ran using the Epidemic-Endemic framework (Chapters 4 and 5) were 

implemented using a flexible framework, able to accommodate different ways to compute the 

connectivity between regions, and integrate a wide number of covariates, and were able to capture 

measles dynamics in both real-life and simulated data. In Chapter 4, the calibration study indicated that 
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the prediction generated by the model showed signs of bias when the calibration period exceeded 10 

days. This can be due to various factors, such as an underestimation of the number of background 

importations, therefore the number of cases predicted remain low if there is no active transmission in 

the region at the time of prediction; or a misspecification of how the parameters impact the model. For 

instance, the model assumes the effect of each parameter is constant throughout the timespan of the 

study, and many potential factors are excluded (e.g., tourism and mass events). As a result of this bias 

in calibration, the one-year simulation study should not be seen as a prediction of future outbreaks, and 

mainly aims to illustrate the relative impact of changes in the level of recent incidence, or in vaccine 

coverage.  

In Chapters 2 and 3, once the probabilistic transmission trees were computed, the identification of 

transmission events can be used to highlight common scenarios of spread, i.e. whether certain regions 

tend to be more associated with importations, whereas others are “catalysts” for transmission where 

the number of cases quickly increases. The reconstructed transmission trees can also be used to identify 

characteristics or settings commonly associated with high transmission events [7,8,16]. However, one 

main limitation of the use of transmission trees is that it requires previous recent transmissions, and 

supposes that the transmission observed in recent years is indicative of future transmission. Indeed, if 

no case were reported in recent years in a given area, the nationwide transmission trees would not be 

able to conclude anything about the risks of onwards transmission in the region. One of the conclusions 

of the Epidemic-Endemic model implemented in Chapter 4 was that regions where high levels of 

transmission were recently reported were associated with lower risks of secondary cases. Regions with 

low levels of transmission, on the other hand, had higher risks of local transmission. If this result can be 

extrapolated to the reconstruction of transmission trees, it would indicate that regions with few isolated 

cases (i.e. low levels of transmission) would be associated with higher risks of transmission, despite the 

low number of secondary cases per case in the region according to the transmission chains. This shows 

the importance of studying patterns of spatial spread over multiple seasons and transmission chains, in 

order to distinguish between regions repeatedly associated with a high number of transmissions and 

areas with one-off large transmission clusters.  

Another limitation highlighted in both Chapters 2 and 3 was the definition and inference of the 

importation status in o2geosocial. Indeed, in the absence of full information on the importation status 

of the cases, importations must be inferred by o2geosocial, whereby they are defined as “cases who do 

not have any satisfying potential infector”. This means that the threshold after which a connection is 

deemed implausible must be defined by the user. This definition is already used in other inference 

methods [4]. I changed the way the threshold was computed, and allowed for different numbers of 

importations between the inferred trees. However, this value influences the final cluster size 



171 
 

distribution, and sensitivity analysis are therefore required if no epidemiological investigations on the 

importation status of the cases are carried out. This definition also ignores that, during an outbreak, a 

given imported case may have plausible potential infectors within the data set. This scenario cannot be 

captured without the use genotype information (i.e. if the genotype of the imported case is different 

from the other transmission chains) or sequence data showing the number of independent 

importations. In order to identify these importations, the threshold would have to be set to a stricter 

level, causing o2geosocial to remove true connections and overestimate the number of imported cases. 

The identification of independent importations was also challenging in the Epidemic-Endemic 

framework. Indeed, since the models implemented in Chapters 4 and 5 did not integrate information 

on the genotype or the importation status of the cases, background importations could not be isolated 

from active transmissions, and tended to be linked to the ongoing transmission chains. This was 

highlighted by the fact that the proportion of cases stemming from the endemic component was very 

low, especially during the peak transmission season. 

The accuracy and utility of the inferred transmission trees also depends on the proportion of cases that 

are detected by the surveillance system. Although missing generations are taken into account in the 

estimation procedure, o2geosocial cannot account for entirely unreported transmission clusters, which 

could lead to inaccuracies in the cluster size distribution reconstructed by the model if these 

systematically had characteristics different from observed clusters. As a consequence, regions where 

transmission clusters were less likely to be detected may also be less likely to be identified as more 

vulnerable to measles outbreaks. Unreported transmission links may also cause an underestimation of 

the number of superspreading events. Moreover, if the detection rate of the cases is correlated with 

factors impacting transmission, the analysis of the reconstructed transmission trees may not be able to 

accurately estimate the impact of these factors. The reconstructed transmission trees therefore only 

describe a subset of the transmission happening during an outbreak, especially for pathogens with a 

high proportion of sub-clinical transmissions. These limitations are better accounted for in the daily 

adaptation of the Epidemic-Endemic framework.  In Chapter 5 I used a simulation study to show that 

implementing a multimodal composite serial interval accounting for different scenarios of reporting 

improved the estimations of the factors associated with transmission despite partial detection of cases. 

However, the Epidemic-Endemic framework does not explicitly measure the proportion of cases 

detected by the surveillance system, and the composite serial interval was determined prior to running 

the model. The proportion of the composite serial interval stemming from transmissions with missing 

generations therefore may have to be changed in settings where measles surveillance is not able to 

identify a large proportion of the reported cases [17].  
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6.3. Contributions relative to previous knowledge, and interpretation of results 

This program of research provides several meaningful steps forward from previous knowledge: 

Firstly, Chapters 2 and 3 showed that measles transmission history could be reconstructed accurately in 

different settings without using extensive data on the genetic sequences of the cases. Indeed, most 

recent methods developed to reconstruct transmission trees have relied on combining epidemiological 

data and genetic sequences [4,6,18–23]. However, these methods are difficult to apply to measles, given 

that the genetic sequences of measles virus are usually not diverse enough to identify direct 

transmission [5,24]. The projects presented in Chapters 2 and 3 show that routinely collected 

epidemiological data can be used to reconstruct probabilistic transmission trees, and identify regions or 

characteristics which were repeatedly associated with transmission events. This contribution is valuable 

because it highlights how much information on past transmission dynamics can be extracted from 

variables routinely collected in most countries. The transmission trees can then be used to assess and 

describe the heterogeneous risks of measles outbreaks, alongside other routinely collected data such 

as local vaccine coverage, sero-surveys, and molecular surveillance. Given the different limitations 

associated with each approach, they should be used complementarily to highlight consistent patterns 

of immunity in countries with high nationwide vaccine uptake. 

This study also highlighted which parts of epidemiological investigations were most important for 

improving the accuracy of the reconstructed transmission trees. Indeed, the transmission trees were 

inferred using routinely collected variables such as the onset date, location, and age group of the cases, 

but the inference of the importation status has proven more challenging. Thus, the accuracy of the 

inference was improved in both applications by incorporating previous knowledge on the importation 

status of the cases. This highlights the importance of routinely collecting information on recent travels 

in surveillance data to detect a portion of the imported cases. Collecting the travel history is especially 

relevant for pathogens with short incubation periods because cases that travelled immediately before 

their reported date of symptom onset would be more likely to be imported. The travel history would 

therefore be more indicative of the importation status and the number of concurrent transmission 

chains. Therefore, integrating the recent travel history of the cases in the routinely collected surveillance 

data is crucial to improve the reconstructed transmission trees. 

Similarly, if multiple genotypes are co-circulating, the proportion of genotyped cases does impact the 

ability of the model to find imported cases. However, given the limited number of genotypes reported 

in recent years, more detailed information on the sequences would be needed to make a substantial 

difference. Indeed, given that the B3 and D8 genotypes account for a large majority of the genotypes 
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reported in recent years [25], the risks of independent transmission chains having the same genotype 

are high.  

The application of the Epidemic-Endemic framework model to French measles case count data brought 

insights into the drivers of the risks of measles transmission in countries near elimination. Indeed, I 

highlighted that in France, local measures of coverage were associated with lower risks of local and 

cross-regional transmissions. On the other hand, low regional incidence in recent years was not 

associated with a reduced risk of secondary transmission. This is an important contribution because it 

highlights that, if the example of France is representative of other countries near elimination, looking 

into recent incidence to define the current risks of transmission could lead to misevaluations, whereas 

local vaccine coverage would be a better indicator of the risks of outbreaks. Given the current guidelines 

defining the elimination status integrate the number of cases in the past three years [26], this could be 

one of the factors explaining why the elimination status had to be revoked in certain countries shortly 

after being declared. The results presented in Chapter 4 show that reliable, detailed values on recent 

vaccine coverage may be more indicative of the local risks of transmission. Furthermore, the simulation 

study highlighted how variations in vaccine coverage may influence the number of cases generated per 

region, with a 3% drop in three-year average uptake resulting in a five-time increase in the average 

number of cases. Given that many countries near elimination in Europe, and in America have reported 

very low number of measles cases since March 2020 after year of measles resurgence [27,28], and 

disruptions in immunisation programs have been observed in various countries during the COVID-19 

pandemic [29,30], the results of this study would predict that the risks of imminent measles outbreaks 

are higher in near elimination settings. This drop could be due to higher levels of immunisation due to 

past outbreaks, but the fact that it happened simultaneously in many countries that recently reported 

high levels of transmission, and coincided with the Non-Pharmaceutical Interventions (NPI) 

implemented to mitigate the spread of SARS-CoV-2, indicate that the risks of measles transmission 

would remain high if the NPIs were lifted. The low number of cases reported in 2020 and 2021 may have 

led to a replenishment of susceptibles in areas with relatively lower vaccine coverage. If the potential 

immunity gap created by these exceptional circumstances is not closed quickly with SIAs, the cohort of 

children missed by the disrupted immunisation campaign may be associated with higher risks of 

outbreaks for the years to come. The methods developed in this PhD could be used to identify the areas 

where the risks of local transmission are highest, and where catch-up campaigns are therefore most 

needed. 

Finally, I extended the application of the Epidemic-Endemic framework to daily incidence data, taking 

into account the transmissibility of past cases according to the serial interval of the disease. The 

development of a composite serial interval to integrate different scenarios of transmission improved 
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the ability of the model to capture the dynamics of transmission and estimate the impact of the 

covariates. The daily framework I developed outperformed the original aggregate estimates in both the 

simulated and real-life data. In both chapters 4 and 5, the predictions obtained with the daily models 

were better than the aggregated models. The simulation study also showed that input parameters were 

estimated more accurately with the daily models. The loss of performance observed in the aggregated 

models were mostly due to instances where infectors and infectee were not aggregated in consecutive 

time steps. Therefore, the use of aggregated models that do not integrate the weighted risks of 

transmission over several time steps is likely to lead to stronger biases for outbreaks and pathogens 

with a large proportion of undetected cases, and when the period of aggregation does not match the 

serial interval of the disease.  

The implications of the projects developed in this research go beyond the specific aspects of measles in 

countries near elimination. Firstly, these conclusions give insight into the colossal effort needed to 

achieve elimination. Indeed, despite a safe and very effective vaccine having been available for more 

than forty years, only one WHO region (the Americas) has ever reached the elimination status, and still 

recently reported large outbreaks following political crises and importations from countries affected by 

measles resurgence. The regular resurgence of cases and heterogeneous risks of transmission in near 

elimination settings highlight that immunisation efforts (SIAs, routine or mass vaccination) needs to be 

linked across regions to be effective. The data on immunisation must be collected and available at a fine 

scale to be as informative as possible, whereas vaccine policies must be applied at a large scale to avoid 

the risks of imported cases reaching pockets of susceptibles [31]. As different vaccination strategies are 

designed and implemented to build immunity against COVID-19, the resurgence of measles outbreaks 

shows the importance of equal access to vaccination. Each pocket of susceptibles is at risk of outbreak, 

and outbreaks do not occur in isolation, often crossing borders to affect various connected countries at 

the same time [32]. Secondly, the last ten years of measles dynamics in countries near elimination can 

inform the next steps required for countries still affected by endemic transmission of measles, besides 

increasing their overall vaccine coverage. The regular outbreaks in countries near elimination highlight 

that the immunisation policies must be developed in coordination with neighbouring countries, and 

implemented thoroughly at a local level. Otherwise, the progress made during the implementation of 

the routine coverage can be halted by the heterogeneous risks of outbreaks, and the complex 

identification of the pockets of susceptibles. 

6.4. Future research and data requirements 

The methods presented in this thesis were developed to be widely applicable since they require a 

limited number of variables, all routinely collected in countries near elimination. Therefore, the first 

approach to further the conclusions presented in the different chapters would be to apply o2geosocial 
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and the Epidemic-Endemic framework to more settings, in order to assess whether the findings and 

implications I presented are generalisable to other countries. The code and functions developed in each 

chapter are shared as publicly available Github repositories, and o2geosocial was implemented as an R 

package to facilitate future applications. 

As mentioned earlier, the number of measles cases in many near elimination settings has dropped since 

the beginning of the COVID-19 pandemic, due to a variety of factors including decreased international 

travel; and a drop in social contacts due to NPI implemented during the pandemic [33]. The low number 

of cases will lead to a replenishment of susceptibles, and the disruption in immunisation program may 

create immunity gaps. The main area of future research will be to disentangle the effect of the COVID-

19 pandemic on measles transmission in the years to come. Indeed, as presented earlier, many countries 

near elimination had seen a resurgence of cases since 2017, and another resurgence is likely if the 

contact patterns between individuals comes back to the pre-pandemic levels. Identifying the most 

vulnerable regions and designing campaigns to increase the levels of immunity is therefore crucial to 

avoid observing the levels of measles transmission reported in 2018 and 2019. The methods developed 

in this PhD project aim to shed light on the heterogenous risks of outbreaks from widely collected data 

and should therefore be of special interest if such a resurgence is observed. To maximise the ability of 

these methods to estimate the local risks of transmission, accurate routinely collected data are needed, 

and various other features could be integrated in both models. Therefore, in this section, I will focus on 

the variables that could be integrated in both o2geosocial and the Epidemic-Endemic framework to 

improve the accuracy of the models. 

Firstly, future applications of the Epidemic-Endemic framework could incorporate the association 

between vaccine coverage and incidence at different scales. Indeed, increasing the size of the 

geographical units in the Epidemic-Endemic framework may conceal the heterogeneity in vaccine 

coverage or immunity within each unit. For instance, in Chapter 4, sub-departmental heterogeneity in 

vaccine uptake may have biased the association between vaccine coverage and incidence, with 

vulnerable areas being unnoticeable in a department with high overall coverage. On the other hand, 

increasing the granularity may lead to inaccurate measures of local vaccine uptake, because of 

population movements and lack of suitable denominators. Comparing the fits obtained with different 

geographical scales would give insights into what scale of coverage is most informative of local 

transmission. If local measures of coverage cannot reliably estimate the level of vaccine-induced 

immunity in an area, other variables could be collected to act as proxies for vaccine coverage, such as 

the presence of communities usually associated with lower vaccine coverage (because of vaccine 

hesitancy or poor access to public health infrastructures and services), socio-economic indicators [34], 

or the level of local public health expenditure [35]. Tools have also been developed to infer local 



176 
 

vaccination coverage at a detailed geographical scale using household-based surveys [36,37], or 

aggregated coverage data [38]. 

The Epidemic-Endemic framework could also be expanded by increasing the number of covariates 

integrated in each component in order to provide a more complete integration of the factors impacting 

transmission. For instance, the recent stagnation (or decrease) in vaccine uptake in countries near 

elimination has been linked to growing levels of vaccine hesitancy [39–41], which were not integrated 

in the Epidemic-Endemic models. The models could be extended to integrate the impact of changes in 

vaccine policy, or cuts in funding. Indeed, austerity measures have been linked to decreases in vaccine 

coverage [35], and adding indicators of local public health expenditure to the covariates would show 

whether it is also associated with increased risks of incidence. Recently, several European countries, 

such as France or Italy, have changed their vaccine policy and made measles vaccination mandatory 

[42]. The effect of this change at a local level could also be evaluated by integrating the change in policy 

as a covariate of the model. Therefore, the Epidemic-Endemic framework could be used to quantify the 

relative impact of each of these factors, and analyse which are most correlated with heightened risks of 

outbreaks.  

Furthermore, in the projects presented in Chapters 4 and 5, the vaccine-induced immunity was 

represented by the coverage of the 1st vaccine dose. Ideally, this immunity would be best described by 

the coverage at the 2nd dose, however most values of local vaccine uptake at the second dose were 

missing over the time period considered in the project. A comparison between models integrating each 

dose might show whether the uptake at one or two doses is more correlated to changes in local 

incidence, and bring valuable insights into the added value of using the second dose coverage. Finally, 

the models could account for more sources of immunity if data on the local impact of Supplementary 

Immunisation Activities (SIAs) were available. Indeed, SIAs can be responsible for a substantial part of 

immunity in a population [43], and their impact on the risks of transmission could be evaluated by 

adding this data as a covariate to each component.  

Future research could aim to incorporate other key demographic and behavioural variables into 

o2geosocial, and evaluate which epidemiological data are most informative to reconstruct who infected 

whom. For instance, in the first version of o2geosocial, distance between cases only depends on the 

location reported to the surveillance system. However, connectivity can depend on factors other than 

distance, such as whether children from under-immunised communities tend to go to the same schools, 

regardless of the distance between their homes. In this example, their residency may be less informative 

to reconstruct transmission than their school. Future developments in o2geosocial should work towards 

integrating the impact of the workplace or school in the likelihood procedure. These data are rarely 
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publicly available but can be routinely collected by national surveillance systems. This could come as an 

extra factor, estimated by the model, which would quantify the “bonus” in chances of connections 

between two cases given that they attend the same school or workplace. 

In all projects of this thesis, the estimation of the connectivity between regions in both frameworks 

relied upon using incidence data. However, as highlighted in Chapter 5, this can lead to biases: for 

instance, the aggregated model over-estimated the number of cross-regional transmissions because it 

could not identify suitable infectors in the region of origin, which was due to the aggregation and partial 

detection of the cases. Therefore, the connectivity matrix estimated by this model did not correspond 

to the input values in the simulations. Mobility patterns are usually described by commuting data, or 

GPS data taken from mobile phone or social medial. For instance, daily GPS data collected by Facebook 

through the Data For Good program were recently used to estimate the impact of Non Pharmaceutical 

Interventions on mobility and the spread of COVID-19 [44,45]. However, using actual mobility data can 

also lead to selection biases. For instance, children are excluded from commuting and GPS data collected 

by social media because of data sensitivity. This may be especially relevant for measles outbreaks, 

during which a large proportion of the reported cases are children. Furthermore, the mobility patterns 

of cases may not correspond to the daily movements (for instance in case of severe symptoms). Using 

actual mobility data is therefore especially relevant for pathogens with a proportion of sub-clinical 

infections (i.e. whose mobility pattern will not affected by the pathogen), and during outbreaks not 

mainly driven by transmission among children. 

Finally, future work could focus on evaluating the impact of integrating different formulations of the 

Epidemic-Endemic framework in the daily model developed in Chapters and 4 and 5. Firstly, social 

contact data have been incorporated within the Epidemic-Endemic model to account for heterogeneous 

contact between age groups in aggregated data [46]. Stratifying by age group could improve the way 

coverage data is integrated in the model. Indeed, in the current version of the daily model, the three-

year average uptake is used to describe the vaccine-induced immunity of the entire population. 

However, yearly values of vaccine uptake only describe the proportion of children of certain age groups 

that were vaccinated this year (the reported age groups can vary depending on the country), which may 

not resemble the vaccine coverage for older age groups, who were vaccinated  in previous years. 

Therefore, the coverage at a given date may be a flawed estimate of the vaccine-induced immunity in a 

region. In an age-stratified Epidemic-Endemic model, the level of vaccine-induced immunity of a given 

age group would correspond to the vaccine coverage reported in the year that the age of this cohort 

was equal to the age at which vaccine coverage is reported, and would remain the same at each year. 

The vaccine coverage in a given year would not describe the vaccine uptake of the entire population 
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anymore, but only the coverage among the age group reported in this year, which corresponds to how 

the yearly vaccine coverage is computed.  

Secondly, recent developments of the Epidemic-Endemic model allowed for the inclusion of weights 

over previous time steps to account for the impact of longer serial intervals on the risks of transmission 

[9]. A comparison between these models and the daily framework developed in Chapters 4 and 5 would 

assess whether these weights improve the performance of the aggregated frameworks. Furthermore, 

in this new version of the framework, the weights can be estimated in the fitting procedure. By adapting 

this development to the daily framework, one could estimate the proportion of the composite serial 

interval stemming from direct transmission rather than set a proportion prior to running the model. 

Indeed, this proportion was arbitrarily set to allow for both direct and indirect transmissions, but 

sensitivity analyses were needed to show the robustness of the estimates. Estimating the proportion of 

direct transmission from the case counts would be more sensible and would give insight into the 

detection rate of the cases. 

6.5. Conclusions 

This PhD thesis showed that developing models based on routinely collected surveillance data can 

improve our understanding of local measles transmission dynamics. Using a limited number of widely 

available data, the methods presented in this project were able to reproduce the spread of measles in 

different settings, identify local areas most at-risk of outbreaks, and estimate the impact of various 

factors on transmission. My results suggest that countries near elimination remain at risk of large 

outbreaks, especially following short-term decreases in vaccination coverage. This is particularly 

relevant given that the first year of the COVID-19 pandemic was associated with disruption in many 

routine immunisation programs. Despite the drop in measles transmission reported in various countries 

during 2020, the risks of measles outbreaks remain high. Methods able to identify pockets of 

susceptibles and transmission hotspots from limited data are therefore crucial to evaluate the 

vulnerability of countries near elimination to future outbreaks. 
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Supplementary Material Chapter 2 

S1. Sensitivity analysis 

We re-ran the analysis using different distributions of the incubation period and the serial intervals in 

order to assess the impact of these distributions on the ability of the models to reconstruct the 

transmission clusters. 

Firstly, narrowing both distributions led to increasing the discrepancies between the simulated and 

inferred transmission trees (Figure S1). Although the cluster size distributions were similar, especially 

when the importation status was known prior to fitting the model, the proportion of iteration when 

cases were linked to the “right” infector dropped: about 10 of the cases were never linked to the right 

infector. However, most cases were linked to an infector from the “right” cluster in most of the 

simulations. Some transmissions rarely generated in the simulations have become completely 

impossible in the inferred trees, for instance longer serial intervals, or short incubation periods, which 

explains why certain simulated links were never generated in the inferred trees.  

 

Figure S1: Description of the model fits obtained using lower standard deviations for both the incubation period and the serial 
interval (𝑓~𝐺𝑎𝑚𝑚𝑎(0.14, 80) and 𝑤~𝑁𝑜𝑟𝑚𝑎𝑙(11.7, 0.7)). Panel A: Distribution of the incubation period 𝑓, used in the 
simulations and in the model. Panel B: Comparison between the cluster size distribution inferred using narrow distributions and 
the reference data. Panel C: Distribution of the generation time 𝑤. Panel D: Proportion of iterations with the correct index for 
each case; Panel E: Proportion of iterations where the index is from the correct cluster. 

On the other hand, increasing the standard deviation of both distributions made little difference 

compared to the reference model fits (Figure S2). The cluster size distributions inferred in both models 

were similar to the fits presented in the Main text. We observed a slight decrease in the proportion of 

iterations where cases were connected to the right infector. This may be due to the fact that cases have 

more likely potential infectors than in the reference fits, given that the temporal component is not as 
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informative. However, these differences remain minor, and the actual infector is part of the pool of 

potential infectors for almost every case in both models. 

 

Figure S2: Description of the model fits obtained using higher standard deviations for both the incubation period and the serial 
interval (𝑓~𝐺𝑎𝑚𝑚𝑎(1.29, 8.9) and 𝑤~𝑁𝑜𝑟𝑚𝑎𝑙(11.7, 6)). Panel A: Distribution of the incubation period 𝑓, used in the 
simulations and in the model. Panel B: Comparison between the cluster size distribution inferred using wide distributions and 
the reference data. Panel C: Distribution of the generation time 𝑤. Panel D: Proportion of iterations with the correct index for 
each case; Panel E: Proportion of iterations where the index is from the correct cluster. 

Finally, we generated the analysis using distributions with same standard deviation as the reference fits, 

but changing the mean (Figure S3 and Figure S4). In both cases, we did not observe any major change 

in the cluster size distribution compared to the Main analysis. The proportion of iterations where cases 

were connected to an infector from the correct cluster did not change for most cases. Some connections 

between cases were more rarely represented in the inferred transmission trees, but two third of the 

cases were connected to the correct infector in more than 60% of the inferred tree (if the importation 

status was known), which was similar to the reference fits. 
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Figure S3: Description of the model fits obtained using later means for both the incubation period and the serial interval 
(𝑓~𝐺𝑎𝑚𝑚𝑎(0.35, 39.5) and 𝑤~𝑁𝑜𝑟𝑚𝑎𝑙(14.7, 2)). Panel A: Distribution of the incubation period 𝑓, used in the simulations 
and in the model. Panel B: Comparison between the cluster size distribution inferred using distributions with later means and 
the reference data. Panel C: Distribution of the generation time 𝑤. Panel D: Proportion of iterations with the correct index for 
each case; Panel E: Proportion of iterations where the index is from the correct cluster. 

 

Figure S4: Description of the model fits obtained using earlier means for the incubation period and the serial interval 
(𝑓~𝐺𝑎𝑚𝑚𝑎(0.55, 16.3) and 𝑤~𝑁𝑜𝑟𝑚𝑎𝑙(8.7, 2)). Panel A: Distribution of the incubation period 𝑓, used in the simulations and 
in the model. Panel B: Comparison between the cluster size distribution inferred using distributions with earlier means and the 
reference data. Panel C: Distribution of the generation time 𝑤. Panel D: Proportion of iterations with the correct index for each 
case; Panel E: Proportion of iterations where the index is from the correct cluster. 

S2. Comparison local number of secondary cases 

In Figure S5, we compared the 95% credible intervals of the average number of secondary transmissions 

per region in the models to the simulated data. The 95% credible intervals were generated by calculating 

the average number of secondary transmissions per region in each iteration of the transmission trees 
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(excluding the burnin phase), and computing the 2.5% and 97.5% quantiles. We observed that both 

models were able to identify the regions most often associated with secondary transmissions, and in 

both models, only one simulated regional value did not fall within the 95% Credible Intervals. 

 

Figure S5: Average number of secondary cases per region in the simulations (red dots) and the models. The black line links the 
median estimates, the arrows indicate the 95% Credible Intervals. Panel A: Model 1, with inferred importation status; Panel B: 
Model 2, with known importation status. 
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Supplementary Material Chapter 3 

S1. Description of the US dataset 

 

Figure S1: Description of the cases and clusters reported in the United States between 2001 and 2016. Panel A: number of 
clusters reported per state in the contact tracing investigations (5 clusters cover several states) and Panel B: Age distribution of 
the cases. Data from CDC’s National Notifiable Disease Surveillance System. Hawaii and Alaska and not shown in Panel A. 
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S2. Evaluation cluster matching 

 

Figure S2: Confidence intervals of the sensitivity (right panels) and precision (left panels) of the clusters of each case in the 
different runs. For each case, the sensitivity is the proportion of cases from the reference cluster that were correctly inferred, 
the precision is the proportion of cases from the inferred cluster that were part of reference cluster.  Grey areas represent the 
95% credibility intervals, and the black line represents the median values of sensitivity or precision across all iterations.  
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S3. Posterior distribution and convergence 

 

Figure S3: Trace of the posterior value of the MCMC runs after removing the burnin section and thinning. A: Ideal imports;  B: 
Epi imports; C: Absolute threshold, 𝑘 = 0.05 D:  Absolute threshold, 𝑘 = 0.05 with prior information on imports; E: Absolute 
threshold, 𝑘 = 0.1;  F: Relative threshold upper 𝜆 = 97.5% quantile. 
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S4. Clusters stratified by state 

Scenario 1 

 

Figure S4: Comparison of the inferred and reference cluster size distributions in the nine states with most cases declared 
between 2001 and 2016 in scenario 1. Arrows represent the 95% credibility intervals of each estimate. 
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Scenario 2 

 

Figure S5: Comparison of the inferred and reference cluster size distributions in the nine states with most cases declared 
between 2001 and 2016 in scenario 2. Arrows represent the 95% credibility intervals of each estimate. 
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Scenario 3 

Absolute threshold 𝑘 = 0.05 

 

Figure S6: Comparison of the inferred and reference cluster size distributions in the nine states with most cases declared 
between 2001 and 2016 in scenario 3, with an absolute threshold 𝑘 = 0.05 and no prior information on the import status of 
cases. Arrows represent the 95% credibility intervals of each estimate. 

 

  



193 
 

Relative threshold 𝒌 = 𝟗𝟓% 

 

Figure S7: Comparison of the inferred and reference cluster size distributions in the nine states with most cases declared 
between 2001 and 2016 in scenario 3, with a relative threshold 𝑘 = 95% and no prior information on the import status of 
cases. Arrows represent the 95% credibility intervals of each estimate. 
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Epidemiological imports, and absolute threshold 𝒌 = 𝟎. 𝟎𝟓 

 

Figure S8: Comparison of the inferred and reference cluster size distributions in the nine states with most cases declared 
between 2001 and 2016 in scenario 3, with an absolute threshold 𝑘 = 0.05 and using the import status distribution from the 
contact tracing investigations as prior information. Arrows represent the 95% credibility intervals of each estimate. 
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S5. Parameter estimates 

 

Figure S9: Estimation of A) the report ratio 𝜌, B) the spatial parameter 𝑎 and C) the spatial parameter 𝑏 in each scenario. The 
dots represent the median estimate, and the arrows correspond to the 95% credibility interval. The estimates were obtained 
after burnin and thinning. 

S6. Distance between transmission 

 

Figure S10: Distribution of the distance between connected cases in scenario 1, scenario 3 without prior and scenario 3 with 
prior information. Arrows correspond to the 95% credibility interval.  
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S7. Impact of different components of likelihood 

 

Figure S11: Description of transmission clusters inferred excluding certain components of the likelihood. In this example, the 
import status of import was not inferred, and taken from the ancestor in each cluster (Scenario 1). Panel A: Cluster size 
distribution using 1) only the time component of likelihood; 2) time and genotype; 3) time genotype and age; 4) time, genotype 
and space; compared to the reference clusters (lighgrey). Arrows represent the 95% credibility intervals of each estimate. Only 
clusters containing at least 2 cases are represented. Inset: Number of imports and number of isolated cases (singletons). For 
each scenario, the horizontal dark line represents the number of imports that are also imports in the reference clusters, same 
for singletons. Panel B: Heatmap representing the precision and sensitivity of the clusters for each case when only time and 
genotype are used to infer the transmission clusters, the cases were classified in a category depending on the proportion of 
their reference cluster that were inferred in the same cluster (x-axis) and the proportion of mismatches in the inferred cluster. 
Panel C: Same for time, genotype and space. 

S8. Number of secondary transmissions, overall and per state 

Overall 

 

Figure S12: Distribution of the number of secondary cases caused by each case in scenario 1, scenario 3 without prior and 
scenario 3 with prior information. Arrows correspond to the 95% credibility interval. Cases were classified in groups of 
transmitter (no further transmission; 1-2 subsequent cases; 3-4 subsequent cases and more than 5 subsequent cases). 

Maps per state 
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Figure S13: Average number of secondary cases caused by each case stratified by state in A) scenario 1, B) scenario 3 without 
prior and C) scenario 3 with prior information. 
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S9. Impact of the proportion of genotype reported. Inference on simulated data  

 

Figure S14: Description of transmission clusters inferred using simulated data (toy_outbreak_long in the o2geosocial package), 
depending on the proportion of genotyped cases in the data. Panel A: Cluster size distribution when 1) none of the cases was 
genotyped, 2) 40% of the cases were genotyped (similar to the US dataset) 3) All the cases were genotyped; compared to the 
reference clusters (lighgrey). Arrows represent the 95% credibility intervals of each estimate. Only clusters containing at least 2 
cases are represented. Inset: Number of imports and number of isolated cases (singletons). For each scenario, the horizontal 
dark line represents the number of imports that are also imports in the reference clusters, same for singletons. Panel B: 
Heatmap representing the precision and sensitivity of the clusters for each case when no genotype was reported are used to 
infer the transmission clusters, the cases were classified in a category depending on the proportion of their reference cluster 
that were inferred in the same cluster (x-axis) and the proportion of mismatches in the inferred cluster. Panel C: Same when all 
cases were genotyped. 
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Supplementary Material Chapter 4 

S1. Sensitivity analysis: Composite serial interval 

In the main analysis, we considered that 50% of the composite serial interval reflected direct 

transmission (without missing generations between cases), and 50% came from the two scenarios with 

unreported cases. In order to analyse the impact of the proportion of direct transmission in the 

composite serial interval, we fitted Model 1 and Model 2 using different composite serial intervals, and 

reported the fitted distributions of the parameters. We computed ten different composite serial 

intervals with the proportion of direct transmission increasing from 10% to 100% by increments of 10%. 

The impact of the covariates on the risks of transmission was robust to changes in the composite 

intervals for both Model 1 and Model 2 (Figure S1 and Figure S2). The median estimate of each 

parameter was included in the 95% confidence interval of the reference results (when the proportion 

of direct transmission in the composite serial interval is 50%). The only parameter that was impacted 

was the overdispersion parameter, which increased for most of the fits. This could indicate a wider 

difference between the mean estimate and the data, which would be taken into account by increasing 

the dispersion of the negative binomial distribution.  

 

Figure S1: Estimates of the parameters in each component of Model 1, using the reference fit (grey) and ten different values of 
the composite interval (orange). unvax corresponds to the effect of  𝑢𝑖,𝑡, the mean proportion unvaccinated over the three years 

before t in i; incid1 and incid2 correspond to the effect of 𝑁𝑖,𝑡
1  and 𝑁𝑖,𝑡

2  the category of incidence in the three years before t in i; 

pop corresponds to the effect of 𝑚𝑖,𝑡 the number of inhabitants at t in i; area corresponds to the effect of the surface; sin and 

cos correspond to the effects of seasonality; distance and population correspond to the spatial parameters of the connectivity 
matrix w (δ and γ); overdisp is the estimate of the log-overdispersion parameter in the negative binomial distribution of 𝑌𝑖,𝑡. 

Dots show the mean values associated with the parameters; arrows show the 95% Confidence interval. The orange arrows 
indicate the extreme values of the 95% confidence interval obtained using different distributions of the composite serial 
intervals. 
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Figure S2: Estimates of the parameters in each component of Model 2, using the reference fit (grey) and ten different values of 
the composite interval (orange). unvax corresponds to the effect of  𝑢𝑖,𝑡, the mean proportion unvaccinated over the three years 

before t in i; incid1 and incid2 correspond to the effect of 𝑁𝑖,𝑡
1  and 𝑁𝑖,𝑡

2  the category of incidence in the three years before t in i; 

pop corresponds to the effect of 𝑚𝑖,𝑡 the number of inhabitants at t in i; area corresponds to the effect of the surface; sin and 

cos correspond to the effects of seasonality; distance and population correspond to the spatial parameters of the connectivity 
matrix w (δ and γ); overdisp is the estimate of the log-overdispersion parameter in the negative binomial distribution of 𝑌𝑖,𝑡. 

Dots show the mean values associated with the parameters; arrows show the 95% Confidence interval. The orange arrows 
indicate the extreme values of the 95% confidence interval obtained using different distributions of the composite serial 
intervals. 

S2. Inference of missing data in the regional vaccine coverage  

We used publicly available data on 1st dose vaccine uptake between 2004 and 2017 in each department 

of metropolitan France to calculate the average local vaccine coverage over the past three years. There 

was no reported value of coverage reported in 2009, therefore the average in 2010, 2011 and 2012 

were calculated using only two previous years.  Besides 2009, there were 208 missing entries between 

2006 and 2017 (17% of all entries), some regions had three years of consecutive unreported coverage, 

which made it impossible to compute an average without inferring the missing values. Since the 

incidence dataset starts in 2009, we did not infer the missing coverage data prior to 2006 (Figure S3). 
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Figure S3: Temporal and spatial distribution of the missing data: Panel A: Number of missing observations per year, missing 
coverage in 2004 and 2005 did not need to be inferred in the model, and since 2009 was entirely missing, we did not infer any 
value that year. Panel B: Number of missing entries per region. 

We implemented a beta mixed model to fit the annual local values of coverage. We used a beta 

regression since it is most adapted to modelling proportions or percentages. This model was 

implemented using the R package glmmTMB [1]. Observations are clustered over time within a region. 

The explanatory variables were orthogonal polynomials of degree 2 over the years covered by the data 

(𝑡 varies between 1 and 14). 

logit (𝑌𝑖𝑗) =  𝛽0𝑗 + 𝛽1𝑗𝑡𝑖 + 𝛽2𝑗𝑡𝑖
2 

Where:  

𝛽0𝑗 = 𝛾00 + 𝑈0𝑗 

𝛽1𝑗 = 𝛾10 + 𝑈1𝑗 

𝛽2𝑗 = 𝛾20 + 𝑈2𝑗 

Using two-degree orthogonal polynomials gave more flexibility to the fitted curve than only using linear 

values of time. The regional values of intercept, and the impact of the orthogonal polynomial varied 

depending on the area, and were distributed around the fixed effect (Top panel of Figure S4). We show 

the average fitted trajectory of the vaccine coverage through time, along with the fit in three regions. 

This highlights that, although the average trajectory slightly increased between 2004 and 2017, there 

was no abrupt change in the first dose vaccine uptake. Nevertheless, using random effects allows for 

flexibility in other regions, whereby the fitted trajectories can show greater changes (e.g. region 2 in 

Figure S4).  
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Figure S4: Panel A: Values of the three parameters of the regression for each region. Panel B: Estimated values of coverage 
between 2004 and 2017, the dots represent the mean estimate, shaded areas correspond to the 95% Confidence Intervals. The 
purple, orange and green areas representing three departments illustrate how the changes through time can differ depending 
on the region.  

There was no discontinuous jump in the distribution of the random effect distribution for the three 

parameters of the model (Top panel of Figure S4). The fitted residuals plot did not show any clear trend 

relative to the dispersion of the data (Figure S5). We used different diagnostic tools provided by the R 

package DHARMA to test whether the model was correctly specified using simulated residuals. The 

outlier and the dispersion tests did not show any discrepancy, but the Kolgomorov Smirnov test of 

uniformity showed significant deviation from the expected distribution of residuals. This was expected 

from the minor discrepancies shown on the QQ plot (right panel of Figure S5).  

 

Figure S5: Diagnosis of the regression on the vaccine coverage. Left panel: Fitted vs residuals plot, Left panel: uniform quantile-
quantile plot. 

Finally, the stratification of residuals by year did not show any trend, which indicates the fit was 

consistent throughout the different years included in the dataset (Figure S6).  
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Figure S6: Distribution of the residuals per year of inference. The blue line indicates the mean value every year. 

The multiple diagnostics tests and plots we used mostly supported the specification of the beta 

regression model. We inferred the missing values of coverage by using the mean estimates of the model 

for the years and regions where data was missing. Since the diagnostics also indicated minor 

discrepancies between our model and the results, we also generated 100 sets of coverage data by 

drawing the missing data from the normal distribution of the model (using the mean and standard 

deviation of the inferred values for the missing entries). We then ran the hhh4 models on each of the 

full coverage datasets to highlight the influence of the missing entries on parameter estimates. The 

deviation from the parameter estimates generated with the mean coverage was minimal (Figure S7 and 

Figure S8). This indicates that our conclusions are robust to changes in the inferred values of the missing 

data. 
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Figure S7: Estimates of the parameters in each component of Model 1, using the reference fit (grey) and 100 different values of 
coverage for the inferred entries (orange). unvax corresponds to the effect of  𝑢𝑖,𝑡, the mean proportion unvaccinated over the 

three years before t in i; incid 1 and incid2 correspond to the effect of 𝑁𝑖,𝑡
1  and 𝑁𝑖,𝑡

2  the category of incidence in the three years 

before t in i; pop corresponds to the effect of 𝑚𝑖,𝑡  the number of inhabitants at t in i; area corresponds to the effect of the 

surface; sin and cos correspond to the effects of seasonality; distance and population correspond to the spatial parameters of 
the connectivity matrix w (δ and γ); overdisp is the estimate of the log-overdispersion parameter in the negative binomial 
distribution of 𝑌𝑖,𝑡. Dots show the mean values associated with the parameters; arrows show the 95% Confidence interval. The 

orange arrows indicate the extreme values of the 95% confidence interval obtained drawing different values of coverage for the 
missing entries. 

 

 

Figure S8: Estimates of the parameters in each component of Model 2, using the reference fit (grey) and 100 different values of 
coverage for the inferred entries (orange). unvax corresponds to the effect of  𝑢𝑖,𝑡, the mean proportion unvaccinated over the 

three years before t in i; incid1 and incid2 correspond to the effect of 𝑁𝑖,𝑡
1  and 𝑁𝑖,𝑡

2  the category of incidence in the three years 

before t in i; pop corresponds to the effect of 𝑚𝑖,𝑡  the number of inhabitants at t in i; area corresponds to the effect of the 

surface; sin and cos correspond to the effects of seasonality; distance and population correspond to the spatial parameters of 
the connectivity matrix w (δ and γ in Equation X); overdisp is the estimate of the log-overdispersion parameter in the negative 
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binomial distribution of 𝑌𝑖,𝑡. Dots show the mean values associated with the parameters; arrows show the 95% Confidence 

interval. The orange arrows indicate the extreme values of the 95% confidence interval obtained drawing different values of 
coverage for the missing entries. 

S3. Seasonality 

Both Model 1 and Model 2 include two parameters per component describing the seasonality of 

transmission and importations.  For each component and each model, we computed 

exp (𝛽𝑐
(𝜆) 𝑐𝑜𝑠 (

2𝜋𝑡

365
) + 𝛽𝑠

(𝜆) 𝑠𝑖𝑛 (
2𝜋𝑡

365
)) − 1, the multiplicative factor corresponding to the impact of 

seasonality on the predictor (Figure S9).  

 

Figure S9:Seasonality of each component in Model 1 (Panel A) and Model 2 (Panel B). We quantified the impact of seasonality 
using the percent of variation around the mean value every day. 

S4. Analysis using the neighbour-based connectivity matrix  

The calibration and simulation study presented in the Main text was also run using Model 2. The fits to 

daily and weekly data were similar to Model 1 (Figure 4.4 and Figure S10). The calibration study indicates 

that Model 2 was slightly more likely to underestimate the number of cases in short-term predictions 

than Model 1. We generated the national number of cases predicted 3, 7, 10, and 14 days ahead by 

Model 1 and Model 2 over the calibration period, and compared the forecasts to the data (Figure S11). 

The predictions in both models were very similar, with the 95% prediction intervals overlapping on the 

majority of the calibration period. The data points were included in the 95% prediction intervals for 

forecasts one week ahead or less, when the period of forecasts was 10 or 14 days, we observed a lag 

between the predictions and the data when the number of cases started increasing and dropping. 



206 
 

 

Figure S10: Panel A and B:  Daily and weekly fit between the data and Model 2. The inferred number of cases is split among the 
three components of the model. Panel C to F: PIT histograms of Model 2, generated respectively for predictions 3, 7, 10, and 14 
days ahead. 

 

Figure S11: Comparison between predictions 3, 7, 10, and 14 days ahead using model 1 and model 2 and the data. Lines 
correspond to the median estimates, shaded areas correspond to the 95% predictions intervals. The blue and purple predictions 
are similar for the entire calibration period, hence the curves overlap in all panels. Black dots represent the number of cases 3, 
7, 10, and 14 days ahead in France at each date. 
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The proportion of cases that stem from the endemic component was slightly higher in Model 2, which 

is due to the framing of the neighbourhood component (Figure S12). Indeed, in Model 2, the 

neighbourhood component only contains transmission between neighbours, whereas in Model 1, it 

describes any cross-regional transmission between the regions included in the study. Therefore, long-

distance transmissions fall into the endemic component in Model 2, whereas they would be included in 

the neighbourhood component of Model 1. 

 

Figure S12: Proportion of cases per component in both models 

We generated four simulation sets using the scenarios presented in the Main text with the parameter 

estimates from Model 2. We observed similar spatial heterogeneity in exposure and risk of large 

outbreaks. The areas most likely to be affected by large outbreaks were Paris and its suburbs, along with 

the south of France (Figure S13). Setting the level of recent incidence to the minimum values in each 

region decrease the number of baseline importations, and therefore reduced the proportion of 

simulation where most regions were exposed to transmission (i.e. they reported at least one case). 

Nevertheless, the risks of large outbreaks were similar to the reference simulation set. The effect of 

variations in vaccine coverage on the risks of importations and local transmission was the same as what 

was described for Model 1, with a three percent decrease leading to an abrupt increase in the number 

of cases. 
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Figure S13: Percentage of simulations where the number of cases reported in each region in 2019 was at least 1, 10, and 50 
cases for each scenario using parameter estimates from Model 2. Each row corresponds to a different scenario: i) Reference, ii) 
Minimum level of recent incidence in each region, iii) Local vaccine coverage increased by 3% in each region, iv) Local vaccine 
coverage decreased by 3% in each region. 

The spatial spread upon repeated importation was more limited than in Model 1 (Figure S14). In all four 

scenarios, most regions were not exposed to transmission in any of the simulations. This is due to the 

fact that long-distance transmission would fall into the endemic component of Model 2, which was not 

used for these simulation sets. On the other hand, large transmission clusters in the region of 

importations and its neighbours were more common.  
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Figure S14: Percentage of simulations where the number of cases reported in each region in 2019 was at least 1, 10, and 50 
cases following the importations of ten cases in December 2018, and using the parameter estimates from Model 2. For each 
row, the region of importation is indicated by a black dot. 
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S5. Last values of the covariates 

The simulation sets were generated using the last measures of the variables included in our models. We 

show the geographic distributions of each variable (Figure S15): 

 

Figure S15: Geographic distribution of the number of inhabitants (right panel), average vaccine coverage (central panel), and 
recent incidence (left panel) at the end of 2018.  

S6. Local importations with different vaccine coverage 

Decreasing the vaccine uptake in each region by three percent led to an increase in the number of 

regions exposed to transmission following a local group importation (Figure S16). The risks of generating 

large outbreaks were higher both in the region of imports and in other areas, especially in highly 

populated urban regions. This was due to an increase in the number of cases generated in the 

neighbouring component, which led to more cross-transmission into regions with higher number of 

inhabitants.  

On the other hand, a reduction of vaccine uptake led to a decrease in the overall number of cases 

generated per outbreak (Figure S17). Spill overs from the region of origin were much rarer: in the case 

of group importations in Haute-Garonne or Bouches-du-Rhône, no department outside the department 

of importation was exposed to one case in more than half of the simulations.  Risks of large outbreaks 

were also reduced: in all four simulations, no department reported more than 50 cases in at least half 

the simulations, and few apart from the department of importation reported more than 10 cases. 
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Figure S16: Percentage of simulations where the number of cases reported in each region in 2019 was at least 1, 10, and 50 
cases following the importations of ten cases in December 2018, and using the parameter estimates from Model 1 and a three 
percent decrease in vaccine coverage in each region. For each row, the region of importation is indicated by a black dot. 
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Figure S17: Percentage of simulations where the number of cases reported in each region in 2019 was at least 1, 10, and 50 
cases following the importations of ten cases in December 2018, and using the parameter estimates from Model 1 and a three 
percent increase in vaccine coverage in each region. For each row, the region of importation is indicated by a black dot. 

S7. Comparison with aggregated models and impact random effects 

We assessed the impact of using daily case count and random effects on the calibration of the models 

by the Ranked Probability score.  We were interested in three models: The daily model without random 

effects (presented in the Main Text), the daily models with random effects, and the aggregated model, 

fitted using a 10-day aggregation. Although random effects allow for more flexibility in the model, they 

significantly slow down the fitting procedure (40 times slower [2]). All models were run with the same 

specifications as Model 1, where cross-regional transmission can happen between every region, and 

with using vaccine coverage, recent levels of transmission, number of inhabitants, surface, and 

seasonality as covariates.  
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For each of the three models, we generated 10-day predictions every 10 days for the last two years of 

data. This corresponded to 72 calibration dates for 94 regions, hence 6,768 data points. We computed 

three different indicators using the R package scoringutils [3,4]:  

1. The sharpness shows the ability of the model to generate predictions in a narrow range of 

possible outcomes, which means that the sharpness score is independent of the data. We 

used the normalised median absolute deviation about the median.  

2. The bias: indicates whether a model systematically under or over predicts. Least biased 

models will get a mean value around 0, whereas completely biased models will get a value 

of -1 or 1. 

3. The average Ranked Probability Score (RPS) for Count Data, proper scoring rule minimised 

if the predictive distribution is the same as the one generating the data. 

The daily model without random effect had the lowest value of sharpness, indicating that the forecasts 

were generated in a narrower range of outcomes than the other models (Figure S18). The mean value 

of bias was closest to 0 in the aggregated model, which show that these forecasts were well balanced 

and did not tend to under or over-estimate the number of cases. We performed a permutation test on 

the RPS score, which indicated that the calibration of the two daily models was significantly better than 

the aggregated model (p-value < 0.02) [2]. 

Adding the random effects to the daily model did not lead to major improvements: The sharpness and 

bias were better in the model without random effects, whereas the difference between the RPS scores 

was not significant (p-values > 0.1). Since using random effects slows down the fitting procedure, 

without contributing a major improvement to the calibration, random effects were not integrated into 

the main analysis. 

The fact that random effects did not substantially improve the calibration may be due to the time span 

of this analysis: random effects can be used to account for heterogeneity between the regions that 

would not be explained by the covariates included in the analysis. Since a random effect is applied to a 

given region throughout the entire time span of the data, they quantify constant effects on the region 

that was otherwise unobserved. As this analysis covers almost ten years of data, the impact of factors 

not included in this analysis may have varied over time, which would explain the little added value of 

the random effects. 
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Figure S18: Sharpness, bias and RPS scores of the Daily model with and without Random Effects (RE), and of the aggregated 
model 

S8. Control for day-of-the-week effect 

Since we use daily onset dates, we explored the impact of potential reporting bias based on the day of 

the week. Indeed, delays in reporting can cause bias in the date of declaration of cases, and can explain 

why more cases would be reported on weekdays than on weekends. The number of cases with an onset 

date on Saturdays or Sundays was slightly lower than for the other days (1,970 cases on Saturdays and 

Sundays, whereas the average value on weekday is 2,100 cases, Figure S19).  

 

Figure S19: Number of cases by day of the week. We used the onset date for each case reported to the ECDC between 2009 and 
2018.  

We implemented a model controlling for the weekend effect in each component. This model contained 

the same covariate and distance matrix as Model 1. The covariate “Weekday” was a binary variable, 
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equal to 1 on Saturdays and Sundays, and 0 otherwise. In the neighbourhood and endemic components, 

the covariate “weekday” had no significant impact on the value of the predictor (Figure S20). On the 

other hand, the number of cases stemming from the autoregressive component was smaller on 

weekends (coefficient estimate: -0.09 [-0.15- -0.03]). Introducing this covariate brought no change to 

the values of the other coefficients in the model.  

 

Figure S20: Comparison of the parameter estimates obtained in Model 1 (similar to Figure 4.2) with or without a weekday 
covariate added in each compartment. Weekday was computed as a binary covariate, whose value was 1 on Saturdays and  
Sundays, and 0 otherwise.  
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